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The resonant rotation of Mercury can be modelised by a kernel model on which we can add perturbations. Our kernel model is a two-degree of freedom one written in Hamiltonian formalism. For this kernel, we consider that Mercury is solid and rotates on a Keplerian orbit. By introducing the perturbations due to the other planets of the Solar System, it appears that, in a particular case, our slow degree of freedom may enter into a 1:1 resonance with the Great Inequality of Jupiter and Saturn. Actually, as the moments of inertia of Mercury are still poorly known, this phenomenon cannot be excluded.

Introduction

The missions MESSENGER and BepiColombo being real catalysers for the research on Mercury, more and more precise studies and theories emerge until a few years. Let us cite a few of the most recent ones: [START_REF] Margot | A Mercury orientation model including non-zero obliquity and librations[END_REF], who presents revised values of the north pole orientation, [START_REF] Dufey | Planetary perturbations on Mercury's libration in longitude[END_REF], who model the planetary perturbations on Mercurys libration in longitude and D 'Hoedt and Lemaître (2008), who show that Mercury stays in the Cassini forced state in an adiabatic way under the action of planetary long periodic terms.

However, shorter planetary periodic terms can, in some cases, induce a secondary resonance, it is for instance the case of Titan [START_REF] Noyelles | Titan's rotational state: the effects of a forced "free" resonant wobble[END_REF]. To model this secondary resonance due to the influence of other planets of the Solar System in Mercury's rotation, we have to add the planetary perturbations to our kernel model. Our kernel model (D'Hoedt and Lemaître 2004) is a two-degree of freedom one written in Hamiltonian formalism. Moreover we make the following hypothesis: Mercury is a solid body, its orbit is Keplerian orbit, it rotates around its axis of greatest inertia and no dissipative forces acts on its movement. If we compare the free precession period of our model with the one of the Great Inequality of Jupiter and Saturn, they are clearly of the same order of magnitude (respectively 1,065.08 and 883.28 years). However, the 1,065.08 period computed from our model was based on the hypotheses that Mercury is a rigid body and if we introduce a liquid core as, e.g., [START_REF] Dufey | Latitudinal librations of Mercury with a fluid core[END_REF]; [START_REF] Peale | Does Mercury have a molten core?[END_REF]; [START_REF] Peale | Interpretation of Mercury's rotation state[END_REF][START_REF] Peale | Resonant forcing of Mercury's libration in longitude[END_REF], we may obtain the exact equality between the two periods for a peculiar value of C m /C where C is the polar moment of inertia of Mercury and C m the one of its mantle. This assumption, even though theoretical, must not be excluded because this latest ratio is still poorly known. The missions Messenger and BepiColombo should give us a better knowledge of it [START_REF] Milani | Gravity field and rotation state of Mercury from the BepiColombo radio science experiments[END_REF].

In Sect. 2, we give a summary of our kernel rigid model and of the main results (equilibrium values, proper periods) obtained from it.

In Sect. 3, we consider that Mercury has a liquid core with the value of C m /C needed to have a 1:1 resonance with the Great Inequality of Jupiter and Saturn that we introduce in the orbital elements thanks to Simon's series at first order.

In Sect. 4, we define the secondary resonant angle from the action-angle coordinates and we compute its proper period.

In Sect. 5, we analyse the influence of the secondary resonance on the main degrees of freedom.

Summary of the kernel model

In this model, we consider Mercury as a rigid body, we do not take into account the planetary perturbations and we assume that the Spin axis and the axis of greatest inertia are aligned. In this way, our two-degree of freedom Hamiltonian averaged on the mean anomaly can be written as follows (see D'Hoedt and Lemaître (2004) for details): In this Hamiltonian, the first term comes from the two-body problem, the second one is the kinetic energy of rotation and the third big one is the potential of the gravity field. The variables and their conjugated momenta are
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where g, h and K are Euler's angles linking the body frame to the ecliptic frame (see Fig. 1), h o is the longitude of the ascending node, g o is the pericenter argument and 1 is the angular momentum norm. σ 1 is thus the 3:2 spin-orbit resonant angle and K is called the ecliptic obliquity. The equilibrium values of this model found for the present state of Mercury were the following:

σ 1 = 0, σ 3 = 0,
(2)

1 = 13.303 m R 2 e year , K = 7 o ,
and the proper periods of angles were:

T 1 = 15.8573 years, (3) T 3 = 1,065.08 years.

The Great Inequality of Jupiter and Saturn

By introducing the perturbations due to the other planets of the Solar System on our kernel model, it appears that, in a particular case, our slow degree of freedom may enter in a 1:1 resonance with the Great Inequality of Jupiter and Saturn. This was already underlined by [START_REF] Dufey | Latitudinal librations of Mercury with a fluid core[END_REF] who apply a perturbation theory based on the Lie triangle to re-introduce short periodic terms due to planetary perturbations into our averaged kernel Hamiltonian and so compute the evolution of the rotational variables [START_REF] Dufey | Planetary perturbations on Mercury's libration in longitude[END_REF].

So, the period T J S of the Great Inequality of Jupiter and Saturn, obtained thanks to Simon's series,1 is T JS = 883.28 years.

(4)

The proximity of the two periods T 3 and T J S led us to look for a perfect equality for a more realistic model of Mercury with a liquid core. Effectively, if we take a value of C m /C = 0.82931, this phenomenon may occur. However, according to [START_REF] Margot | Large longitude libration of Mercury reveals a molten core[END_REF]), this value is not very probable but the parameters of Mercury are so poorly known that we must not exclude it (Figs. 5 and 6 in [START_REF] Dufey | Latitudinal librations of Mercury with a fluid core[END_REF].

So, in this particular case, there is a 1:1 resonance between σ 3 and σ 25 = 2l J -5l S where l J is the mean anomaly of Jupiter and l S the one of Saturn.

Let us thus introduce this angle σ 25 in the orbital elements thanks to Simon's series at first order: where l o 0 the mean anomaly without perturbations.

Our Hamiltonian can now be written:

H 25 = - m 3 μ 2 2 o - 3 1 2 2 + 2 1 2C m + V G (σ 1 , σ 3 , σ 25 , 1 , 3 ) + ν 25 (11)
with ν the frequency and 25 the conjugated momentum of σ 25 . Let us note that the last term has to be added in order to keep an autonomous Hamiltonian. The complete expression of G is given in the Appendix.

Secondary resonant angle

In order to define our secondary resonant angle, we have to express our Hamiltonian in action-angle coordinates.

To do this, we have to perform a succession of transformations (D'Hoedt and Lemaître 2006):

-a canonical transformation into cartesian coordinates, -a translation to the equilibrium, -a Mac Laurin's expansion up to the order 2 for our first degree of freedom and up to the fourth order for our third degree of freedom, -an untangling transformation [START_REF] Henrard | Untangling transformation[END_REF] to eliminate the mixed terms, -a scale transformation to associate to each variable and its conjugate momentum the same coefficient, -a transformation into action-angle coordinates (J 1 , J 3 , ψ 1 , ψ 3 ) where ψ 1 and ψ 3 are the angles of free libration around the equilibrium.

Let us note that we had to develop up to the fourth order to have terms in J 2 3 . We can now define our 1:1 secondary resonant angle

α = ψ 3 -σ 25 . ( 12 
)
Our canonical set of action-angle variables is thus now

ψ 1 J 1 α J 3 σ 25 25 = J 3 + 25 .
The first degree of freedom (J 1 , ψ 1 ) being of no interest for the calculation of the period of our secondary resonant angle, we consider it as constant and drop it.

After that simplification, we average our Hamiltonian about σ 25 ( 25 becomes thus a constant) and obtain this expression:

H 25 = -0.000184 J 2 3 + 5.50471 10 -10 J 3 cos α -2.97662 10 -10 J 3 sin α.

(13)

We again compute the equilibria of this Hamiltonian, perform a variables change to centre the Hamiltonian at the equilibrium and expand it in Mac Laurin's series up to the second order.

After a scaling transformation and an action-angle transformation, the final form of the Hamiltonian is H 25 = -5.727 10 -8 Z + 2.307 10 -5 Z 2 -1.15 10 -6 Z 3/2 cos ζ +1.15 10 -6 Z 3/2 cos 3ζ -2.307 10 -5 Z 2 cos 4ζ .

(

) 14 
The frequency of ζ being the coefficient of Z in ( 14), we can deduce the period of ζ and thus the proper period of the free librations of α:

T α = 1.0972 10 8 years.

(15)

Actually, the period of ζ is also the one of the movement of α because during a complete run of ζ around its equilibrium, α performs one going and coming between its minimum and maximum values of libration (see Fig. 2).

Influence of the secondary resonance on the other degrees of freedom

If we compute and numerically integrate the equations of motion obtained from (11), we can see the influence of the secondary resonance on our principal degrees of freedom. As expected, since the resonance is between σ 3 and the Great Inequality, its influence on σ 3 and K is much bigger than on σ 1 : on σ 1 , the amplitude is of 1.64 arc sec (to be compared with a maximum amplitude of libration of 40 arc sec [START_REF] Dufey | Latitudinal librations of Mercury with a fluid core[END_REF]), while it is of 161.49 arc sec on σ 3 (Fig. 3) and of 0.3132 • = 18.79 arc min on the ecliptic obliquity K (Fig. 4). This amplitude is especially large because if we examine the others effects that can introduce a forced libration on the ecliptic obliquity, we can see the most important of them is due to the precession of the ascending node of Mercury for which the amplitude of the variations are only of 0.414 arsec on a period of 63,315 years [START_REF] Dufey | Latitudinal librations of Mercury with a fluid core[END_REF]). However, in both cases, the periods being very long, all what could be observed is constant offsets.

Conclusion

Due to the proximity of the period of one of our degree of freedom and of the Great Inequality of Jupiter and Saturn, we built a theoretical but nevertheless possible (with a weak probability) model taking into account this 1:1 secondary resonance. Even if the influence of this resonance on our main degrees of freedom is non negligible concerning the amplitudes, the proper period is so long that it could only be observed as a constant offset.

Fig. 1

 1 Fig.1The ecliptic frame (X 0 , Y 0 , Z 0 ) with X 0 and Y 0 fixed in the ecliptic plane at a determined epoch and Z 0 normal to the ecliptic plane and the body frame (X 3 ,Y 3 ,Z 3 ) with X 3 in the direction of the axis of biggest inertia and Z 3 in the direction of the axis of smallest inertia of Mercury. h, g and K are the Euler's angles linking both frames
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  = 0.206 + 3.03045 10 -8 cos σ 25 + 2.05414 10 -8 sin σ 25 (5) cos i o = cos 7 o + 9.37904 10 -10 cos σ 25 + 1.33666 10 -9 sin σ 25 (6) sin i o = sin 7 o -7.63861 10 -9 cos σ 25 -1.08862 10 -8 sin σ 25 (7) g o = 29.12478 o + 8.74537 10 -8 cos σ 25 -4.94628 10 -7 sin σ 25 (8) l o = l o 0 + 5.71111 10 -8 cos σ 25 + 5.16281 10 -7 sin σ 25 (9) h o = 48.33 o + 5.62001 10 -8 cos σ 25 + 2.07223 10 -7 sin σ 25 (10)

Fig. 2

 2 Fig. 2 During ζ performs a complete run, α oscillates between its minimum and maximum values

Fig. 3 Fig. 4

 34 Fig. 3 Influence of the Great Inequality on σ 1 and σ 3

These series were given by J.-L. Simon in a private communication and are obtained from the VSOP theory(Fienga and Simon 

2005).
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Appendix: Complete expression of V

-3 2 C 0 2 (0.536 + 0.52 cos 2 K + 8.939 10 -9 cos σ 25 + 1.064 10 -8 cos 2 K cos σ 25 + 0.004 cos 2σ 3 -0.004 cos 2 K cos σ 3 -4.256 10 -10 cos σ 25 cos 2σ 3 + 4.256 10 -10 cos 2 K cos σ 25 cos 2σ 3 + 0.129 cos K cos σ 3 sin K -5.677 10 -9 cos K cos σ 25 cos σ 3 sin K + 5.689 10 -9 sin σ 25 + 8.323 10 -9 cos 2 K sin σ 25 -6.584 10 -10 cos 2σ 3 sin σ 25 + 6.584 10 -10 cos 2 K cos 2σ 3 sin σ 25 -9.784 10 -9 cos K cos σ 3 sin K sin σ 25 + 7.231 10 -9 cos K cos σ 25 sin K sin σ 3 -2.666 10 -8 cos K sin K sin σ 25 sin σ 3 + 4.439 10 -10 cos σ 25 sin 2σ 3 -4.439 10 -10 cos 2 K cos σ 25 sin 2σ 3 -1.637 10 -9 sin σ 25 sin 2σ 3 + 1.637 10 -9 cos 2 K sin σ 25 sin 2σ 3 )

+ 2.27 10 -6 cos (2σ 1 + 4σ 3 ) -4.541 10 -6 cos K cos (2σ 1 + 4σ 3 ) + 2.27 10 -6 cos 2 K cos (2σ 1 + 4σ 3 ) + 0.04 cos (2σ 1 + σ 3 ) sin K + 0.04 cos K cos (2σ 1 + σ 3 ) sin K + 2.169 10 -9 cos σ 25 cos (2σ 1 + σ 3 ) sin K + 2.169 10 -9 cos K cos σ 25 cos (2σ 1 + σ 3 ) sin K + 0.0002 cos (2σ 1 + 3σ 3 ) sin K -0.0002 cos K cos (2σ 1 + 3σ 3 ) sin K + 3.794 10 -8 cos σ 25 sin 2σ 1 + 7.587 10 -8 cos K cos σ 25 sin 2σ 1 + 3.794 10 -8 cos 2 K cos σ 25 sin 2σ 1 + 1.307 10 -8 cos 2σ 1 sin σ 25 + 2.614 10 -8 cos K cos [2σ 1 sin σ 25 + 1.307 10 -8 cos 2 K cos 2σ 1 sin σ 25 -3.621 10 -10 cos (2σ 1 + 2σ 3 ) sin σ 25 + 3.621 10 -10 cos 2 K cos (2σ 1 + 2σ 3 ) sin σ 25 -3.747 10 -10 cos (2σ 1 + σ 3 ) sin K sin σ 25 -3.747 10 -10 cos K cos (2σ 1 + σ 3 ) sin K sin σ 25 +1.58 10 -7 sin 2σ 1 sin σ 25 + 3.16 10 -7 cos K sin 2σ 1 sin σ 25 + 1.58 10 -7 cos 2 K sin 2σ 1 sin σ 25 + 1.151 10 -8 cos σ 25 sin K sin (2σ 1 + σ 3 ) + 1.151 10 -8 cos K cos σ 25 sin K sin (2σ 1 + σ 3 ) + 3.044 10 -8 sin K sin σ 25 sin (2σ 1 + σ 3 ) + 3.044 10 -8 cos K sin K sin σ 25 sin (2σ 1 + σ 3 ) + 1.261 10 -9 cos σ 25 sin (2σ 1 + 2σ 3 ) -1.261 10 -9 cos 2 K cos σ 25 sin (2σ 1 + 2σ 3 ) + 2.0377 10 -9 sin σ 25 sin (2σ 1 + 2σ 3 ) -2.038 10 -9 cos 2 K sin σ 25 sin (2σ 1 + 2σ 3 ))

(16)