open science

Reactions of lithium salts of triphosphines tBu2P-PLi-PtBu2 and tBu2P-PLi-P(NEt2) 2 with metal complexes [(R3P)2MCl2] $(\mathrm{M}=\mathrm{Ni}, \mathrm{Pd}, \mathrm{Pt}, \mathrm{R} 3 \mathrm{P}$ $=$ Et3P, pTol3P, Ph2EtP, iPr3P)

Aleksandra Wiśniewska, Katarzyna Baranowska, Rafal Grubba, Eberhard
Matern, Jerzy Pikies

To cite this version:

Aleksandra Wiśniewska, Katarzyna Baranowska, Rafal Grubba, Eberhard Matern, Jerzy Pikies. Reactions of lithium salts of triphosphines tBu2P-PLi-PtBu2 and tBu2P-PLi-P(NEt2)2 with metal complexes [(R3P)2MCl2] ($\mathrm{M}=\mathrm{Ni}, \mathrm{Pd}, \mathrm{Pt}, \mathrm{R} 3 \mathrm{P}=\mathrm{Et} 3 \mathrm{P}$, pTol3P, Ph2EtP, iPr3P). Journal of Inorganic and General Chemistry / Zeitschrift für anorganische und allgemeine Chemie, 2010, 636 (8), pp.1549. 10.1002/zaac. 200900540 . hal-00552435

HAL Id: hal-00552435

https://hal.science/hal-00552435
Submitted on 6 Jan 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Zeitschrift für Anorganische und Allgemeine Chemie

Reactions of lithium salts of triphosphines tBu2P-PLi-PtBu2 and tBu2P-PLi-P(NEt2)2 with metal complexes [(R3P)2MCl2] (M = Ni, Pd, Pt, R3P = Et3P, pTol3P, Ph2EtP, iPr3P)

Journal:	Zeitschrift für Anorganische und Allgemeine Chemie
Manuscript ID:	zaac.200900540.R1
Wiley - Manuscript type:	Article
Aute Submitted by the	10-Feb-2010
Complete List of Authors:	Wiśniewska, Aleksandra; Gdańsk University of Technology, Faculty of Chemistry Baranowska, Katarzyna; Gdańsk University of Technology, Faculty of Chemistry Grubba, Rafał; Gdańsk University of Technology, Faculty of Chemistry Matern, Eberhard; Institut für Anorganische Chemie, Universität Karlsruhe (TH) Pikies, Jerzy; Gdańsk University of Technology, Faculty of Chemistry
Keywords:	P ligands, platinum, nickel, palladium

scholarone
Manuscript Central

Reactions of lithium salts of triphosphines ${ }^{\mathbf{t}} \mathbf{B u} \mathbf{u}_{2} \mathbf{P}-\mathbf{P L i}-\mathbf{P}^{t} \mathbf{B u}_{2}$ and ${ }^{\mathbf{t}} \mathbf{B u} \mathbf{u}_{2} \mathbf{P}-\mathbf{P L i}-$ $\mathbf{P}\left(\mathbf{N E t}_{2}\right)_{2}$ with metal complexes $\left[\left(\mathbf{R}_{3} \mathbf{P}\right)_{2} \mathbf{M C l}_{2}\right]\left(\mathbf{M}=\mathbf{N i}, \mathbf{P d}, \mathbf{P t}, \mathbf{R}_{3} \mathbf{P}=\mathbf{E t}_{3} \mathbf{P},{ }^{\mathbf{P}} \mathbf{T o l}_{3} \mathbf{P}\right.$, $\left.\mathbf{P h}_{2} \mathbf{E t P},{ }^{\mathbf{i}} \mathbf{P r}_{3} \mathbf{P}\right)$

Aleksandra Wiśniewska ${ }^{\text {a }}$, Katarzyna Baranowska ${ }^{\text {a }}$, Rafał Grubba ${ }^{\text {a }}$, Eberhard Matern ${ }^{\text {b }}$, Jerzy Pikies ${ }^{\mathrm{a}^{*}}$.
${ }^{\text {a }}$ Faculty of Chemistry, Department of Inorganic Chemistry, Gdańsk University of Technology, G. Narutowicza St. 11/12. PL-80-233 Gdańsk, Poland
${ }^{\mathrm{b}}$ Institut für Anorganische Chemie, Universität Karlsruhe (TH), Engesserstraße 15, D-76128 Karlsruhe, Germany

Received

[^0]
Abstract

Bu}_{2} \mathrm{P}-\mathrm{PLi}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \cdot 2 \mathrm{THF}\) reacts with $\left[\left(\mathrm{R}_{3} \mathrm{P}\right)_{2} \mathrm{MCl}_{2}\right](\mathrm{M}=\mathrm{Pt}, \mathrm{Pd}, \mathrm{Ni})$ yielding isomers of $\left[\left(1,2-\eta-{ }^{\mathrm{t}} \mathrm{Bu} \mathrm{u}_{2} \mathrm{P}=\mathrm{P}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right) \mathrm{M}\left(\mathrm{PR}_{3}\right) \mathrm{Cl}\right]$ where ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{P}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}$ ligand adopts the geometry of a side-on bonded 1,1-di-tert-butyl-2-(di-tert-butylphosphino)diphosphenium cation. ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{PLi}-$ $\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2} \cdot 2 \mathrm{THF}$ reacts with $\left[\left(\mathrm{R}_{3} \mathrm{P}\right)_{2} \mathrm{MCl}_{2}\right]$ but does not formed complexes with a ${ }^{t} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{P}-\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2}$ moiety, however, splitting of a $\mathrm{P}-\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2}$ bond of the parent triphosphine takes place.

Keywords: P ligands; nickel, palladium, platinum.

1. Introduction

Phosphido and phosphinidene complexes of transitions metals are versatile reagents in syntheses of phosphorus - element bond [1].

The reactivity of metal phosphides and silylphosphides towards complexes of nickel triad was studied for three decades. $\mathrm{LiP}\left(\mathrm{SiMe}_{3}\right)_{2}$ reacts with $\left[\mathrm{Cp}(\mathrm{Cl}) \mathrm{Ni}\left(\mathrm{PPh}_{3}\right)\right]$ at low temperature yielding unstable terminal phosphido complex [2], similarly $\left[\left(\mathrm{R}_{3} \mathrm{P}\right)_{2} \mathrm{NiCl}_{2}\right]$ reacts with $\mathrm{LiP}\left(\mathrm{SiMe}_{3}\right)_{2}$ at low temperature yielding unstable mono and diphosphido $\mathrm{NI}(\mathrm{II})$ complexes which decompose under formation of cyclic $\mathrm{Ni}(\mathrm{I})$ complexes $\left[\mathrm{R}_{3} \mathrm{P}-\mathrm{Ni}\left\{\mu-\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}\right]_{2}(N i-N i)$ and side-on bonded diphosphene complexes $\left[\left(\mathrm{R}_{3} \mathrm{P}\right)_{2} \mathrm{Ni}\left(\eta^{2}-\mathrm{Me}_{3} \mathrm{SiP}=\mathrm{PSiMe}_{3}\right)\right][3,4,5,6]$. Similar behaviour was observed in reactions of $\left[(\mathrm{dRpe}) \mathrm{NiCl}_{2}\right]$ with $\mathrm{LiP}\left(\mathrm{SiMe}_{3}\right)_{2}\left(\mathrm{dRpe}=\mathrm{R}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PR}_{2}\right)$, the diphosphorous complexes $\left[\left(\mathrm{R}_{3} \mathrm{P}\right)_{2} \mathrm{Ni}\left(\mu-\mathrm{P}_{2}\right) \mathrm{Ni}\left(\mathrm{PR}_{3}\right)_{2}\right]$ were thereafter isolated.[7,8]. The reactions of $\mathrm{LiP}^{\mathrm{t}} \mathrm{Bu}_{2}$ with $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{2} \mathrm{NiCl}_{2}\right]$ yielded $\left[\mathrm{Me}_{3} \mathrm{P}-\mathrm{Ni}\left\{\mu-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right\}\right]_{2}(N i-N i)$ [9]. Thus, the phosphido ligands tend to occupy bridge positions while the stable Ni -complexes with terminal phosphido groups are rare. Driess et al. reported on the synthesis and X-ray structure of $\left[\mathrm{Cp}\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{NiPH}\left(\mathrm{SiFTrip}_{2}\right)\right][10]$ and Hilhouse et al. reported on complex [(dtbpe) $\mathrm{NiP}^{\mathrm{t}} \mathrm{Bu}_{2}$] [11] (dtbpe $\left.={ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right)$. In both cases the geometry around phosphido P atoms is pyramidal.

The data on palladium phosphido-complexes are scarce. Reduction of $\left[\right.$ cis- $\left(\mathrm{Cy}_{2} \mathrm{HP}_{2} \mathrm{PdCl}_{2}\right]$ with sodium yields phosphido bridged $\operatorname{Pd}(\mathrm{I})$ complex $\left[\mathrm{Cy}_{2} \mathrm{HPPd}\left\{\mu-\mathrm{PCy}_{2}\right\}\right]_{2}(P d-P d)[12]$.
$\left[\left(\mathrm{Et}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}\right]$ reacts with ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{P}=\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}(\mathrm{Me})$ in the presence $\mathrm{Na} / \mathrm{Nph}$ yielding $\left[\mathrm{Et}_{3} \mathrm{PPd}\{\mu-\right.$ $\left.\left.\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right\}\right]_{2}(P d-P d)$ [13]. Terminal phosphido Pd(II) complexes were isolated only for cyclic compounds $\left[(\right.$ diphos $\left.) \operatorname{Pd}\left\{\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{2}\right) \operatorname{Pd}(\mathrm{Mes})\right\}\right]$ [14].
$\mathrm{LiP}\left(\mathrm{SiMe}_{3}\right)_{2}$ reacts with $\left[\left(\mathrm{R}_{3} \mathrm{P}\right)_{2} \mathrm{PtCl}_{2}\right]$ yielding initially unstable terminal mono and diphosphido $\mathrm{Pt}(\mathrm{II})$ complexes. These complexes decompose at r. t. giving rise to $\mathrm{Pt}(\mathrm{I})$ complexes $\left[\mathrm{Et}_{3} \mathrm{P}-\mathrm{Pt}\{\mu-\right.$ $\left.\left.\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}\right]_{2}($ Pt-Pt $)$, side-on bonded diphosphene complexes $\left[\left(\mathrm{Et}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}\left(\eta^{2}-\mathrm{Me}_{3} \mathrm{SiP}=\mathrm{PSiMe}_{3}\right)\right]$ and diphosphorous complexes $\left[\left(\mathrm{R}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{P}_{2}\right) \mathrm{Pt}\left(\mathrm{PR}_{3}\right)_{2}\right]$ [15]. The terminal phosphido complexes of Pt (II) are more stable than related complexes of Ni and Pd . $\left[\right.$ cis- $\left.\left(\mathrm{PHCy}_{2}\right) \mathrm{PtCl}_{2}\right]$ reacts with sodium at
r. t. yielding $\left[\mathrm{Cy}_{2} \mathrm{HPPt}\left\{\mu-\mathrm{PCy}_{2}\right\}\right]_{2}(P t-P t)$ and a stable complex $\left[\right.$ trans $\left.-\left(\mathrm{Cy}_{2} \mathrm{HP}\right)_{2} \mathrm{PtCl}\left(\mathrm{PCy}_{2}\right)\right]$. The geometry around terminal phosphido P-atom is pyramidal [16]. A series of stable terminal Pt (II) phosphido complexes [(dppe) $\mathrm{Pt}(\mathrm{Me}) \mathrm{X}]\left(\mathrm{X}=\mathrm{PHR}\right.$ or $\left.\mathrm{PR}_{2}\right)$ was described [17]. For the latest review see [18].

We have studied the reactivity of litiated diphosphines $\mathrm{R}{ }_{2}{ }_{2}-\mathrm{P}\left(\mathrm{SiMe}_{3}\right) \mathrm{Li}$ and lithiated triphosphine ${ }^{t} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{PLi}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}$ towards transition metals complexes. The reaction of $\left[\left(\mathrm{R}_{3} \mathrm{P}\right)_{2} \mathrm{PtCl}_{2}\right]$ with $\mathrm{R}_{2}{ }_{2} \mathrm{P}-\mathrm{P}\left(\mathrm{SiMe}_{3}\right)_{2}$ involves mainly a formation of dinuclear diphosphorous complexes $\left[\left(\mathrm{R}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{P}_{2}\right) \mathrm{Pt}\left(\mathrm{PR}_{3}\right)_{2}\right]$ [19], and, with $\mathrm{R}_{2}{ }_{2} \mathrm{P}-\mathrm{P}\left(\mathrm{SiMe}_{3}\right) \mathrm{Li}$ the formation of side-on bonded phosphanylphosphinidene complexes $\left[\left(\eta^{2}-\mathrm{R}{ }_{2} \mathrm{P}=\mathrm{P}\right) \mathrm{Pt}\left(\mathrm{PR}_{3}\right)_{2}\right]$ but not phosphido complexes. This reaction is relatively general, R^{\prime} can adopt ${ }^{\mathrm{t}} \mathrm{Bu},{ }^{\mathrm{i}} \mathrm{Pr}^{2}, \mathrm{Et}_{2} \mathrm{~N}$ and ${ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{~N}$, but not Ph [20].
${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{PLi}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \cdot 2 \mathrm{THF}$ reacts with $\left[\left(\mathrm{Et}_{3} \mathrm{P}\right)_{2} \mathrm{MCl}_{2}\right](\mathrm{M}=\mathrm{Ni}, \mathrm{Pd})$ yielding mixtures of isomers of $\left[\left(1,2-\eta-{ }^{t} \mathrm{Bu}_{2} \mathrm{P}=\mathrm{P}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right) \mathrm{M}\left(\mathrm{PEt}_{3}\right) \mathrm{Cl}\right]$. The related reaction with $\left[\right.$ cis $-\left(\mathrm{Et}_{3} \mathrm{P}_{2} \mathrm{PtCl}_{2}\right]$ does not yield $\left[\left(1,2-\eta-{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}=\mathrm{P}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right) \mathrm{Pt}\left(\mathrm{PEt}_{3}\right) \mathrm{Cl}\right][21]$. Homologous $\left[\left(1,2-\eta-{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}=\mathrm{P}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right) \mathrm{Br}\right]$ was obtained in a different way and proved to be quite stable [22]. According to the structural and ${ }^{31} \mathrm{P}$ NMR data these complexes can be viewed as a modification of side-on bonded phosphanylphosphinidene complexes rather, than as terminal phosphido complexes [20].

Now we have extended our investigations on the reactivity of ${ }^{t} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{PLi}^{\mathrm{P}} \mathrm{Bu}_{2} \cdot 2 \mathrm{THF}$ with $\left[\left(\mathrm{R}_{3} \mathrm{P}\right)_{2} \mathrm{MCl}_{2}\right](\mathrm{M}=\mathrm{Ni}, \mathrm{Pd}, \mathrm{Pt})$ where R groups possess different electronic and steric properties. Moreover, we have studied the reactivity of ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{PLi}-\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2} \cdot 2 \mathrm{THF}$ towards $\left[\left(\mathrm{R}_{3} \mathrm{P}\right)_{2} \mathrm{MCl}_{2}\right](\mathrm{M}=$ $\mathrm{Ni}, \mathrm{Pd}, \mathrm{Pt})$

2. Results and Discussion

2.1. Reactivity

The reaction of $\left[\left(\mathrm{R}_{3} \mathrm{P}\right)_{2} \mathrm{MCl}_{2}\right](\mathrm{M}=\mathrm{Pd}, \mathrm{Ni})$ with 1 molar equiv. of ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{PLi}^{\mathrm{P}} \mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \cdot 2 \mathrm{THF}$ in THF at room temperature yields two isomers of $\left[\left(1,2-\eta-{ }^{t} \mathrm{Bu}_{2} \mathrm{P}=\mathrm{P}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right) \mathrm{M}\left(\mathrm{PR}_{3}\right) \mathrm{Cl}\right]$ (a and b) (Scheme 1).

Scheme 1
However this reaction with platinum complex $\left.\left[{ }^{\mathrm{P}} \mathrm{Tol}_{3} \mathrm{P}\right)_{2} \mathrm{PtCl}_{2}\right]$ gave only one isomer \mathbf{a}. We have isolated $\left[\left(1,2-\eta-{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}=\mathrm{P}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right) \mathrm{Pt}\left({ }^{\mathrm{P}} \mathrm{Tol}_{3} \mathrm{P}\right) \mathrm{Cl} \cdot \mathrm{C}_{5} \mathrm{H}_{12}\right]$ (1a•pentane), $\left[\left(1,2-\eta-{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}=\mathrm{P}-\right.\right.$ $\left.\left.\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right) \mathrm{Pd}\left(\mathrm{P}^{\mathrm{p}} \mathrm{Tol}_{3}\right) \mathrm{Cl}\right](\mathbf{2 a}),\left[\left(1,2-\eta-{ }_{-}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}=\mathrm{P}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right) \mathrm{Pd}\left(\mathrm{P}^{\mathrm{i}} \mathrm{Pr}_{3}\right) \mathrm{Cl}\right](\mathbf{3 b}),\left[\left(1,2-\eta-{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}=\mathrm{P}-\right.\right.$ $\left.\left.\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right) \mathrm{Ni}\left(\mathrm{PPh}_{2} \mathrm{Et}\right) \mathrm{Cl}\right](\mathbf{4 b})$. We have measured the ratios of isomers a vs. isomers \mathbf{b} in reactions solutions and after dissolving the isolated isomer in $\mathrm{C}_{6} \mathrm{D}_{6}$ (integrations of P 3 signals in ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra) in room temperature. The ratios are similar (see Table 1). However, after repeated crystallisations we have isolated only one isomer. Thus, an equilibrium according to Scheme 2 is very plausible.

Scheme 2

Table 1. The molar ratio of isomer \mathbf{a} : isomer \mathbf{b} of $\left[\left(1,2-\eta-{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}=\mathrm{P}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right) \mathrm{M}\left(\mathrm{PR}_{3}\right) \mathrm{Cl}\right]$ in the reaction solution and in a solution of the isolated complex in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Isolated isomer	$\mathbf{a}: \mathbf{b}$ reaction sol.	$\begin{gathered} \mathbf{a}: \mathbf{b} \\ \text { dissolved } \end{gathered}$
[(1,2-ף- $\left.\left.{ }^{\text {t }} \mathrm{Bu}_{2} \mathrm{P}=\mathrm{P}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right) \mathrm{Pd}\left(\mathrm{PEt}_{3}\right) \mathrm{Cl}\right]$ (7a) [12]	95:5	91:9
$\left[\left(1,2-\eta-{ }^{\text {t }} \mathrm{Bu}_{2} \mathrm{P}=\mathrm{P}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right) \mathrm{Pd}\left(\mathrm{P}^{\mathrm{P}} \mathrm{Tol}_{3}\right) \mathrm{Cl}\right](\mathbf{2 a)}$	67 : 33	56:44
$\left[\left(1,2-\eta-{ }^{\text {t }} \mathrm{Bu}_{2} \mathrm{P}=\mathrm{P}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right) \mathrm{Pd}\left(\mathrm{P}^{\mathrm{i}} \mathrm{Pr}_{3}\right) \mathrm{Cl}\right] \quad$ (3b)	50 : 50	44 : 56
$\left[\left(1,2-\eta-{ }^{\text {t }} \mathrm{Bu}_{2} \mathrm{P}=\mathrm{P}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right) \mathrm{Ni}\left(\mathrm{PEt}_{3}\right) \mathrm{Cl}\right] \quad$ (8a) [12]	$55: 45$	$52: 48$
$\left[\left(1,2-\eta-{ }^{\text {t }} \mathrm{Bu}_{2} \mathrm{P}=\mathrm{P}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right) \mathrm{Ni}\left(\mathrm{PPh}_{2} \mathrm{Et}\right) \mathrm{Cl}\right]$ (4b)	$19: 81$	21:79

The reaction according to scheme 1 is accompanied by two main side reactions:
i. Exchange of the $\mathrm{R}_{3} \mathrm{P}$ ligand in $\left[\left(1,2-\eta-{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}=\mathrm{P}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right) \mathrm{M}\left(\mathrm{PR}_{3}\right) \mathrm{Cl}\right]$ with ${ }^{t} \mathrm{Bu}_{2} \mathrm{PH}$ (Scheme 3).

Thus $\mathbf{2 a}$ and $\mathbf{2 b}$ yield $\mathbf{2 a}$ * and $\mathbf{2 b}$ * (equilibrium), $\mathbf{3 a}$ and $\mathbf{3 b}$ yield $\mathbf{2 a} \mathbf{a}^{*}$ and $\mathbf{2 b}$ * (equilibrium), $\mathbf{4 b}$ yields 4b*.

Scheme 3
${ }^{t} \mathrm{Bu}_{2} \mathrm{PH}$ is a product of a splitting of the $\mathrm{P}-\mathrm{P}$ bond in the triphosphine backbone. Similar splitting was observed and discussed in reactions involving ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{P}\left(\mathrm{SiMe}_{3}\right) \mathrm{Li}$ [19].
ii. A reaction leading to formation of a planar isotetraphosphine $\left({ }^{t} \mathrm{Bu}_{2} \mathrm{P}\right)_{3} \mathrm{P}$ [23]. A mechanism of its formation is not clear. $\left({ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}\right)_{3} \mathrm{P}$ was found in many runs.

$$
\left.\left[\left({ }^{\mathrm{P}} \mathrm{Tol}_{3} \mathrm{P}\right)_{2} \mathrm{PtCl}_{2}\right] \text { react with }{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{PLi}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \cdot 2 \mathrm{THF} \text { forming }\left[\left(1,2-\eta-{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}=\mathrm{P}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right) \mathrm{Pt}^{\mathrm{p}} \mathrm{Tol}_{3} \mathrm{P}\right) \mathrm{Cl}\right]
$$

(1a) in a poor yield. In the same experiment we have isolated a phosphanylphosphinidene complex
$\left[\left(\eta^{2}-{ }^{\mathrm{t}} \mathrm{Bu} \mathbf{2}_{2} \mathrm{P}=\mathrm{P}\right) \mathrm{Pt}\left({ }^{\mathrm{p}} \mathrm{Tol}_{3} \mathrm{P}\right)_{2}\right][20]$. In the reaction solution we have detected a significant amount of $\left({ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}\right)_{3} \mathrm{P}$ and some amount of a Pt complex with four P atoms (\mathbf{A}). The formation of $\left({ }^{t} \mathrm{Bu}_{2} \mathrm{P}\right)_{3} \mathrm{P}$ is not necessary attributed to a formation of $\left.\left[\left(\eta^{2}-{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}=\mathrm{P}\right) \mathrm{Pt}^{\mathrm{P}} \mathrm{Tol}_{3} \mathrm{P}\right)_{2}\right]$ since we have not detected this complex in the early stage of run 4.1.

The reaction of $\left[\left(\mathrm{Et}_{3} \mathrm{P}\right)_{2} \mathrm{PtCl}_{2}\right]$ with ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{P}\left(\mathrm{SiMe}_{3}\right)-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}$ (run 4.2) yields significant amounts of $\left({ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}\right)_{3} \mathrm{P}$. However, we have not detected $\left[\left(\eta^{2}-\mathrm{t}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}=\mathrm{P}\right) \mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2}\right]$ which is fairly stable but then ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{P}=\mathrm{PEt}_{3}[24]$. Moreover, $\left({ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}\right)_{3} \mathrm{P}$ was isolated in a reaction of $\left[\left(\mathrm{Et}_{2} \mathrm{PhP}_{2}\right)_{2} \mathrm{PtCl}_{2}\right]$ with ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-$ PLi-P(NEt $)_{2} \cdot 2 \mathrm{THF}$.

The known complexes $\left[\left(1,2-\eta-{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}=\mathrm{P}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right) \mathrm{Pt}\left(\mathrm{PR}_{3}\right) \mathrm{X}\right](\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ are a-type isomers. This fact can be rationalized, taking into account that trans influence is most important for heaviest
element in a group [25, 26]. ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P} 2$ (scheme 2) exerts stronger trans influence than P3 (see p. 2.2) and it is advantageous to have Cl or Br ligands but not $\mathrm{R}_{3} \mathrm{P} 1$ group trans to P 2 atom

We have studied the reactivity of ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{PLi}-\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2} \cdot 2 \mathrm{THF}$ towards a variety of complexes $\left[\left(\mathrm{R}_{3} \mathrm{P}\right)_{2} \mathrm{MCl}_{2}\right](\mathrm{M}=\mathrm{Pt}, \mathrm{Pd}, \mathrm{Ni})$. To our surprise these compounds do not react under formation of $\left[\left\{1,2-\eta-{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}=\mathrm{P}-\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2}\right\} \mathrm{M}\left(\mathrm{PR}_{3}\right) \mathrm{Cl}\right]$ or $\left[\left\{1,2-\eta-\left(\mathrm{Et}_{2} \mathrm{~N}\right)_{2} \mathrm{P}=\mathrm{P}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right) \mathrm{M}\left(\mathrm{PR}_{3}\right) \mathrm{Cl}\right]$. We have isolated and identified only two known compounds and a new adduct of ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{PLi}-\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2}$.

1. $\left({ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}\right)_{3} \mathrm{P}$ in a reaction of ${ }^{\mathrm{t}} \mathrm{Bu} \mathbf{L}_{2} \mathrm{P}-\mathrm{PLi}-\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2} \cdot 2 \mathrm{THF}$ with $\left[\left(\mathrm{Et}_{2} \mathrm{PPh}\right)_{2} \mathrm{NiCl}_{2}\right]$.
2. $\left[\mu-\left(1,3: 2,3-\eta-{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}_{4}{ }^{\mathrm{t}} \mathrm{Bu}_{2}\right)\left\{\mathrm{Ni}\left(\mathrm{PEt}_{3}\right) \mathrm{Cl}\right\}_{2}\right]$ (5) [27] together with two other compounds \mathbf{B} [27] and C in a reaction of ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{PLi}-\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2} \cdot 2 \mathrm{THF}$ with $\left[\left(\mathrm{Et}_{3} \mathrm{P}\right)_{2} \mathrm{NiCl}_{2}\right]$.
3. ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{PLi}-\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2} \cdot 2 \mathrm{THF}$ react with $\left[\left(\mathrm{Et}_{2} \mathrm{PhP}\right)_{2} \mathrm{PtCl}_{2}\right]$ yielded oily product and $\left({ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}\right)_{3} \mathrm{P}$ (not detected in the early stage of this reaction). ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{PLi}-\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2} \cdot 2 \mathrm{THF}$ was converted to relatively inert $\mathrm{LiCl} \cdot 2\left\{{ }^{\mathrm{t}} \mathrm{Bu} \mathbf{2}_{2} \mathrm{P}-\mathrm{PLi}-\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2}\right\} \cdot 2 \mathrm{THF}$ [28]. This compound does not dissociate into ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{PLi}-$ $\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2}$ in THF solution.

The formation of $\mathbf{5}$ and of $\left({ }^{(} \mathrm{Bu}_{2} \mathrm{P}\right)_{3} \mathrm{P}$ indicates a splitting of the $\mathrm{P}-\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2}$ bond in the parent triphosphine backbone.

2.2. ${ }^{31}$ P-NMR Studies, X-Ray Crystallographic Studies and Discussion

In Table 2 are collected ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ MNR data for complexes with side-on bonded ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}=\mathrm{P}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}$ ligand. These data indicate that the structures in solution are the same as in solid state. The equilibrium according to Scheme 2 is slow in the NMR time scale and we observed separated resonances for all isomers. The large absolute values of the couplings constants ${ }^{1} \mathrm{~J}_{\mathrm{P} 2}$-P3 of $560 / 518$ $\mathrm{Hz}(\mathrm{M}=\mathrm{Pd}, \mathrm{Ni})$ and $482 / 447(\mathrm{M}=\mathrm{Pt})$ show that this bond has a multiple bond character.

Noteworthy is a substantial high field shift of P3 ($-66 /-130 \mathrm{ppm}$) indicating a single-bond character of a Pt-P3 bond. Similar features displays side-on bonded ${ }^{\mathrm{t}} \mathrm{Bu}(\mathrm{Cl}) \mathrm{P}=\mathrm{P}-\mathrm{t}^{\mathrm{B}} \mathrm{Bu}$ connected to $\mathrm{CpW}(\mathrm{CO})_{2}$ centre [29]. The values of trans ${ }^{2} \mathrm{JP} 1-\mathrm{P} 2$ in " \mathbf{b} " complexes are in the range 249.9/270 $\mathrm{Hz}(\mathrm{M}=\mathrm{Pd})$ and 178.3/194.3 Hz $(\mathrm{M}=\mathrm{Ni})$. In "a" complexes the values of trans ${ }^{2} \mathrm{JP} 1-\mathrm{P} 3$ are in the
range $102.9 / 108.5 \mathrm{~Hz}(\mathrm{M}=\mathrm{Pt}, \mathrm{Pd})$ and $75.6 / 75.8(\mathrm{M}=\mathrm{Ni})$. Thus the trans influence of P 2 is stronger than that of P 3 . This assumption is additionally supported by the values of ${ }^{1} \mathrm{JPt}-\mathrm{P}$ in $\mathbf{1 a}$. The ${ }^{1} \mathrm{JPt}-\mathrm{P} 1$ trans to P 3 is 3437.3 Hz and is similar to the ${ }^{1} \mathrm{JPt}-\mathrm{P}$ coupling in [cis- $\left({ }^{\mathrm{P}} \mathrm{Tol} 3 \mathrm{P}\right) 2 \mathrm{PtCl} 2$] of 3627 Hz . Thus according to the criterion of Benett [30] P3 atom exerts very low trans influence, similar to that of a Cl atom.

Table 2. $\quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right) \mathrm{NM}\left(\mathrm{R}\right.$ data for $\left[\left(1,2-\eta-\mathrm{Bu}_{2} \mathrm{P}=\mathrm{P}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right) \mathrm{M}\left(\mathrm{PR}_{3}\right) \mathrm{Cl}\right](\mathrm{M}=\mathrm{Ni}, \mathrm{Pd})$

	M	$\mathrm{R}_{3} \mathrm{P} 1$	$\begin{aligned} & \delta \mathrm{P} 1 \\ & \mathrm{ppm} \end{aligned}$	$\begin{aligned} & \delta \mathrm{P} 2 \\ & \mathrm{ppm} \end{aligned}$	$\begin{aligned} & \delta \mathrm{P} 3 \\ & \mathrm{ppm} \end{aligned}$	$\delta \mathrm{P} 4$ ppm	$\begin{gathered} \mathrm{J}_{\mathrm{P} 1-\mathrm{P} 2} \\ \mathrm{~Hz} \end{gathered}$	$\begin{gathered} \mathrm{J}_{\mathrm{P} 1-\mathrm{P3}} \\ \mathrm{~Hz} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{J}_{\mathrm{P} 1-\mathrm{P4}} \\ \mathrm{~Hz} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{J}_{\mathrm{P} 2-\mathrm{P} 3} \\ \mathrm{~Hz} \end{gathered}$	$\begin{gathered} \mathrm{J}_{\mathrm{P} 2-\mathrm{P4}} \\ \mathrm{~Hz} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{J}_{\mathrm{P} 3-\mathrm{P4}} \\ \mathrm{~Hz} \\ \hline \end{gathered}$
1a	Pt	${ }^{\mathrm{P}} \mathrm{Tol}_{3} \mathrm{P}$	26.2	62.4	-130.4	27.8	20.7	107.8		447.3	32.6	254.7
$6 a^{\text {a }}$	Pt	$\mathrm{Ph}_{3} \mathrm{P}$	28.0	61.0	-125.9	32.0	22.0	107.0		482.0	34.0	251.0
2 a	Pd	${ }^{\mathrm{P}} \mathrm{Tol}_{3} \mathrm{P}$	20.1	105.5	-87.7	28.7	25.2	103.3		549.7	33.2	246.7
2b	Pd	${ }^{\mathrm{p}} \mathrm{Tol}_{3} \mathrm{P}$	15.9	97.2	-65.7	33.3	265.1	13.8		539.2	36.7	247.8
2a*	Pd	${ }^{t} \mathrm{Bu}_{2} \mathrm{H}$	30.7	104.2	-89.7	26.8	25.5	104.1		557.6	32.1	248.9
2b*	Pd	${ }^{t} \mathrm{Bu}_{2} \mathrm{H}$	$41.8^{\text {b }}$	75.6	-66.2	26.9	251.2	16.1	2.2	547.3	32.1	242.1
3a	Pd	${ }^{i} \mathrm{Pr}_{3} \mathrm{P}$	47.7	100.8	-88.4	31.0	23.0	102.9		551.7	30.3	255.2
3b	Pd	${ }^{i} \mathrm{Pr}_{3} \mathrm{P}$	35.5	77.2	-74.8	32.5	249.9	16.2		535.8	30.3	255.1
$7 \mathrm{a}^{\text {c }}$	Pd	$\mathrm{Et}_{3} \mathrm{P}$	22.6	110.3	-103.4	26.2	21.7	108.5		550.8	33.5	248.0
$7 \mathrm{~b}^{\text {c }}$	Pd	$\mathrm{Et}_{3} \mathrm{P}$	10.7	79.2	-74.5	28.8	270.0	15.3		534.0	34.9	241.0
4a	Ni	$\mathrm{Ph}_{2} \mathrm{Et}$	21.4	69.9	-119.2	32.7	30.2	75.8		531.6	25.5	257.0
4b	Ni	$\mathrm{Ph}_{2} \mathrm{Et}$	13.6	39.5	-97.5	36.4	191.0	≈ 0		523.5	29.4	253.6
4b*	Ni	${ }^{t} \mathrm{Bu}_{2} \mathrm{H}$	40.4	22.9	-90.6	32.0	178.3	≈ 0	2.2	538.5	22.3	255.1
8a ${ }^{\text {c }}$	Ni	$\mathrm{Et}_{3} \mathrm{P}$	19.9	72.8	-127.8	31.8	33.4	75.6		531.6	26.4	256.3
$\mathbf{8 b}{ }^{\text {d,c }}$	Ni	$\mathrm{Et}_{3} \mathrm{P}$	7.1	31.3	-101.8	34.1	194.3	2.4		518.0	27.8	252.8

The structures of 1a•pentane (Fig. 1), 2a (Fig. 2), 3b (Fig. 3) and 4b (Fig. 4) were determined by X-ray diffraction methods [31, 32]. The crystal data, details of the data collection and refinement are given in Table 3.

The Pt atom in 1a (RMS deviations of fitted atoms $=1.69 \mathrm{pm}$) and the Pd atom in 2a (RMS deviations $=1.10 \mathrm{pm})$ are in an almost planar environment defined by $\mathrm{R}_{3} \mathrm{P} 1, \mathrm{Cl}$ and the $\mathrm{P} 2-\mathrm{P} 3$
bond. In 3b (RMS deviations $=5.46 \mathrm{pm}$) the environment around Pd atom displays small deviations from planarity and in $\mathbf{4 b}($ RMS deviations $=23.7 \mathrm{pm})$ the environment around Ni atom displays substantial deviations from planarity. The P2-P3 distances are short: 214.50(2) pm in 1a,
$213.03(13) \mathrm{pm}$ in $\mathbf{2 a}, 213.32(7) \mathrm{pm}$ in $\mathbf{3 b}$ and 212.54 (12) pm in $\mathbf{4 b}$. These data and literature data for $\mathbf{6 a}-214.9(2) \mathrm{pm}[22]$, for $\mathbf{7 a}-213.68(5) \mathrm{pm}[21]$ and for $\mathbf{8 a}-212.81(10) \mathrm{pm}[21]$ indicate general trend that the distances $\mathrm{P} 2-\mathrm{P} 3$ diminish in the order $\mathrm{Pt}>\mathrm{Pd}>\mathrm{Ni}$. These short distances are typical for the double $\mathrm{P}=\mathrm{P}$ bond of diphosphenes upon η^{2}-coordination [33]. All P3-P4 distances are in the range of single $\mathrm{P}-\mathrm{P}$ bonds [34].

Table 3. Summary of crystallographic data and structure refinement details for $\mathbf{1 a - 4 b}$.

	1a	2 a	3b	4b
Empirical formula	$\mathrm{C}_{42} \mathrm{H}_{69} \mathrm{ClP}_{4} \mathrm{Pt}$	$\mathrm{C}_{37} \mathrm{H}_{57} \mathrm{ClP}_{4} \mathrm{Pd}$	$\mathrm{C}_{25} \mathrm{H}_{57} \mathrm{ClP}_{4} \mathrm{Pd}$	$\mathrm{C}_{30} \mathrm{H}_{51} \mathrm{ClP}_{4} \mathrm{Ni}$
$M_{\mathrm{r}} / \mathrm{g} \mathrm{mol}^{-1}$	928.39	767.56	623.44	629.75
Temperature /K	120(2)	120(2)	120(2)	120(2)
Wavelength /Å	0.71073 ($\mathrm{Mo} \mathrm{K}_{\alpha}$)	$0.71073\left(\mathrm{Mo} \mathrm{K}_{\alpha}\right)$	$0.71073\left(\mathrm{Mo} \mathrm{K}_{\alpha}\right)$	$0.71073\left(\mathrm{Mo} \mathrm{K}_{\alpha}\right)$
Crystal system	monoclinic	triclinic	triclinic	monoclinic
Space group	$P 2{ }_{1} / c$	P-1	P-1	$P 2{ }_{1} / \mathrm{c}$
a / \AA	14.7717(4)	11.9728(5)	8.4306(4)	8.2709(4)
b / \AA	24.5098(6)	12.7680(5)	11.8235(4)	19.6137(12)
c / \AA	13.2810(3)	14.2078(9)	16.9039(6)	20.2758(12)
$\alpha /{ }^{\circ}$	90	93.391(4)	89.747(3)	90
$\beta{ }^{\circ}$	110.902(2)	114.571(4)	91.967(3)	93.444(4)
$\gamma /{ }^{\circ}$	90	98.813(3)	108.684(4)	90
V / \AA^{3}	4491.97(19)	1933.61(17)	1595.19(10)	3283.3(3)
Z	4	2	2	4
Calc. density $/ \mathrm{Mg} \mathrm{m}^{-3}$	1.373	1.318	1.298	1.274
Crystal size / mm	$0.26 \times 0.24 \times 0.15$	$0.08 \times 0.06 \times 0.02$	$0.16 \times 0.09 \times 0.02$	$0.10 \times 0.05 \times 0.02$
θ range ${ }^{\circ}$	1.96 to 25.5	1.91 to 25.5	2.17 to 25.5	2.26 to 25.5
Limiting indices	$-17<=\mathrm{h}<=17$	$-13<=\mathrm{h}<=14$	$-10<=\mathrm{h}<=10$	$-10<=\mathrm{h}<=10$
	$-27<=\mathrm{k}<=29$	$-15<=\mathrm{k}<=15$	$-14<=\mathrm{k}<=13$	$-23<=\mathrm{k}<=21$
	$-16<=1<=16$	$-16<=1<=17$	$-20<=1<=20$	$-24<=1<=24$
Reflections collected / unique	$\begin{aligned} & 31323 / 8354 \\ & {[R(\text { int })=0.0565]} \end{aligned}$	$\begin{aligned} & 14073 / 7206 \\ & {[R(\text { int })=0.0394]} \end{aligned}$	$\begin{aligned} & 11626 / 5947 \\ & {[R(\mathrm{int})=0.0226]} \end{aligned}$	$\begin{aligned} & 23453 / 6098 \\ & {[R(\mathrm{int})=0.0706]} \end{aligned}$
Completeness to	100	99.8	99.8	100
$\theta_{\text {max }} 1 \%$				
Linear absorption coeff. $/ \mathrm{mm}^{-1}$	3.352	0.738	0.878	0.885
Data / restraints / parameters	$8354 / 0 / 450$	7206 / 0 / 403	5947 / 0 / 298	6098 / 0 / 338
Goodness-of-fit on F^{2}	1.16	1.041	1.151	0.932
Final R indices [$I>2 \sigma(I)$]	$R 1=0.0501$	$R 1=0.0379$	$R 1=0.0253$	$R 1=0.0412$
R indices (all data)	$w R 2=0.1228$	$w R 2=0.0949$	$w R 2=0.0645$	$w R 2=0.0917$
	$R 1=0.0712$	$R 1=0.0543$	$R 1=0.0308$	$R 1=0.0737$
	$w R 2=0.1393$	$w R 2=0.1077$	$w R 2=0.067$	$w R 2=0.0978$
Largest diff. peak and	1.576 and	0.703 and	0.588 and	0.559 and
hole $/ \mathrm{e}^{-3}$	-1.146	-0.67	-0.627	-0.607

The M-P distances display distinct differences depending on the isomer type. In $\mathbf{3 b}$ the $\mathrm{Pd}-\mathrm{P} 1$ distance 234.32 (9) pm, trans to P 2 is longer than 236.03 pm reported for $\mathrm{Pd}-\mathrm{P}$ bond in [trans$\left({ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}$] [35]. Thus ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P} 2$ exerts strong trans influence. $\mathrm{Pd}-\mathrm{P} 2$ bond is very short $225.39(15) \mathrm{pm}$, similarly to 225.8 (3) reported for $\mathrm{Pd}-\mathrm{P}$ bond in [cis- $\left(\mathrm{Me}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}$] [36], however, it has ${ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{P} 1$ in trans position. The $\mathrm{Pd}-\mathrm{P} 3$ bond of $238.59(5) \mathrm{pm}$ trans to Cl atom is a long one. In 2a Pd-P1 (234.32 (9) pm) is shorter than in $\mathbf{3 b}$ (238.77(5) pm)- but Pd-P3 bond of 241.79 (9) pm, trans to ${ }^{\mathrm{P}} \mathrm{Tol}_{3} \mathrm{P}$ is a very long one. Thus, P 3 exerts small trans influence but the $\mathrm{Pd}-\mathrm{P} 3$ bond lengthens very significantly if a tertiary phosphine is in trans position to it. The same was observed in Ni complexes $\mathbf{4 b}$ and $\mathbf{8 a}$.

FIGURE 1. An ORTEP view of the molecular structure of $\mathbf{1 a}$ in the crystal; hydrogen atoms not shown, ellipsoids are drawn at 30% probability level. Selected bond lengths [pm] and angles [${ }^{\circ}$]: Pt1-Cl1 236.37(15); Pt1-P1 228.53(17); Pt1-P2 221.24(16); Pt1-P3 240.77(18); P2-P3 214.50(2); P3-P4 221.80(3); P2-Pt1-P3 55.14(6); P2-P3-P4 106.92(10).

FIGURE 2. An ORTEP view of the molecular structure of 2a in the crystal; hydrogen atoms not shown, ellipsoids are drawn at 30% probability level. Selected bond lengths [pm] and angles [${ }^{\circ}$]: Pd1-Cl1 238.62(9); Pd1-P1 234.32(9); Pd1-P2 223.15(9); Pd1-P3 241.79(9); P2-P3 213.03(13); P3P4 222.40(13); P2-Pd1-P3 67.28(4); P2-P3-P4 106.78(5).

FIGURE 3. An ORTEP view of the molecular structure of $\mathbf{3 b}$ in the crystal; hydrogen atoms not shown, ellipsoids are drawn at 30% probability level. Selected bond lengths [pm] and angles [${ }^{\circ}$]: Pd1-Cl1 237.63(5); Pd1-P1 238.77(5); Pd1-P2 225.39(5); Pd1-P3 238.59(5); P2-P3 213.32(7); P3P4 224.05(7); P2-Pd1-P3 54.654(17); P2-P3-P4 102.96(3).

FIGURE 4. An ORTEP view of the molecular structure of $\mathbf{4 b}$ in the crystal; hydrogen atoms not shown, ellipsoids are drawn at 30% probability level. Selected bond lengths [pm] and angles [${ }^{\circ}$]: Ni1-Cl1 220.46(9); Ni1-P1 223.68(10); Ni1-P2 214.83(10); Ni1-P3 226.05(10); P2-P3 212.54(12); P3-P4 224.80(12); P2-Ni1-P3 57.58(3); P2-P3-P4 105.58(5).

In 1a the Pt-P2, Pt-P3 and Pt-Cl distances are very similar to those reported in $\mathbf{2 a}(\mathrm{M}=\mathrm{Pd})$, however the $\mathrm{Pt}-\mathrm{P} 1$ distance of 228.53 (7) pm is shorter than $\mathrm{Pd}-\mathrm{P} 1$ distance in 2a. We have suggested [21] two Lewis structures which partially explain properties of this class of complexes. The features of X-ray structures are well explained by the Lewis structure 1 (Scheme 4) .

Scheme 4

The planar alignments around the metal centres in all this compounds are in accord with assumption that $\left(\mathrm{R}_{3} \mathrm{P}\right) \mathrm{ClM}^{-}$groups exhibit properties of a $\mathrm{d}^{10} \mathrm{ML}_{2}$ metal centre [37] and so this ligand can be seen as an η^{2} bonded 1,1-di-tert-butyl-2-(di-tert-butylphosphanylo)diphosphenium cation. Related phosphanylophosphenium cation has a planar geometry [38]. The short distances M-P ${ }^{t} \mathrm{Bu}_{2}$ (Scheme 4, structure 1) are due to additional electrostatic interactions. Such interactions are not possible in side-on bonded phosphanylphosphinidene platinum complexes (Scheme 4, structure 3). Thus the $\mathrm{Pt}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}$ distance in $\left.\left[{ }^{\mathrm{P}} \mathrm{Tol}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}\left(\eta^{2}-\mathrm{Bb}_{2} \mathrm{P}=\mathrm{P}\right)\right]$ is 230.59 (17) pm [20] compared to $\mathrm{Pt}-\mathrm{P} 2$ in $\mathbf{1 a}$ 221.24 (16) pm. This distance is shorter than $\mathrm{Pt}^{2}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{H}$ distance in $\left[\right.$ cis- $\left.\left(\mathrm{Ph}_{3} \mathrm{P}\right)\left({ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{PH}\right) \mathrm{PtCl}_{2}\right]$ (225.3 pm) [39]. These additional electrostatic interactions may be partially responsible for a greater value of ${ }^{1} \mathrm{~J}_{\mathrm{Pt}-\mathrm{P} 2}$ in $\mathbf{1 a}$ compared to $\left[\left({ }^{\mathrm{P}} \mathrm{Tol}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}\left(\eta^{2}{ }^{-}-\mathrm{Bu}_{2} \mathrm{P}=\mathrm{P}\right)\right]$ [20]. The geometry around P 3 atom differs to some extent from the geometry of side-on bonded diphosphenes. The P4-P3-P2 angle in 1a of 106.71 deg differs slightly from the related angle in $\left[\left(\eta^{2}-{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{P}=\mathrm{P}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right) \mathrm{Pt}^{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ - 111.12 deg. The torsion angle Pt-P2-P3-P4 of 107.12 deg differs from the related value in [$\left(\eta^{2}\right.$ $\left.{ }^{t} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{P}=\mathrm{P}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}$] - 103.82 deg [33]. The sum of angles around ${ }^{\mathrm{P}} \mathrm{Tol}_{3} \mathbf{P 1}$ in $\mathbf{1 a}$ is 312.67 deg. The sum of angles around ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathbf{P} 2-\mathrm{P}$ is 344.62 deg. Thus the geometry around P 2 atom is more planar than around P1 atom. The Lewis structure 2 (Scheme 4) explains the relatively large ${ }^{1} \mathrm{~J}_{\mathrm{Pt} \text {-P2 }}$
(2776.8 Hz for $\mathbf{1 a}$ and 2740 Hz for $\mathbf{6 a}$). These values of ${ }^{1} \mathrm{~J}_{\mathrm{Pt}-\mathrm{P} 3}$ of $187.0 \mathrm{~Hz}^{1}(\mathbf{6 a})$ and $188.1 \mathrm{~Hz}(\mathbf{1 a})$ are however smaller than reported for ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{P}=\mathrm{P}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}$ bonded side-on to $\mathrm{d}^{10} \mathrm{PtL}_{2}$ centre (332 / 404 Hz) [33] and significantly smaller than in terminal phosphido complexes with tertiary phosphine in trans position ($573 \mathrm{~Hz} / 675$ [15], $806 / 1239 \mathrm{~Hz}$ [17]) but greater than in complexes with ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}=\mathrm{P}$ bonded side-on to $\mathrm{d}^{10} \mathrm{PtL}_{2}$ centre $(32 / 104 \mathrm{~Hz})$ [40]. The planar geometry of $\mathrm{P} 1-\mathrm{Cl}-$ P2-P3-M in Lewis structure 2 (Scheme 4) is obvious in terms of the planarity of low spin $\mathrm{d}^{8} \mathrm{ML}_{2}$ complexes.

The crystallographic data have been deposited in the Cambridge Crystallographic Data Centre as supplementary publications CCDC 746220 (1a•pentane), CCDC 746221 (2a), CCDC 746222 (3b) and CCDC $746223(\mathbf{4 b})$. Copies of the data can be obtained free of charge on application to the Director CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: +(44) 1223-336-033; e-mail for inquiring: fileserv@ccdc.cam.ac.uk , e-mail for deposition: deposit@ccdc.cam.ac.uk

3. Conclusion

We have isolated several new complexes $\left[\left(1,2-\eta-{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}=\mathrm{P}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right) \mathrm{M}\left(\mathrm{PR}_{3}\right) \mathrm{Cl}\right]$ which are products of reactions of $\left[\left(\mathrm{R}_{3} \mathrm{P}\right)_{2} \mathrm{MCl}_{2}\right]$ with ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{PLi}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}$. In solution we observed a mixture of isomers in an equilibrium. For $\left[\left({ }^{\mathrm{P}} \mathrm{Tol}_{3} \mathrm{P}\right)_{2} \mathrm{PtCl}_{2}\right]$ only one isomer of $\left[\left(1,2-\eta-{ }_{-}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}=\mathrm{P}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right) \mathrm{Pt}^{(}\left(\mathrm{PR}_{3}\right) \mathrm{Cl}\right]$ was formed together with a phosphanylophosphinidene complex $\left[\left(\eta^{2}-{ }^{\mathrm{t}} \mathrm{Bu} u_{2} \mathrm{P}=\mathrm{P}\right) \mathrm{Pt}\left(\mathrm{P}^{\mathrm{P}} \mathrm{Tol}_{32}\right)_{2}\right]$. The studied reactions are not general for lithiated triphosphines and were successful only for a compound with voluminous ${ }^{\mathrm{t}} \mathrm{Bu}$ groups. Surprisingly ${ }^{\mathrm{t}} \mathrm{Bu} u_{2} \mathrm{P}-\mathrm{PLi}-\mathrm{P}\left(\mathrm{N}^{i} \mathrm{Pr}_{2}\right)_{2}$ does not form related complexes with $1,2-\eta-{ }^{\mathrm{t}} \mathrm{Bu} \mathrm{u}_{2} \mathrm{P}=\mathrm{P}-\mathrm{P}\left(\mathrm{N}^{\mathrm{i}} \mathrm{Pr}_{2}\right)_{2}$ or $2,3-\eta-{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{P}=\mathrm{P}\left(\mathrm{N}^{\mathrm{i}} \mathrm{Pr}_{2}\right)_{2}$ ligands but a splitting of a $\mathrm{P}-\mathrm{P}\left(\mathrm{N}^{\mathrm{i}} \mathrm{Pr}_{2}\right)_{2}$ was observed. It seems reasonable to study related reactions involving lithiated triphospines with smaller groups e. i. ${ }^{i} \operatorname{Pr}_{2} \mathrm{P}-\mathrm{PLi}-\mathrm{P}^{\mathrm{i}} \mathrm{Pr}_{2}$.

[^1]
4. Experimental

All manipulations were performed in flame-dried Schlenk type glassware on a vacuum line. THF and toluene were dried over $\mathrm{Na} /$ benzophenone and distilled under nitrogen. Pentane was dried over Na /benzophenone/diglyme and distilled under nitrogen. ${ }^{31} \mathrm{P}$ NMR spectra were recorded on Bruker Av400 and on Bruker AMX300 spectrometers (external standard $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$) at ambient temperature. The ${ }^{1} \mathrm{H}$ NMR signals for $\mathbf{2 a}, \mathbf{2 b}$ and $\mathbf{3} \mathbf{b}$ were established from ${ }^{31} \mathrm{P}-{ }^{1} \mathrm{H}$-COSY spectra. ${ }^{t} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{P}\left(\mathrm{SiMe}_{3}\right)-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}$ was prepared in a one-pot reaction [41] and lithiated according to literature procedures [42], ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{PLi}-\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2}$ was prepared according to literature procedures [43]

4.1. Reaction of ${ }^{t} B u_{2} \underline{P-P L i-P^{t} B u_{2}} \cdot \underline{2 T H F}$ with $\left.\int^{p} \mathrm{Tol}_{3} \underline{P}_{2}\right)_{2} \underline{\left.P t C l_{2}\right] . ~ S y n t h e s i s ~ o f ~}\left[\left(1,2-\eta-{ }_{-}^{t} B u_{2} \underline{P}=P_{-}\right.\right.$

$\left.\underline{P}^{t} \mathbf{B u}_{2}\right) P \operatorname{Pt}\left(p-\mathrm{Tol}_{3} \underline{P}\right) \mathrm{Cll}(\mathbf{1} \boldsymbol{a})$.

A solution of ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{PLi}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \cdot 2 \mathrm{THF}(0.187 \mathrm{~g}, 0.396 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ was added at room temperature to a suspension of $\left[\right.$ cis/trans $\left.-\left({ }^{p} \mathrm{Tol}_{3} \mathrm{P}\right)_{2} \mathrm{PtCl}_{2}\right](0.346 \mathrm{~g}, 0.396 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$. The mixture was stirred for 1 d , the suspension dissolved (the solution turned orange) and was investigated with ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR, then evacuated at $2 \cdot 10^{-3}$ Torr for 2 h . The residue was dissolved in toluene (4 mL) and filtered. The volume was reduced to $\approx 1 \mathrm{~mL}$ and pentane $(4 \mathrm{~mL})$ was carefully layered over the toluene solution. After 7 days at $+4^{\circ} \mathrm{C}$ orange crystals of 1a•pentane deposited $(0.079 \mathrm{~g}, 21 \%$ yield $)$. Then the mother liquor was separated from crystals and after 7 days at + $4{ }^{\circ} \mathrm{C}$ yielded small amount of red crystals of $\left[\left(\eta^{2}-\mathrm{Bu}_{2} \mathrm{P}=\mathrm{P}\right) \mathrm{Pt}\left(\mathrm{p}-\mathrm{Tol}_{3} \mathrm{P}\right)_{2}\right][20]$
${ }^{31} \mathrm{P}-\mathrm{NMR}$ examination of reaction solution: 1a, $\left({ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}\right)_{3} \mathrm{P}[23]$, $\left[\right.$ cis- $\left.\left(p-\mathrm{Tol}_{3} \mathrm{P}\right)\left({ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{PH}\right) \mathrm{PtCl}_{2}\right]$, ${ }^{t} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{PH}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}[41], p-\mathrm{Tol}_{3} \mathrm{P}, \mathbf{A}$.

1a: $:{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($161.94 \mathrm{MHz}, \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{THF}, 25{ }^{\circ} \mathrm{C}$, $) \delta=26.2$ (dd, P 1); 62.4 (ddd, P 2); 130.4 (ddd, P3); 27.8 (dd, P4); ${ }^{1} \mathrm{~J}_{\mathrm{Pt}-\mathrm{Pl}}=3437.3 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{Pt} \mathrm{P} 2}=2776.8 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{Pt}-\mathrm{P} 3}=188.1 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{Pt}-\mathrm{P} 4}=$ $45.9 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{P} 1-\mathrm{P} 2}=20.7 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{P} 1-\mathrm{P} 3}=107.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{P} 1-\mathrm{P} 4} \approx 0 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{P} 2-\mathrm{P} 3}=-447.3 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{P} 2-\mathrm{P} 4}=32.6 \mathrm{~Hz}$, ${ }^{1} \mathrm{~J}_{\mathrm{P} 3-\mathrm{P} 4}=-254.7 \mathrm{~Hz}$.

A : ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($161.94 \mathrm{MHz}, \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{THF}, 25{ }^{\circ} \mathrm{C}$,) $\delta=22.0$ (ddd, P1); -14.1 (dd, P2); 32.0 (ddd, P3); -45.4 (ddd, P4); ${ }^{1} \mathrm{~J}_{\mathrm{Pt}-\mathrm{P} 1}=2547.0 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{Pt}-\mathrm{P} 2}=2161.5 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{Pt}-\mathrm{P} 3}=1454.6 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{Pt}-\mathrm{P} 4} \approx$ $20 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{P} 1-\mathrm{P} 2}=315.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{P} 1-\mathrm{P} 3}=12.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{P} 1-\mathrm{P} 4}=6.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{P} 2-\mathrm{P} 4}=323.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{P} 2-\mathrm{P} 3}=9.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{P} 3-\mathrm{P} 4}=$ $275.3 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{P} 3-\mathrm{H}}=165.0 \mathrm{~Hz} .$. $\left[\right.$ cis- $\left.\left({ }^{p} \mathrm{Tol}_{3} \mathrm{P} 2\right)\left({ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P} 1 \mathrm{H}\right) \mathrm{PtCl}_{2}\right]{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(161.94 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{THF}, 25{ }^{\circ} \mathrm{C}\right.$, $) \delta=50.4$ (d, P1); $13.3(\mathrm{~d}, \mathrm{P} 2) ;{ }^{1} \mathrm{~J}_{\mathrm{Pt}-\mathrm{P} 1}=3502 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{Pt}-\mathrm{P} 2}=3668 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{P} 1-\mathrm{P} 2}=10.6 \mathrm{~Hz}$,

4.2. Reaction of $\left.{ }^{t} B u_{2} \underline{P-P\left(S i M e_{3}\right.}\right)-P^{t} B u_{2}$ with $\left[\left(E t_{\underline{3}} \underline{P}\right)_{2} \underline{P t C l_{2}}\right]$.

A solution of ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{P}\left(\mathrm{SiMe}_{3}\right)-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}(0.11 \mathrm{~g}, 0.28 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ was added at room temperature to a solution of $\left[\right.$ cis/trans- $\left.\left(\mathrm{Et}_{3} \mathrm{P}\right)_{2} \mathrm{PtCl}_{2}\right](0.14 \mathrm{~g}, 0.28 \mathrm{mmol})$ in THF $(7 \mathrm{~mL})$. The mixture turned slowly yellow. After 1 d the solution was concentrated to 2 mL and colourless crystals of $\left({ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}\right)_{3} \mathrm{P}$ deposited.
${ }^{31} \mathrm{P}$-NMR examination of reaction solution ($101.26 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{THF}, 25^{\circ} \mathrm{C}$): ($\left.{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}\right)_{3} \mathrm{P}$ [23], [cis$\left.\left(\mathrm{Et}_{3} \mathrm{P}\right)\left({ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{PH}\right) \mathrm{PtCl}_{2}\right],{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{PH}, p-\mathrm{Tol}_{3} \mathrm{P},\left[\right.$ cis- $\left.\left(\mathrm{Et}_{3} \mathrm{P}\right)_{2} \mathrm{PtCl}_{2}\right],\left[\right.$ trans $\left.-\left(\mathrm{Et}_{3} \mathrm{P}\right)_{2} \mathrm{PtCl}_{2}\right],{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{P}=\mathrm{PEt}_{3}[24]$ $\left[\text { cis- }\left(\mathrm{Et}_{3} \mathrm{P} 2\right)\left({ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P} 1 \mathrm{H}\right) \mathrm{PtCl}_{2}\right]^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101.26 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{THF}, 25^{\circ} \mathrm{C}$, $) \delta=34.4(\mathrm{~d}, \mathrm{P} 1) ; 4.7$ ppm (d, P2) ; ${ }^{1} \mathrm{~J}_{\mathrm{Pt}-\mathrm{P} 1}=3531.0 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{Pt}-\mathrm{P} 2}=3365.8 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{P} 1-\mathrm{P} 2}=15.4 \mathrm{~Hz}$,

4.3. Reaction of ${ }^{t} B u_{2} \underline{P-P L i-P^{t} B u_{2}} \cdot \underline{2 T H F}$ with $\left.\left.\int^{p} T_{1} \underline{I}_{\underline{2}} \underline{P}\right)_{2} \underline{P d C l_{2}}\right]$. Synthesis of $\left[\left(1,2-\eta-{ }_{-}^{t} B u_{2} \underline{P}=P-\right.\right.$ $\left.\underline{P}^{t} B u_{2}\right) P d\left(P^{p} T_{o l}^{\underline{3}} \underline{\underline{3}}\right) C l l(2 a)$.

A solution of ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{PLi}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \cdot 2 \mathrm{THF}(0.210 \mathrm{~g}, 0.444 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ was added at room temperature to a suspension of $\left[\left({ }^{\mathrm{P}} \mathrm{Tol}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}\right](0.349 \mathrm{~g}, 0.444 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$. The yellow suspension turned immediately dark red. After stirring for 2 h the suspension dissolved and volume was reduced to 2 mL . The reaction mixture was investigated by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR. Then the solution was evaporated to dryness under vacuum, dissolved in toluene (4 mL) filtrated, concentrated to 1 mL and stored for 5 d at $4^{\circ} \mathrm{C}$. Crystals of ${ }^{\mathrm{P}} \mathrm{Tol}_{3} \mathrm{P}$ were deposited. Then the solution was stored for

14 d at $-35^{\circ} \mathrm{C}$. The pale yellow crystals of $\left({ }^{(} \mathrm{Bu}_{2} \mathrm{P}\right)_{3} \mathrm{P}$ were deposited. The resulting mother liquor was layered with pentane. After 14 d at $4{ }^{\circ} \mathrm{C}$ orange needles of $\mathbf{2 a}$ deposited $(0.106 \mathrm{~g}, 31 \%$ yield).
${ }^{31} \mathbf{P}-\mathbf{M N R}$ examination of reaction solution. 2a, 2b, 2a* (small signals), $\mathbf{2} \mathbf{b}^{*}$ (small signals), ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-$ $\mathrm{PH}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}$ (small signals) and ($\left.{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}\right)_{3} \mathrm{P}$ (small signals).

2a: ${ }^{1} \mathrm{H}$ NMR ($400.13 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}$): $\delta=7.91\left(\mathrm{~m}, o-\mathrm{H}\right.$ of $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{P} 1$ of $\mathbf{2 a}$ or $\mathbf{2 b} ; 6.94(\mathrm{~m}$, probably $m-\mathrm{H}$ of $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{P} 1$ of $\mathbf{2 a}$ or $\mathbf{2 b}$, overlap with $p-\mathrm{Tol}_{3} \mathrm{P}$) ; $2.003\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of $p-\mathrm{Tol}_{3} \mathrm{P} 1$ of $\mathbf{2 a}$ or 2b); $1.991\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of $p-\mathrm{Tol}_{3} \mathrm{P} 1$ of $\mathbf{2 a}$ or $\left.\mathbf{2 b}\right) ; 1.902\left(\mathrm{~d}, 11.9 \mathrm{~Hz}, \mathbf{H}_{3} \mathrm{CCP} 4\right) ; 1.386(\mathrm{~d}, 10.7 \mathrm{~Hz}$, $\left.\mathbf{H}_{3} \mathbf{C C P} 4\right) ; 1.282$ (d, $\left.16.6 \mathrm{~Hz}, \mathbf{H}_{3} \mathrm{CCP} 2\right) ; 1.148$ (d, $15.2 \mathrm{~Hz}, \mathbf{H}_{3} \mathrm{CCP} 2$);

2b : ${ }^{1} \mathrm{H}$ NMR ($400.13 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$):): $\delta=7.91\left(\mathrm{~m}, o-\mathrm{H}\right.$ of $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{P} 1$ of 2a or 2b; $6.94(\mathrm{~m}$, probably $m-\mathrm{H}$ of $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{P} 1$ of $\mathbf{2 a}$ or $\mathbf{2 b}$, overlap with $\left.p-\mathrm{Tol}_{3} \mathrm{P}\right) ; 2.003\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of $p-\mathrm{Tol}_{3} \mathrm{P} 1$ of $\mathbf{2 a}$ or 2b); $1.991\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of $p-\mathrm{Tol}_{3} \mathrm{P} 1$ of 2a or $\mathbf{2 b}$); $1.829\left(\mathrm{~d}, 17.1 \mathrm{~Hz}, \mathbf{H}_{3} \mathrm{CCP} 2\right) ; 1.508(\mathrm{~d}, 13.8 \mathrm{~Hz}$, $\left.\mathbf{H}_{3} \mathrm{CCP} 2\right)$; 1.464 (d, $\left.10.7 \mathrm{~Hz}, \mathbf{H}_{3} \mathrm{CCP} 4\right) ; 1.082\left(\mathrm{~d}, 11.5 \mathrm{~Hz}, \mathbf{H}_{3} \mathrm{CCP} 4\right)$;
4.4. Reaction of ${ }^{t} B u_{2} \underline{P}-P L i-P^{t} B u_{2} \cdot \underline{2 T H F}$ with $\left[\left({ }^{i} P r_{\underline{3}} \underline{P}\right)_{2} \underline{P d C l_{2}}\right]$. Synthesis of $\left[\left(1,2-\eta_{-}{ }^{t} B u_{2} \underline{P}=P-\right.\right.$ $\left.\underline{P}^{t} B u_{2}\right) P d\left(P^{i} \mathrm{Pr}_{3}\right) \mathrm{Cll}(\mathbf{3 b})$.

A solution of ${ }^{t} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{PLi}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \cdot 2 \mathrm{THF}(0.208 \mathrm{~g}, 0.440 \mathrm{mmol})$ in THF $(3 \mathrm{~mL})$ was added at room temperature to a suspension of $\left[\left({ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}\right](0.219 \mathrm{~g}, 0.440 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$. The yellow solution turned orange-brown. After stirring for 1 h the suspension dissolved volume was reduced to 2 mL and investigated by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR. Then the solution was evaporated to dryness under vacuum, dissolved in toluene (4 mL) filtrated and concentrated to 1 ml . The solution was layered with pentane $(4 \mathrm{~mL})$ and stored for 7 d at $4^{\circ} \mathrm{C}$. Orange crystals deposited: $\mathbf{3 b}(0.160 \mathrm{~g}, 58 \%$ yield $)$. ${ }^{31} \mathbf{P}-\mathbf{M N R}$ examination of reaction solution: $\mathbf{3 a}, \mathbf{3 b}, \mathbf{2} \mathbf{a}^{*}, \mathbf{2 b}^{*},{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{PH}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2},{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{PH}$ and $\left[\left({ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}\right]$ were found.

3a: ${ }^{1} \mathrm{H}$ NMR ($400.13 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}$): $1.773\left(\mathrm{~d}, 12.0 \mathrm{~Hz}, \mathbf{H}_{3} \mathrm{CCP} 4\right) ; 1.576(\mathrm{dd}, 1.1 \mathrm{~Hz}+16.0$ $\left.\mathrm{Hz}, \mathbf{H}_{3} \mathrm{CCP} 2\right) ; 1.453\left(\mathrm{~d}, 10.5 \mathrm{~Hz}, \mathbf{H}_{3} \mathrm{CCP} 4\right)$; Others signals we were not able to assign unequivocally to H atoms of $\mathbf{3 a}$.

3b: ${ }^{1} \mathrm{H}$ NMR ($400.13 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$): $1.389\left(\mathrm{~d}, 11.0 \mathrm{~Hz}, \mathbf{H}_{3} \mathrm{CCP} 4\right)$; Others signals we were not able to assign unequivocally to H atoms of $\mathbf{3} \mathbf{b}$.

A solution of ${ }^{t} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{PLi}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \cdot 2 \mathrm{THF}(0.210 \mathrm{~g}, 0.444 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ was added at room temperature to a suspension of $\left[\left(\mathrm{Ph}_{2} \mathrm{EtP}_{2}\right)_{2} \mathrm{NiCl}_{2}\right](0.248 \mathrm{~g}, 0.444 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$. The cherry-red solution turned red-brown and the suspension dissolved. Then the solution was evaporated to dryness under vacuum, dissolved in toluene (4 mL) filtrated and concentrated to 1 ml . Pentane (4 mL) was put over the toluene solution and the bulb was stored for 5 d at $4^{\circ} \mathrm{C}$. Cherry-red crystals deposited: $\mathbf{4 b},(0.212 \mathrm{~g}, 76 \%$ yield $)$
${ }^{31} \mathbf{P}-\mathbf{M N R}$ examination of reaction solution: $\mathbf{4 a}, \mathbf{4 b},\left[\left(1,2-\eta-{ }^{t} \mathrm{Bu}_{2} \mathrm{P}=\mathrm{P}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right) \mathrm{Ni}\left(\mathrm{P}^{\mathrm{t}} \mathrm{Bu} \mathrm{H}_{2} \mathrm{H}\right) \mathrm{Cl}\right]\left(\mathbf{4} \mathbf{b}^{*}\right)$, ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{PH}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2},{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{PH},{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{PCl}$ and $\mathrm{Ph}_{2} \mathrm{EtP}$ were found.

4.6. Reaction of ${ }^{t} \mathrm{Bu}_{2} \underline{P-P L i-P\left(N E t_{2}\right)_{2}} \cdot \underline{2 T H F}$ with $\left[\left(E t_{3} \underline{\underline{3}}\right)_{2} \underline{N i C l}_{2}\right]$. Synthesis of $[\mu-(1,3: 2,3-\eta-$ $\left.{ }^{t} \underline{B u}_{2} \underline{P}_{4}{ }^{t} \underline{B u_{2}}\right)\left\{N i\left(P E t_{\underline{3}}\right) C l_{\underline{2}}\right](\mathbf{5})$

A solution of ${ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{PLi}-\mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2} \cdot 2 \mathrm{THF}(0.271 \mathrm{~g}, 0.539 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ was added at room temperature to a suspension of $\left[\left(\mathrm{Et}_{3} \mathrm{P}\right)_{2} \mathrm{NiCl}_{2}\right](0.193 \mathrm{~g}, 0.527 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$. The cherryred solution turned red-brown and the suspension dissolved. Then the solution was evaporated to dryness under vacuum, dissolved in toluene (4 mL) filtrated and concentrated to 1 ml . Pentane (5 mL) was put over the toluene solution and the bulb was stored for one week at $-35^{\circ} \mathrm{C}$. Small amount of cherry-red crystals of 5 was deposited $(0.049 \mathrm{~g})$.
${ }^{31} \mathbf{P}-\mathbf{M N R}$ examination of reaction solution: $\mathbf{5}$ [18], $\mathbf{B}[18], \mathbf{C},\left(\mathrm{Et}_{2} \mathrm{~N}\right){ }_{3} \mathrm{P},{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{PH},{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{P}-\mathrm{P}=\mathrm{PEt}_{3}$ and $\mathrm{Et}_{3} \mathrm{P}$ were found.
$5:{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101.26 MHz, Tol, $\mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}$, $) \delta=-28.5(\mathrm{dddd}, \mathrm{P} 1) ;-1.0($ dddd, P 2$)$, -94.6 (ddddd, P3), 70.6 (m, P4), 5.0 (ddd, P5), 8.6 ($\mathrm{m}, \mathrm{P} 6$), $\mathrm{J}_{\mathrm{P} 1-\mathrm{P} 2}=197.8, \mathrm{~J}_{\mathrm{P} 1-\mathrm{P} 3}=89.2, \mathrm{~J}_{\mathrm{P} 1-\mathrm{P} 4}=$
$10.5, \mathrm{~J}_{\mathrm{P} 1-\mathrm{P} 5}=292.2, \mathrm{~J}_{\mathrm{P} 1-\mathrm{P} 6}=2.2, \mathrm{~J}_{\mathrm{P} 2-\mathrm{P} 3}=298.5, \mathrm{~J}_{\mathrm{P} 2-\mathrm{P} 4}=11.8, \mathrm{~J}_{\mathrm{P} 2-\mathrm{P} 5}=1.9, \mathrm{~J}_{\mathrm{P} 3-\mathrm{P} 4}=511.3$, $\mathrm{J}_{\mathrm{P} 3-\mathrm{P} 5}=64.8, \mathrm{~J}_{\mathrm{P} 3-\mathrm{P} 6}=187.5, \mathrm{~J}_{\mathrm{P} 4-\mathrm{P} 5}=2.5, \mathrm{~J}_{\mathrm{P} 4-\mathrm{P} 6}=8.0, \mathrm{~J}_{\mathrm{P} 5-\mathrm{P} 6}=10.5$.

B : ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101.26 \mathrm{MHz}, \mathrm{Tol}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C},\right) \delta=64.0($ dddd, P 1$) ; 12.1($ dd P 2$)$, -8.7 (ddddd, P 3$),-126.2$ (ddddd, P 4$),-157.7($ dddd, P 5$),-182.1($ dddd, P 6$), \mathrm{J}_{\mathrm{P} 1-\mathrm{P} 2}=3.9, \mathrm{~J}_{\mathrm{P} 1-\mathrm{P} 3}=$ $28.4, \mathrm{~J}_{\mathrm{P} 1-\mathrm{P} 4}=85.0, \mathrm{~J}_{\mathrm{P} 1-\mathrm{P} 5}=162.3, \mathrm{~J}_{\mathrm{P} 1-\mathrm{P} 6}=196.9, \mathrm{~J}_{\mathrm{P} 2-\mathrm{P} 3}=283.3, \mathrm{~J}_{\mathrm{P} 2-\mathrm{P} 4}=32.8, \mathrm{~J}_{\mathrm{P} 2-\mathrm{P} 5}=2.2, \mathrm{~J}_{\mathrm{P} 2-\mathrm{P} 6}=$ $2.8, \mathrm{~J}_{\mathrm{P} 3-\mathrm{P} 4}=19.5, \mathrm{~J}_{\mathrm{P} 3-\mathrm{P} 5}=180.5, \mathrm{~J}_{\mathrm{P} 3-\mathrm{P} 6}=60.1, \mathrm{~J}_{\mathrm{P} 4-\mathrm{P} 5}=119.9, \mathrm{~J}_{\mathrm{P} 4-\mathrm{P} 6}=210.8, \mathrm{~J}_{\mathrm{P} 5-\mathrm{P} 6}=172.2[18]$. $\mathbf{C}:{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (161.94 MHz, THF, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C},\right) \delta=49.6$ (dddd, P1); 13.2 (dd dP2), 8.3 (ddd, P3), -6.2 (ddd, P4), -38.9 (ddd, P5), $\mathrm{J}_{\mathrm{P} 1-\mathrm{P} 2}=84.9, \mathrm{~J}_{\mathrm{P} 1-\mathrm{P} 3}=227.6, \mathrm{~J}_{\mathrm{P} 1-\mathrm{P} 4}=134.2, \mathrm{~J}_{\mathrm{P} 1-\mathrm{P} 5}=$ 289.1, $\mathrm{J}_{\mathrm{P} 2-\mathrm{P} 3}=16.0, \mathrm{~J}_{\mathrm{P} 2-\mathrm{P} 4}=256.8, \mathrm{~J}_{\mathrm{P} 3-\mathrm{P} 5}=13.8, \mathrm{~J}_{\mathrm{P} 4-\mathrm{P} 5}=193.8$,

Crystallographic refinement details. Diffraction data were recorded on a KUMA KM4 diffractometer with graphite-monochromated $\mathrm{Mo} \mathrm{K}_{\alpha}$ radiation using Sapphire-2 CCD detector (Oxford Diffraction Ltd). The apparatus was equipped with an open flow thermostat (Oxford Cryosystems) which enabled experiments at 120 K . The structures were solved with direct methods and refined with the SHELX97 program package[30] with the full-matrix least-squares refinement based on F^{2}. The data were corrected for absorption with the CrysAlis RED program. All nonhydrogen atoms were refined anisotropically. All H atoms were positioned geometrically and refined using a riding model $\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{e q}(\mathrm{C})$ or $1.5 U_{e q}(\mathrm{C})$ for CH_{3} groups.

Acknowledgements

J.P. and R.G thank the Polish Ministry of Science and Higher Education (Grant Nr N N204 271535) for financial support.

References

[1] R. Waterman, Dalton Trans. 2009, 18
[2] H. Schäfer, Z. Anorg. Allg. Chem. 1979, 459, 129.
[3] H. Schäfer, Z. Naturforsch. 1979, 34B, 1358.
[4] B. Deppisch, H. Schäfer, Z. Anorg. Allg. Chem. 1982, 490, 129.
[5] H. Schäfer, Acta Cryst. 1982, 38B, 748.
[6] H. Schäfer, D. Binder, Z. Anorg. Allg. Chem. 1987, 546, 55.
[7] H. Schäfer, D. Binder, D. Fenske, Angew. Chem. 1985, 97, 523; b) Angew. Chem. Int. Ed. 1985, 24, 522.
[8] H. Schäfer, D. Binder, B. Deppisch, G. Mattern, Z. Anorg. Allg. Chem. 1987, 546, 79.
[9] R. A. Jones, A. L. Stuart, J. L. Atwood, W. E. Hunter, Organometallics 1983, 2, 874.
[10] M. Driess, H. Pritzkow, U. Winkler, J. Organomet. Chem., 1997, 529, 313
[11] R. Melenkivitz, D. J. Mindiola, G. L. Hillhouse, J. Am. Chem. Soc., 2002, 124, 3846
[12] R. Giannandrea, P. Mastrorilli, C.F. Nobile, U. Englert, J. Chem. Soc. Dalton, 1997, 1355
[13] U. Englert, E. Matern, J. Olkowska-Oetzel, J. Pikies. Acta Cryst. 2003, E59, m376
[14] M. A. Zhuravel, D. S. Glueck, L. N. Zakharov, A. L. Rheingold. Organometallics, 2002, 21, 3208
[15] H. Schäfer, D. Binder, Z. Anorg. Allg. Chem. 1988, 560, 65.
[16] P. Mastrorilli, C. F. Nobile, F. P. Fanizzi, M. Latronico, Chunhua Hu, U. Englert, Eur. J. Inorg. Chem., 2002, 1210.
[17] D. K. Wicht, S. N. Paisner, B. M. Lew, D. S. Glueck, G. P. A. Yap, L. M. Liable-Sands, A. L. Rheingold, C. M. Haar, S. P. Nolan, Organometallics, 1998, 17, 652.
[18] P. Mastrorilli, Eur. J. Inorg. Chem., 2008, 4835.
[19] W. Domańska-Babul, J. Chojnacki, E. Matern, J. Pikies, J. Organomet. Chem. 2007, 692, 3640.
[20] W. Domańska-Babul, J. Chojnacki, E. Matern, J. Pikies, Dalton Trans. 2009, 146.
[21] E. Baum, E. Matern, A. Robaszkiewicz, J. Pikies, Z. Anorg. Allg. Chem. 2006, 632, 1073.
[22] I. Kovacs, H. Krautscheid, E. Matern, G. Fritz, J. Pikies, Z. Anorg. Allg. Chem. 1997, 623 1088.
[23] G. Fritz, E. Matern, H. Krautscheid, R. Ahlrichs, J. Olkowska, J. Pikies, Z. Anorg. Allg.
Chem. 1999, 625, 1604.
[24] E. Matern, J. Olkowska-Oetzel, J. Pikies, G. Fritz, Z. Anorg. Allg. Chem., 2001, 627, 1767.
[25] F. Basolo, Coord. Chem. Rev., 1996, 154, 151.
[26] R. G. Pearson, Inorg. Chem., 1973, 12, 712.
[27] H. Goesmann, E. Matern, J. Olkowska-Oetzel, J. Pikies, G. Fritz. Z. Anorg. Allg. Chem., 2001, 627, 1181.
[28] The NMR data and X-ray structure of $\mathrm{LiCl} \cdot 2\left\{\left(\mathrm{Et}_{2} \mathrm{~N}\right)_{2} \mathrm{P}-\mathrm{PLi}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right\} \cdot 2 \mathrm{THF}$ will be published elsewhere.
[29] B. K. Schmiedeskamp, J. G. Reising, W. Malisch, K. Hindahl, R. Schemm, W. S. Sheldrick, Organometallics, 1995, 14, 4446.
[30] T. G. Appleton, M. A. Benett, Inorg. Chem., 1978, 17, 738.
[31] G. M. Sheldrick, SHELX- 97. Programs for the solution and the refinement of crystal structures from diffraction data.
[32] CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.29.9 (release 23-03-2006
CrysAlis171. NET) (compiled Mar 23 2006,23:39:28).
[33]]. H. Krautscheid, E. Matern, G. Fritz, J. Pikies. Z. Anorg. Allg. Chem., 2000, 626, 253.
[34] G. Fritz, H. Goesmann, B. Mayer, Z. Anorg. Allg. Chem. 1992, 607, 26.
[35]. A. Wisniewska, K. Baranowska, J. Pikies, Acta Cryst. 2008, E64, m967.
[36] G. Schultz, N. Y. Subbotina, C. M. Jensen, J. A. Golen, J. Hargittai, Inorg. Chim. Acta 1992, 191, 85.
[37] T. A. Albright, R. Hoffmann, J. C. Thibeault, D. L. Thorn, J. Am. Chem. Soc. 1979, 101, 3801.
[38] a) S. Loss, C. Windauer, H. Grützmacher, Angew. Chem. 1999, 111, 3546; b) Angew. Chem. Int. Ed. 1999, 38, 3329.
[39] J. Chojnacki, A. Robaszkiewicz, E. Matern, E. Baum, J. Pikies, Acta Cryst. (2007) E63, m680-m683
[40] E. Matern, J. Pikies, G. Fritz, J. Pikies. Z. Anorg. Allg. Chem. 2000, 626, 2136.
[41] I. Kovacs, H. Krautscheid, E. Matern, E. Sattler, G. Fritz, W. Hönle, H. Borrmann, H.G. von Schnering, Z. Anorg. Allg. Chem. 1996, 622, 1564.
[42] G. Fritz, T. Vaahs, Z. Anorg. Allg. Chem. 1987, 552, 18.
[43] I. Kovacs, E. Matern, G. Fritz, Z. Anorg. Allg. Chem. 1996, 622, 935.

FIGURE 1. An ORTEP view of the molecular structure of 1 a in the crystal; hydrogen atoms not shown, ellipsoids are drawn at 30% probability level. Selected bond lengths [pm] and angles [${ }^{\circ}$]: Pt1-Cl1 236.37(15); Pt1-P1 228.53(17); Pt1-P2 221.24(16); Pt1-P3 240.77(18); P2-P3 214.50(2); P3-P4 221.80(3); P2-Pt1-P3 55.14(6); P2-P3-P4 106.92(10).
$171 \times 136 \mathrm{~mm}$ (600×600 DPI)

FIGURE 2. An ORTEP view of the molecular structure of 2 a in the crystal; hydrogen atoms not shown, ellipsoids are drawn at 30\% probability level. Selected bond lengths [pm] and angles [${ }^{\circ}$]: Pd1-Cl1 238.62(9); Pd1-P1 234.32(9); Pd1-P2 223.15(9); Pd1-P3 241.79(9); P2-P3 213.03(13); P3-P4 222.40(13); P2-Pd1-P3 67.28(4); P2-P3-P4 106.78(5). $187 \times 145 \mathrm{~mm}(600 \times 600$ DPI)

FIGURE 3. An ORTEP view of the molecular structure of 3 b in the crystal; hydrogen atoms not shown, ellipsoids are drawn at 30\% probability level. Selected bond lengths [pm] and angles [${ }^{\circ}$]: Pd1-Cl1 237.63(5); Pd1-P1 238.77(5); Pd1-P2 225.39(5); Pd1-P3 238.59(5); P2-P3 213.32(7); P3P4 224.05(7); P2-Pd1-P3 54.654(17); P2-P3-P4 102.96(3). $189 \times 164 \mathrm{~mm}(600 \times 600$ DPI)

FIGURE 4. An ORTEP view of the molecular structure of 4 b in the crystal; hydrogen atoms not shown, ellipsoids are drawn at 30% probability level. Selected bond lengths [pm] and angles [${ }^{\circ}$]: Ni1-Cl1 220.46(9); Ni1-P1 223.68(10); Ni1-P2 214.83(10); Ni1-P3 226.05(10); P2-P3 212.54(12); P3-P4 224.80(12); P2-Ni1-P3 57.58(3); P2-P3-P4 105.58(5).
$182 \times 184 \mathrm{~mm}$ (600×600 DPI)

[^0]: * Prof. Dr. Jerzy Pikies

 Faculty of Chemistry,
 Department of Inorganic Chemistry,
 Gdańsk University of Technology,
 G. Narutowicza St. 11/12, PL-80-233 Gdańsk, Poland
 e-mail: jerzy.pikies@pg.gda.pl

[^1]: ${ }^{1}$ The value 95 Hz previously reported [21, 22] was a mistake.

