

Li4Ca3Si2N6 and Li4Sr3Si2N6 - Quaternary Lithium Nitridosilicates with Isolated [Si2N6]10- Ions

Sandro Pagano, Saskia Lupart, Sebastian Schmiechen, Wolfgang Schnick

▶ To cite this version:

Sandro Pagano, Saskia Lupart, Sebastian Schmiechen, Wolfgang Schnick. Li4Ca3Si2N6 and Li4Sr3Si2N6 - Quaternary Lithium Nitridosilicates with Isolated [Si2N6]10- Ions. Journal of Inorganic and General Chemistry / Zeitschrift für anorganische und allgemeine Chemie, 2010, 636 (11), pp.1907. 10.1002/zaac.201000163. hal-00552476

HAL Id: hal-00552476 https://hal.science/hal-00552476v1

Submitted on 6 Jan 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. ZAAC

Zeitschrift für Anorganische und Allgemeine Chemie

Li4Ca3Si2N6 and Li4Sr3Si2N6 - Quaternary Lithium Nitridosilicates with Isolated [Si2N6]10- Ions

Journal:	Zeitschrift für Anorganische und Allgemeine Chemie		
Manuscript ID:	zaac.201000163.R1		
Wiley - Manuscript type:	: Communication		
Date Submitted by the Author:	19-May-2010		
Complete List of Authors:	Pagano, Sandro; LMU Munich, Chemistry Lupart, Saskia; LMU Munich, Chemistry Schmiechen, Sebastian; LMU Munich, Chemistry Schnick, Wolfgang; LMU Munich, Chemistry		
Keywords:	Lithium, Fluxing agent, Strontium, Nitridosilicate, X-ray diffraction		

Li₄Ca₃Si₂N₆ and Li₄Sr₃Si₂N₆ - Quaternary Lithium Nitridosilicates with Isolated [Si₂N₆]¹⁰⁻ Ions

Sandro Pagano,^[a] Saskia Lupart,^[a] Sebastian Schmiechen,^[a] and Wolfgang Schnick^{[a]*}

Department Chemie der Ludwig-Maximilians-Universität München

 * Prof. Dr. W. Schnick Department Chemie
Lehrstuhl für Anorganische Festkörperchemie
Ludwig–Maximilians–Universität München
Butenandtstraße 5 – 13 (D)
D–81377 München, Germany
Fax: +49–(0)89–2180–77440
E–mail: wolfgang.schnick@uni–muenchen.de

Abstract

The isotypic nitridosilicates Li₄Ca₃Si₂N₆ and Li₄Sr₃Si₂N₆ were synthesized by reaction of Sr or Ca with Si(NH)₂ and additional excess of Li₃N in weld shut tantalum ampoules. The crystal structure, which has been solved by single-crystal X-ray diffraction (Li₄Sr₃Si₂N₆: *C*2/*m*, *Z* = 2, a = 6.1268(12), b = 9.6866(19), c = 6.2200(12) Å, $\beta = 90.24(3)^{\circ}$, wR2 = 0.0903) is made up from isolated [Si₂N₆]¹⁰⁻ ions and is isotypic to Li₄Sr₃Ge₂N₆. The bonding angels and distances within the edge-sharing [Si₂N₆]¹⁰⁻ double-tetrahedra are strongly dependent on the lewis acidity of the counter ions. This finding is discussed in relation to the compounds Ca₅Si₂N₆ and Ba₅Si₂N₆ which also exhibit isolated [Si₂N₆]¹⁰⁻ ions.

Keywords

Lithium; Fluxing Agent; Strontium; Nitridosilicates; X-Ray diffraction

Introduction

Recently, we have reported on the utilization of liquid lithium for the synthesis of quaternary lithium nitridosilicates. The ability of liquid lithium to dissolve a variety of metals, silicon and nitrogen allows for a controlled synthesis of group-type silicates, chain-like anions up to frameworks by simply adjusting the Li₃N content, the nitrogen pressure (LiN₃) and the reaction temperature.^[11] By adding an excess of Li₃N to the reaction mixture higher condensation of the [SiN₄]-tetrahedra network is suppressed and the lowest degree of condensation for nitridosilicates is observed. Orthosilicate-like isolated [SiN₄]⁸⁻ tetrahedra, which might occur in the compound Li₈SiN₄ are not yet structurally verified.^[2,3] Consequently, up to now group-type silicates made up from edge-sharing [Si₂N₆]¹⁰⁻ double-tetrahedra represent nitridosilicates with the lowest degree of condensation characterized by single-crystal X-ray diffractometry so far. Identical building blocks have already been reported for Ba₅Si₂N₆ synthesized by *DiSalvo* et al. in a sodium flux and Ca₅Si₂N₆ obtained via solid-state reaction of Ca₂N and Si.^[4,5] In this contribution we report on synthesis and structural features of Li₄Ca₃Si₂N₆ and on the isotypic Sr-phase.

Results and discussion

Page 3 of 11

ZAAC

Li₄Ca₃Si₂N₆ and Li₄Sr₃Si₂N₆ were synthesized from the corresponding metals, Si(NH)₂ and an excess of Li₃N in weld shut tantalum ampoules at 900 °C. Addition of Li metal as a fluxing agent was not essential for the synthesis of suitable single crystals. This might be due to Li₃N acting as a flux as it melts above 815 °C under autogenous nitrogen pressure in closed systems.^[6] The title compounds are not stable against air and moisture and were handled under inert gas atmosphere. The approximate atomic ratio of heavy elements (Ca/Sr and Si) was determined by energy dispersive X-ray microanalysis. Li₄Ca₃Si₂N₆ and Li₄Sr₃Si₂N₆ crystallize in the monoclinic space group *C*2/*m* with two formula units per unit cell (for details see Table 1).

The unit cell and coordination spheres of Li₄Sr₃Si₂N₆ are depicted in Figure 1 and Figure 2, respectively. The asymmetric unit consist of two Sr and N sites, one Si and Li site named according to Figure 2. The structure is built up from isolated [Si₂N₆]¹⁰⁻ ions and is isotypic to that of the nitridogermanate $Li_4Sr_3Ge_2N_6$.^[7] Group-like $[Si_2N_6]^{10-}$ ions have already been reported for Ca₅Si₂N₆ and Ba₅Si₂N₆.^[4,5] Due to the edge-sharing of [SiN₄] tetrahedra, the tetrahedra angels are distorted to values of 91 - 96° (N2-Si1-N2) for all compounds (cf. Table 2). The corresponding Si1-N2 bonds are elongated from 1.74 Å to 1.81 – 1.85 Å, resulting in quite short Si1-Si1 distances ranging from 2.40(1) Å in $Ca_5Si_2N_6$ to 2.556(7) Å in $Ba_5Si_2N_6$.^[4,5] The Si1-Si1 distances of $Li_4Ca_3Si_2N_6$ and $Li_4Sr_3Si_2N_6$ are ranging in between these values (cf. Table 2). Regarding the series of isolated $[Si_2N_6]^{10-}$ ions one could assume that the distortion of the square built up from Si1 and N2 is dependent on the lewis acidity of the surrounding metal ions. The smaller ionic radius of Ca^{2+} compared to Sr^{2+} and Ba^{2+} leads to shorter N-metal distances and the higher lewis acidity results in a displacement of N2 from the ideal square built up from Si1 and N2. Consequently, the angels Si-N2-Si are increasing from $91.1(1)^{\circ}$ in Ba₅Si₂N₆, $93.2(3)^{\circ}$ in Li₄Sr₃Si₂N₆ to $96.7(1)^{\circ}$ in Ca₅Si₂N₆.^[4,5] Presumably, this effect is responsible for the decrease of the distances Si1-Si1 in the sequence Ba^{2+} , Sr^{2+} to Ca^{2+} (Table 2). The distances N-EA (EA = alkaline earth) in Li₄Ca₃Si₂N₆ and Li₄Sr₃Si₂N₆ are in the typical range for alkaline earth nitrides.^[8] In Li₄Ca₃Si₂N₆ both metal sites are coordinated by six N-atoms, whereas in Li₄Sr₃Si₂N₆ Sr1 exhibits a 6+2 coordination. The coordination spheres (cf. Figure 2) were assigned by lattice energy calculations (MAPLE; Madelung part of lattice energie).^[9,10] In both compounds Li1 is coordinated by four N-atoms in distorted tetrahedral fashion (105-123°) with typical distances Li-N (values within the sum of the ionic radii).^[9,11] The smaller lattice parameters of $Li_4Ca_3Si_2N_6$ also lead to significantly shorter Li-N distances (Li1-N1: 1.968(3), 2.072(3), 2.123(3) Å, Li1-N2: 2.259(3) Å). Edgesharing of [LiN₄]-polyhedra along [100] causes chains of Li⁺-ions with quite short Li1-Li1

ZAAC

distances (Li₄Ca₃Si₂N₆: 2.213(6), 2.447(6)Å; Li₄Sr₃Si₂N₆: 2.273(18), 2.487(19)Å). The Li-ion conductor Li₂SiN₂ exhibits comparable chains of [LiN_x]-polyhedra with analogoues Li-Li distances.^[12] It may be noted that the addition of 1 % of Eu to the reaction mixture yielded red single crystals, which, however showed no fluorescence under UV light at room temperature.

Conclusion

In this contribution, we demonstrate that addition of an excess of Li₃N to the reaction mixture of Ca/Sr and Si(NH)₂ suppresses the higher condensation of $[SiN_4]$ -tetrahedra and a low degree of condensation for nitridosilicates is achieved. The isotypic compounds Li₄Ca₃Si₂N₆ and Li₄Sr₃Si₂N₆ are the third and fourth example of nitridosilicates containing isolated $[Si_2N_6]^{10-}$ ions, respectively. Presumably, the lengths of the distances Si-Si within the $[Si_2N_6]^{10-}$ ions is dependent on the lewis acidity of the counter ions. It may be noted that the presence of $[LiN_4]$ -polyhedra chains along [100] might be an interesting feature for lithium ion conductivity.

Experimental Section

All manipulations were performed with rigorous exclusion of oxygen and moisture in flamedried Schlenk-type glassware on a Schlenk line interfaced to a vacuum (10^{-3} mbar) line or in an argon-filled glove box (Unilab, MBraun, Garching, O₂ < 0.1 ppm, H₂O < 0.1 ppm). Li₃N was purchased from Alfa Aesar (99.4 %), Ca and Sr from Sigma-Aldrich (99.99 %) and Si(NH)₂ was synthesized according to the literature.^[13]

For the reactions, tantalum crucibles (wall thickness 0.5 mm, internal diameter 10 mm, length 300 mm) were cleaned in a mixture of HNO_3 (conc.) and HF (40 %). They were arc-welded under a pressure of 1 bar purified argon. The crucible holder was water cooled in order to avoid decomposition reactions during welding.

Single crystals of Li₄Ca₃Si₂N₆ and Li₄Sr₃Si₂N₆ were synthesized from 60 mg Li₃N (1.72 mmol), 50 mg Si(NH)₂ (0.86 mmol) and 34 mg Ca (0.86 mmol) / 75 mg Sr (0.86 mmol) in closed tantalum crucibles placed in silica tubes. The silica tube (under argon) was placed in the middle of a tube furnace. The temperature was raised to 900 °C (rate 180 °C h⁻¹), maintained for 48 h, subsequently cooled to 500 °C (rate 5 °C h⁻¹) and finally quenched to room temperature by switching off the furnace.

ZAAC

X-ray diffraction: By inspection under a microscope integrated in a glove box, colorless single crystals of the title compounds were isolated from residual Li₃N and enclosed in glass capillaries. Single-crystal X-ray diffraction data were collected on a Stoe IPDS I for Li₄Ca₃Si₂N₆ and on an Oxford Diffraction XCalibur for Li₄Sr₃Si₂N₆ (Mo_{Ka} radiation). The program package SHELX97 was used for structure solution and refinement.^[14] Further details of the crystal structure investigations can be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: (+49)7247-808-666; e-mail: crysdata@fiz-karlsruhe.de) on quoting the depository number CSD-420675 (Li₄Ca₃Si₂N₆) and CSD-421259 (Li₄Sr₃Si₂N₆), the names of the authors and citation of the publication.

Microanalysis: EDX spectra of selected crystals were obtained using a JSM 6500F scanning electron microscope (JEOL) equipped with an EDX detector 7418 (Oxford Instruments). The approximate molar ratio of the elements Ca : Si was found to be 22(2) : 14(2) (average from 3 independent measurements) for Li₄Ca₃Si₂N₆ and Sr : Si was found to be 19(2) : 13(2) (average from 3 independent measurements) for Li₄Sr₃Si₂N₆.

Acknowledgments

We thank Dr. Peter Mayer, Thomas Miller (single-crystal X-ray diffractometry) and Christian Minke (X-ray microanalysis). The authors gratefully acknowledge financial support from the Fonds der Chemischen Industrie (FCI) and the Deutsche Forschungsgemeinschaft (DFG), project SCHN 377/ 14-1.

Li ₄ Ca ₃ Si ₂ N ₆	$Li_4Sr_3Si_2N_6$	
288.24	430.86	
monoclinic		
<i>C</i> 2/ <i>m</i> (no. 12)		
a = 5.7873(12)	a = 6.1268(12)	
b = 9.7045(19)	b = 9.6866(19)	
c = 5.9771(12)	c = 6.2200(12)	
$\beta = 90.45(3)$	$\beta = 90.24(3)$	
V = 335.68(12)	V = 369.14(12)	
2		
$0.08\cdot 0.05\cdot 0.02$	$0.14\cdot 0.12\cdot 0.05$	
2.852	3.876	
2.751	21.86	
284	392	
	Oxford	
Stoe IPDS I	Diffraction	
	XCalibur	
295(2)	200(2)	
Mo K $(2 - 71.07)$	3 nm) granhita	
$\mathbf{M}0-\mathbf{K}_{\alpha}, \ (\lambda=/1.0).$	5 pm), graphie	
multi-scan	numerical	
0.726 / 0.946	0.0467 / 0.466	
2.3 - 30.5	3.89 - 29.99	
1787	1221	
505	539	
450	456	
36	36	
1.117	1.122	
R1 = 0.0219	R1 = 0.0314	
wR2 = 0.0566	wR2 = 0.0903	
R1 = 0.0252	R1 = 0.0370	
$wR2 = 0.0572^{[a]}$	$wR2 = 0.0935^{[b]}$	
0 512 / 0 457	1 916 / 1 7/1	
0.512/-0.45/	1.810/-1./41	
$0^2 + 0.00 \ Pl^{-1}$ where	$P_{-}(E^{2} + 2E^{2})/2$	
) + 0.00 F where	$r = (r_0 + 2r_c)/3$	
	$\begin{array}{c} \text{Li}_4\text{Ca}_3\text{Si}_2\text{N}_6\\ \hline 288.24\\ \hline \\ C2/m\\ a = 5.7873(12)\\ b = 9.7045(19)\\ c = 5.9771(12)\\ \beta = 90.45(3)\\ V = 335.68(12)\\ \hline 0.08 \cdot 0.05 \cdot 0.02\\ 2.852\\ 2.751\\ 284\\ \hline \\ \text{Stoe IPDS I}\\ 295(2)\\ \hline \\ \text{Mo-K}_{\alpha}, (\lambda = 71.07)\\ \hline \\ \text{multi-scan}\\ 0.726 / 0.946\\ 2.3 - 30.5\\ 1787\\ 505\\ 450\\ 36\\ 1.117\\ R1 = 0.0219\\ wR2 = 0.0566\\ R1 = 0.0252\\ wR2 = 0.0572^{[a]}\\ 0.512 / -0.457\\ \hline \end{array}$	

Table 1. Crystallographic data of Li₄Ca₃Si₂N₆ and Li₄Sr₃Si₂N₆.

1
2
3
1
5
5
6
7
8
9
10
11
12
12
1/
14
16
17
18
19
20
21
22
22
23
24
25
26
27
28
29
30
31
32
22
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
00

Table 2 Cam			:1-4-1 FO: 1	110- :
Table 2. Com	parison of com	ipounds exhibiting	s_1 solated [S1 ₂]	$[N_6]$ 10ns.

			$Li_4M_3Si_2N_6$		
	$Ba_5Si_2N_6^{[5]}$	Ca ₅ Si ₂ N ₆ ^[4]	Ca	Sr	
Synthesis	Na-Flux	solid-state	Li-Flux	Li-Flux	
Space group	$P2_{1}2_{1}2_{1}$	C2/c	C2/m	C2/m	
X-ray T /K	293	293	293	200	
Si-Si /Å	2.556(7)	2.40(1)	2.453(1)	2.540(4)	
Si-N2 /Å	1.83(2) ^[a]	$1.81(1)^{[a]}$	1.83(1) ^[a]	1.85(1) ^[a]	
Si-N1 /Å	91.1(1) ^[a]	96.7(1) ^[a]	95.9(1)	93.2(3)	
Si-N2-Si /°	1.75(2) ^[a]	1.73(1) ^[a]	1.711(2)	1.735(4)	

[a] Averaged values because of more than one set of symmetry

independent bonds/angles.

Figure 1. Two unit cells of $Li_4Sr_3Si_2N_6$ along [00-1]. Ellipsoids at 90 % probability level. [SiN₄] units are depicted as closed gray tetrahedra, N atoms black, Sr ions white/black and Li ions gray.

Figure 2. Coordination spheres in Li₄Sr₃Si₂N₆. N atoms black, Sr ions white and Li ions gray.

References

- [1] S. Pagano, S. Lupart, M. Zeuner, W. Schnick, Angew. Chem. 2009, 121, 6453-6456; Angew. Chem., Int. Ed. 2009, 48, 6335-6338.
- [2] J. Lang, J.-P. Charlot, Rev. Chim. Miner. 1970, 7, 121-131.
- [3] H. Yamane, S. Kikkawa, M. Koizumi, Solid State Ionics 1987, 25, 183-191.
- [4] F. Ottinger, R. Nesper, Z. Anorg. Allg. Chem. 2005, 631, 1597-1602.
- [5] H. Yamane, F. J. DiSalvo, J. Alloys Compd. 1996, 240, 33-36.
- [6] R. P. Elliot, Constitution of Binary Alloys, McGraw-Hill Book Company, New York, 1965.
- [7] D. G. Park, Z. A. Gál, F. J. DiSalvo, J. Solid State Chem. 2003, 172, 166-170.
- [8] P. Hoehn, S. Hoffmann, J. Hunger, S. Leoni, F. Nitsche, W. Schnelle, R. Kniep, *Chem. Eur. J.* 2009, 15, 3419-3425.
- [9] R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Found. Crystallogr. 1976, 32, 751-767.
- [10] R. Hübbenthal, Programm zur Berechnung des Madelunganteils der Gitterenergie, Vers. 4; Universität Gießen 1993.
- [11] H. Baur, Crystallogr. Rev. 1987, 1, 59-83.
- [12] S. Pagano, M. Zeuner, S. Hug, W. Schnick, Eur. J. Inorg. Chem. 2009, 1579-1584.
- [13] H. Lange, G. Wötting, G. Winter, Angew. Chem. 1991, 103, 1606-1625; Angew. Chem., Int. Ed. Engl. 1991, 30, 1579-1597.
- [14] G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112-122.

ZAAC

Figure1 85x70mm (600 x 600 DPI)

Wiley-VCH