

Kinetics of Cytomegalovirus (CMV) pp65 and IE-1-Specific IFN γ CD8+ and CD4+ T Cells During Episodes of Viral DNAemia in Allogeneic Stem Cell Transplant Recipients: Potential Implications for the Management of Active CMV Infection

Nuria Tormo, Carlos Solano, Isabel Benet, José Nieto, Rafael de La Cámara, Ana García-Noblejas, María Ángeles Clari, Marifina Chilet, Javier López, Juan Carlos Hernández-Boluda, et al.

▶ To cite this version:

Nuria Tormo, Carlos Solano, Isabel Benet, José Nieto, Rafael de La Cámara, et al.. Kinetics of Cytomegalovirus (CMV) pp65 and IE-1-Specific IFN γ CD8+ and CD4+ T Cells During Episodes of Viral DNAemia in Allogeneic Stem Cell Transplant Recipients: Potential Implications for the Management of Active CMV Infection. Journal of Medical Virology, 2010, 82 (7), pp.1208. 10.1002/jmv.21799 . hal-00552412

HAL Id: hal-00552412 https://hal.science/hal-00552412

Submitted on 6 Jan 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Journal of Medical Virology

Kinetics of Cytomegalovirus (CMV) pp65 and IE-1-Specific IFNγ CD8+ and CD4+ T Cells During Episodes of Viral DNAemia in Allogeneic Stem Cell Transplant Recipients: Potential Implications for the Management of Active CMV Infection

Journal:	Journal of Medical Virology
Manuscript ID:	JMV-09-1679.R1
Wiley - Manuscript type:	Research Article
Date Submitted by the Author:	10-Feb-2010
Complete List of Authors:	Tormo, Nuria; Hospital Clínico Universitario, Valencia , Spain, Microbiology Service Solano, Carlos; Hematology and Medical Oncology Service, Hospital Clínico Universitario, Valencia, Spain Benet, Isabel; Hospital Clínico Universitario, Valencia , Spain, Hematology and Medical Oncology Service Nieto, José; Hospital Morales Meseguer, Murcia, Spain, Hematology Service de la Cámara, Rafael; Hospital de La Princesa, Madrid, Spain, Hematology Service García-Noblejas, Ana; Hospital de La Princesa, Madrid, Spain, Hematology Service Clari, María; Hospital Clínico Universitario, Valencia , Spain, Microbiology Service Chilet, Marifina; Hospital Clínico Universitario, Valencia , Spain, Microbiology Service López, Javier; Hospital Ramón y Cajal, Madrid, Spain, Hematology Service Hernández-Boluda, Juan; Hospital Clínico Universitario, Valencia, Hematology Service Remigia, María; Hospital Clínico Universitario, Valencia, Hematology and Medical Oncology Service Navarro, David; Hospital Clínico Universitario. School of Medicine, Microbiology
Keywords:	Cytomegalovirus, CD8, CD4, immunity, active CMV infection
	•

1	REVISED VERSION
2	Kinetics of Cytomegalovirus (CMV) pp65 and IE-1-Specific IFN γ CD8 $^{\scriptscriptstyle +}$ and CD4 $^{\scriptscriptstyle +}$
3	T Cells During Episodes of Viral DNAemia in Allogeneic Stem Cell Transplant
4	Recipients: Potential Implications for the Management of Active CMV Infection
5	
6	Nuria Tormo, ¹ Carlos Solano, ^{2,3} Isabel Benet, ² José Nieto, ⁴ Rafael de la Cámara, ⁵ Ana
7	Garcia-Noblejas, ⁵ María Ángeles Clari, ¹ Marifina Chilet, ¹ Javier López, ⁶ Juan Carlos
8	Hernández-Boluda, ² María José Remigia, ² and David Navarro, ^{1,7*}
9	
10	¹ Microbiology Service, Hospital Clínico Universitario, Valencia, Spain
11	² Hematology and Medical Oncology Service, Hospital Clínico Universitario, Valencia,
12	Spain
13	³ Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
14	⁴ Hematology Service, Hospital Morales Meseguer, Murcia, Spain
15	⁵ Hematology Service, Hospital de La Princesa, Madrid, Spain
16	⁶ Hematology Service, Hospital Ramón y Cajal, Madrid, Spain
17	⁷ Department of Microbiology, School of Medicine, University of Valencia, Valencia,
18	Spain.
19	
20	Correspondence: David Navarro, Microbiology Service, Hospital Clínico Universitario,
21	and Department of Microbiology, School of Medicine, Av. Blasco Ibáñez 17, 46010
22	Valencia, Spain. Phone: 34(96)3864657; Fax: 34(96)3864173; E-mail:
23	david.navarro@uv.es.
24	Running head: CMV-specific immunity during episodes of CMV DNAemia
25	

1

2	
3	
1	
4	
5	
6	
7	
2	
8	
9	
10	
10	
11	
12	
13	
10	
14	
15	
16	
17	
17	
18	
19	
20	
20	
21	
22	
23	
20	
24	
25	
26	
20	
27	
28	
29	
20	
30	
31	
32	
22	
აა	
34	
35	
26	
30	
37	
38	
30	
39	
40	
41	
42	
40	
43	
44	
45	
10	
40	
47	
48	
10	
49	
50	
51	
52	
52	
53	
54	
55	
55	
90	
57	
58	
50	
99	
60	

ABSTRACT

27 The dynamics of CMV pp65 and IE-1-specific IFNy-producing CD8⁺ (IFNy CD8⁺) and CD4⁺ (IFN_Y CD4⁺) T cells and CMV DNAemia were assessed in 19 pre-emptively-28 treated episodes of active CMV infection. Peripheral counts of IFN γ CD8⁺ and IFN γ 29 30 $CD4^+$ T cells inversely correlated with CMV DNAemia levels (P = < 0.001 and P = 0.003, 31 respectively). A threshold value of 1.3 cells/µL predicting CMV DNAemia clearance 32 was established for IFN γ CD8⁺ T cells (PPV, 100%; NPV, 93%) and for IFN γ CD4⁺ T 33 cells (PPV, 100%; NPV, 75%). Undetectable T-cell responses were usually observed at 34 the time of initiation of pre-emptive therapy. Either a rapid (within 7 days) or a delayed 35 (median 31 days) expansion of both T-cell populations concomitant with CMV 36 DNAemia clearance was observed in 5 and 8 episodes, respectively. An inconsistent or 37 a lack of expansion of both T-cell subsets was related to a persistent CMV DNAemia. 38 Robust and maintained CMV-specific T-cell responses after CMV DNAemia clearance 39 and cessation of antiviral therapy were associated with a null incidence of relapsing 40 infections at least during the following month. Data obtained in the present study may 41 be helpful in the design of therapeutic strategies for the management of active CMV 42 infections in the allo-SCT recipient.

43

46

47

48

49

50

Key words: Cytomegalovirus, IFNγ CD8⁺ and CD4⁺ T cells, active CMV infection,
immunological monitoring, stem cell transplantation.

INTRODUCTION

Pre-emptive antiviral therapy has been adopted by most transplant centers as the first-choice strategy for the prevention of cytomegalovirus (CMV) disease following allogeneic stem cell transplantation (allo-SCT) [Boeckh et al., 2003; Griffiths et al., 2008]. While this strategy has been shown to dramatically reduce the incidence of early CMV disease [Boechkh et al., 2003; Ljungman, 2008], it probably results in over-treatment, as a number of patients who would never progress to CMV disease are treated nevertheless [Ljungman, 2006; Avetisyan et al., 2007]. Hopes have been raised that routine immunological monitoring for CMV-specific T-cell immunity may improve the management of active infection, leading to a more targeted use of antivirals and allowing the identification of patients at high risk for relapsing infections and end-organ disease. Nevertheless, to date, assessment of CMV-specific T-cell immunity has not had a major impact on clinical management of active CMV infection. In order to design potential intervention strategies based on immunological monitoring, characterization of the kinetics of functional CMV-specific T cells during episodes of active CMV infection is required. Studies addressing this issue are, however, scarce [Aubert et al., 2001; Foster et al., 2002; Widmann et al., 2008]. Resolution of episodes of active CMV infection in the allo-SCT setting appears to be ultimately dependent on the expansion of functional CMV-specific T cells in response to CMV replication [Ouinnan et al., 1982; Reusser et al., 1991; Riddell et al., 1992]. In this regard, we have previously shown that the lack of prompt expansion of CMV pp65 and IE-1-specific IFN γ -producing CD8⁺ (IFN γ CD8⁺) and CD4⁺ (IFN γ CD4⁺) T cells is associated with rising levels of pp65 antigenemia and DNAemia during pre-emptive therapy and prolonged duration of antiviral treatment [Tormo et al., 2009]. In the present study, the dynamics of CMV-specific IFN γ CD8⁺ and IFN γ CD4⁺ T cells, which we have previously shown to confer protection against CMV infection [Solano et al., 2008], and those of CMV DNAemia

1	
2 3 4	76
5 6	77
7 8 0	78
9 10 11	79
12 13	80
14 15 16	81
17 18	82
19 20	83
21 22 23	84
23 24 25	85
26 27	86
28 29 30	87
30 31 32	88
33 34	89
35 36 37	90
38 39	91
40 41 42	92
42 43 44	93
45 46	94
47 48 49	95
50 51	96
52 53	97
54 55 56	98
57 58	99
59 60	100

were assessed in a number of episodes of active CMV infection. Data obtained in the present study are of potential interest for the therapeutic management of active CMV infections in the allo-SCT recipient. 100

3 4	101	MATERIAL AND METHODS
5 6	102	Patients
7 8 9	103	Patients undergoing allo-SCT between December 2008 and May 2009 at the
10 11	104	participating hospitals were eligible for inclusion. The study was approved by the Ethics
12 13	105	Committees. All patients gave their informed consent to participate in the study. CMV-
14 15 16	106	seronegative patients receiving a graft from a CMV-seronegative donor were not
17 18	107	included in the study. Only episodes of active CMV infection treated pre-emptively
19 20 21	108	were included for analysis. The end of the study period was June 22 th 2009. Clinical and
21 22 23	109	demographic data of the patients are shown in Table I.
24 25	110	Management of active CMV infection
26 27 28	111	Virological monitoring of CMV infection was performed by use of the pp65
29 30	112	antigenemia assay (Diagnostics® CMV pp65 Antigenemia Immunofluorescence assay,
31 32	113	Chemicon International, Temecula, CA, USA), and/or a plasma real-time PCR assay
33 34 35	114	(CMV real-time PCR, Abbott Molecular, Des Plaines, IL, USA, or LightCycler CMV
36 37	115	Quant Kit, Roche, Branchburg, NJ, USA) as previously reported [Solano et al., 2001;
38 39 40	116	Gimeno et al., 2008]. Pre-emptive therapy with oral valganciclovir (900 mg/12 h) or i.v.
40 41 42	117	ganciclovir (5 mg/Kg/12 h) was initiated upon a positive antigenemia result (≥1 pp65
43 44	118	positive cells/200,000 cells) or detection of >1000 CMV DNA copies/mL in plasma
45 46 47	119	depending on the participant institution, and discontinued following 2 consecutive
48 49	120	negative antigenemia or plasma PCR results (also depending on the participant hospital)
50 51	121	obtained 3 to 7 days apart after a minimum of 2 weeks of treatment. Foscarnet (i.v. 60
52 53 54	122	mg/Kg/12 h) was used instead of ganciclovir in patients with severe neutropenia, and in
55 56	123	some patients not responding to ganciclovir therapy after 3 weeks of treatment. For
57 58	124	analysis purposes, the duration of a given episode was that comprised between the day
59 60	125	of initiation of pre-emptive therapy and the day of the first negative DNAemia result.

Journal of Medical Virology

Diagnosis of CMV disease was achieved as previously reported [Solano et al., 2001;
Gimeno et al., 2008]. When clinically indicated, patients received transfusions of
leukocyte-depleted and irradiated packed red cells and platelets.

Immunological monitoring

Enumeration of CMV-specific IFN γ CD8⁺ and IFN γ CD4⁺ T lymphocytes was carried out by flow cytometry for ICS (BD Fastimmune, BD-Beckton Dickinson and Company-Biosciences, San Jose, CA, USA) as described previously [Solano et al., 2008]. Briefly, whole blood was simultaneously stimulated with two sets of 15-mer overlapping peptides encompassing the sequence of pp65 and IE-1 CMV proteins (2) µg/ml/peptide), obtained from JPT peptide Technologies GmbH (Berlin, Germany), in the presence of 1µg/ml of costimulatory mAbs to CD28 and CD49d for 6 h at 37 °C. Brefeldin A (10 µg/ml) was added for the last 4 h of incubation Cells were permeabilized and stained with a combination of labeled moAbs (anti-IFNy-FITC, anti-CD69-PE, anti-CD4 or CD8-PerCP-Cy5.5 and anti-CD3-APC when the IFNy CD8⁺ kit was used). Cells were analyzed on a FACSCalibur flow cytometer using CellQuest software (BD Biosciences Immunocytometry Systems). CD4⁺ and CD8⁺ events were gated and then analyzed for the CD69 activation marker and IFNy production. The total number of CMV-specific IFN γ CD4⁺ and IFN γ CD8⁺ T cells was calculated by multiplying the percentages of CMV-specific T cells producing IFNy upon stimulation (after background subtraction) by the absolute $CD4^+$ and $CD8^+$ T cell counts. The specific responses were considered those >0.1% for both CD4⁺ and CD8⁺ T cells.

147 Immunological monitoring was performed once or twice a week during episodes of
148 active CMV infection. For some patients, several blood samples drawn after resolution
149 of the episode of active CMV infection were available for immunological analysis. A

Sequence analysis of the UL54 and UL97 genes

total of 146 blood samples from the 18 patients (median 7 samples; range, 2–15 samples) were analyzed.

CMV DNA extraction from plasma specimens was carried out using the High Pure nucleic acid kit (Roche Diagnostics, GmbH, Manheim, Germany). The extracted viral DNA was used as a template for amplification of a 975 bp region of the UL97 gene spanning codons 429 to 753, and two regions of the UL54 gene spanning codons 345 to 625, and 645 to 1,013, as previously described [Tormo et al., 2009]. The PCR products were purified by the QIAquick purification kit (Qiagen GmbH, Hilden, Germany), sequenced by the ABI Prism BigDye Terminator Cycle Sequencing Kit v3.1 (PE Applied Biosystems), and analyzed on an ABI 310 automated DNA sequencer. **Statistical analysis** Data were analyzed with the aid of the statistical package SPSS (version 15.0). Comparisons were carried out using the non-parametric Mann-Whitney U-test for unpaired continuous data and the Wilcoxon test for paired continuous data. The Spearman rank test was used for analysis of correlation between continuous variables. For calculation purposes undetectable CMV-specific responses were computed as 0

cells/µL. A *P* value <.05 was considered statistically significant.

1	
2	
2	
1	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
22	
20	
24	
25	
26	
27	
28	
29	
30	
31	
22	
22	
33	
34	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
45	
46	
47	
48	
10	
49	
50	
51	
52	
53	
54	
55	
56	
57	
51	
00	
59	
60	

190

191

192

193

194

195

196

197

198

episode.

175	RESULTS
176	Features of episodes of active CMV infection
177	Nineteen episodes of active CMV infection (in 18 patients) were included for
178	analysis. The episodes occurred at a median of 56 days post-transplant (range, 14 to 330
179	days). Thirteen out of the 19 episodes (in 12 patients) resolved within the study period
180	(Table II). The remaining 6 episodes (in 6 patients) were still active at the end of the
181	follow up, after a median of 30 days (range 14 to 97 days) of initiation of pre-emptive
182	therapy (Table III). Three out of these 6 patients died during the study period (the cause
183	of death was bacterial sepsis in one patient and severe GvHD in the other 2 patients).
184	
185	CMV-specific T cells at the time of initiation of pre-emptive therapy
186	We firstly assessed the CMV-specific T-cell response at the time of initiation of pre-
187	emptive therapy. Blood samples for immunological analysis were available from 14
188	episodes (9 of them developed before day 100 post-transplant). Undetectable IFN γ

CD8⁺ and CD4⁺ T-cell responses were observed in 13 out of the 14 episodes. In the

remaining episode, which was still active at the end of the follow up, low levels of both

CMV-specific T-cell subsets were detected (0.03 IFNy CD8⁺ T cells/µL and 0.26 IFNy

 $CD4^+$ T cells/µL). Nine out of the 14 episodes resolved within the study period, with the

time to negative conversion of CMV DNAemia varying widely (3 to 94 days), while no

control of CMV replication was achieved in the remaining 5 episodes. These data

indicated that peripheral levels of IFN_Y CD8⁺ and IFN_Y CD4⁺ T cells at the time of

initiation of pre-emptive therapy were not predictive of the virological outcome of the

199 Kinetics of CMV-specific T cells and CMV DNAemia during episodes of 200 Active CMV infection

We investigated the dynamics of both CMV-specific T-cell subsets and CMV DNAemia during 19 pre-emptively treated episodes of active CMV infection. Overall, peripheral counts of IFNy CD8⁺ and IFNy CD4⁺ T cells inversely correlated with CMV DNAemia levels (σ =-0.806; P=<0.001, and σ =-712; P=0.003, respectively), yet detectable CMV-specific T-cell responses were observed in the presence of CMV DNAemia at some time points, both in unresolved episodes and in episodes which eventually cleared. We found however, that IFN γ CD8⁺ (median, 0.38 cells/ μ L; range, 0.03–1.28 cells/ μ L) and IFN γ CD4⁺ (median, 0.32 cells/ μ L; range, 0.06–1.27 cells/ μ L) T-cell levels in the presence of CMV DNAemia were significantly lower (P = < 0.000 for IFNy CD8⁺ and P = <0.003 for IFNy CD4⁺ T cells) than IFNy CD8⁺ (median, 2.46) cells/ μ L; range 0.82–15.02 cells/ μ L) and IFN γ CD4⁺ (median 0.56 cells/ μ L; range, 0.12–5.2 cells/µL) T-cell levels at the time of the first negative PCR result. Taking into consideration the peak value for IFN γ CD8⁺ T cells (1.28 cells/µL) found in the presence of CMV DNAemia, a threshold value of 1.3 cells/µL predicting CMV DNAemia clearance (negative PCR) was established in our cohort (PPV, 100%; NPV, 93%). A certain degree of overlap was found between IFN γ CD4⁺ T cell values in the presence of CMV DNAemia and those at the time of the first negative PCR result. Thus, setting a threshold (1.3 cells/µL) above the peak value (1.27 cells/µL) found in the presence of CMV DNAemia resulted in a lower NPV (75%). Therefore, the number of IFNγ CD8⁺ T cells was a more reliable marker for predicting CMV DNAemia clearance in our cohort.

Three different kinetic patterns of IFNγ CD8⁺ and IFNγ CD4⁺ T cells were observed
in relation to CMV DNAemia: (i) A rapid expansion within the first week after

Journal of Medical Virology

initiation of pre-emptive therapy (median 7 days; range 3 to 7 days) concomitant with CMV DNAemia clearance was observed in 5 episodes (see episodes 1 to 5 in Table II). An expansion within the third week (days 15 and 16) was observed in 2 additional episodes (see episodes 6 and 7 in Table II). Overall, median increases of 2.09 IFNy $CD8^+$ T cells/µL (range, 0.9-15.13 cells/µL) and of 0.67 IFNy CD4⁺ T cells/µL (range, 0.12-5.20 cells/ µL) from baseline were observed in these episodes. None of these patients was under corticosteroid treatment during the episode of active CMV infection. Figure 1A depicts a representative episode of this kinetics pattern (episode 4 in Table II); (ii) An early expansion (median 8 days; range 5 to 21 days) of a lower magnitude (median increase of 0.57 IFNy CD8⁺ T cells/µL-range, 0.21-1.2 cells/µL P=0.02-, and of 0.29 IFN γ CD4⁺ T cells/ μ L- range,0.01-0.62; P=0.063-) than that observed in rapidly cleared episodes with delayed resolution of CMV DNAemia (median 31 days, range 20 to 94 days), concomitant with a further expansion of both T-cell subsets (median increase of 3.05 IFNy CD8⁺ T cells/ μ L and of 0.42 IFNy CD4⁺ T cells/ μ L; P=0.001 and P=0.04, respectively) was observed in 6 episodes (see episodes 8 to 13 in Table II); Figure 1B illustrates a representative example of this kinetics pattern (data for the episode 8 in Table II). The two longest episodes (episodes 8 and 11) occurred in patients under treatment with corticosteroids for grade III-IV GvHD, and their resolution was coincident with steroid dose tapering; (iii) An inconsistent or a lack of expansion of IFN γ CD8⁺ (median, 0.06 cell/ μ L) and IFN γ CD4⁺ T cells (median, 0.22 cell/µL; P=0.001 and P=0.03, respectively, in relation to T-cell increases measured in cleared episodes) with persistent CMV DNAemia that was still detectable at the end of the follow-up period was seen in 6 episodes (Table III). Three out of these 6 episodes developed while patients were under corticosteroid therapy for severe GvHD. Figure 1C shows the data for a representative case (episode 1 in Table III). The latest plasma

samples available from the longest unresolved episodes (episodes 1 and 2 in Table III)
were screened for the presence of mutations known to confer resistance to ganciclovir
or foscarnet. No mutations were found in either sample.

CMV-specific T cells after CMV DNAemia clearance and relapsing infections

None of the 12 patients in whom the episode of CMV DNAemia resolved during the study period experienced a relapsing episode at least during the following month (only one of these patients received maintenance valganciclovir therapy after CMV DNAemia clearance). Episodes 2 and 3 in Table II developed in the same patient; However, the relapsing episode occurred 6 months after the resolution of the preceding one. Blood samples obtained at the time of interruption of antiviral therapy (second antigenemia test or PCR giving a negative result) were available for 8 episodes. A median of 2.8 IFN γ CD8⁺ T cells/ μ L (range 0.68 to 19.5 cells/ μ L) and of 0.38 IFN γ CD4⁺ T cells/ μ L (range 0.19 to 2.28 cells/µL) was found. Follow-up samples obtained after cessation of antiviral therapy (range 3 to 86 days) were available from 4 episodes. Detectable though fluctuating levels of both IFNy CD8⁺ and IFNy CD4⁺ T cells were observed over time (see the Figure 1, panel A for a representative example), with a median of 5.1 IFN γ $CD8^+$ T cells/µL (range 0.57 to 47.7 cells/µL) and 0.41 IFNy CD4⁺ T cells/µL (range 0.19 to 3.31 cells/ μ L).

CMV-specific T cells in patients with CMV disease

271 CMV enteritis was diagnosed in 3 patients in the setting of corticosteroid treatment 272 for GvHD (Table II, episode 13, and Table III, episodes 4 and 5). In all cases, 273 undetectable CMV-specific T-cell responses were observed at the onset of the clinical

manifestations of the disease. Interestingly, in patient 12 (episode 13 in Table II), CMV
DNAemia clearance and a notable improvement in clinical symptoms were related to a
marked expansion of IFNγ CD8⁺ T cells, which occurred after steroid dose tapering.
The remaining 2 patients failed to expand CMV-specific T cells and had persistent
CMV DNAemia. Both patients died during the follow-up period.

DISCUSSION

Several conclusions can be drawn from our data. Firstly, peripheral counts of both IFN γ CD8⁺ and IFN γ CD4⁺ T-cell subsets inversely correlated with CMV DNAemia levels during episodes of active CMV infection. Similar data were obtained in earlier studies using pp65 peptide-tetramers [Aubert et al., 2001] or ICS [Widmann et al., 2008] to assess the CMV-specific CD8⁺ and CD4⁺ T-cell responses, respectively. In the latter study however, levels of CMV peptide-specific CD8⁺ T cells did not correlate with viremia [Widmann et al., 2008]. In another study [Avetisyan et al., 2006], patients who had detectable CMV-specific IFNy CD3⁺ T-cell responses at week 4 after allo-SCT displayed lower peak mean viral loads compared with patients who lacked a detectable response. Furthermore, the degree of decline in CMV-specific T cells early after transplant has been associated with the development of CMV viremia [Eid et al., 2009]. In our study, the median levels of both CMV-specific functional T-cell subsets were significantly lower in the presence of CMV DNAemia than at the time of the first negative PCR result. A threshold value of 1.3 cells/µL for both T-cell populations predicting CMV DNAemia clearance was established in our cohort, the number of IFNy CD8⁺ T cells being a more reliable marker. These cut-off cell levels are remarkably close to those previously determined by us [Solano et al., 2008] and by other groups [Hebart et al., 2002; Ohnishi et al., 2005; Lilleri et al., 2008; Moins-Teisserenc et al.,

2008, Pourgheysari et al., 2009] (different functional T-cell types) providing protection
against development of CMV antigenemia or DNAemia.

Secondly, in agreement with a previous report by our group [Solano et al., 2008], we found that ultimate control of CMV replication in the course of antiviral therapy depended on a robust and sustained expansion of IFN γ CD8⁺ T cells, and – to a lesser extent – of IFN γ CD4⁺ T cells. A notable expansion of both T-cell subsets concomitant with CMV DNAemia clearance was seen as soon as one week after initiation of pre-emptive therapy in 5 episodes, although, overall, T-cell expansion controlling CMV replication was observed at a median of 15 days after implementation of therapy. In line with our findings, the peak median level of expanding pp65-specific functional $CD8^+ T$ cells was reported to occur around 20 days after CMV reactivation [Hakki et al., 2003]. In contrast, failure to expand both functional T-cell populations in response to CMV replication resulted in persistent CMV DNAemia despite antiviral treatment and the fact that the emergence of resistant strains was not documented (in the two longest episodes). Three out of the 6 episodes that remained active at the end of the follow up occurred in the setting of corticosteroid therapy for GvHD, supporting the well known fact that corticosteroids impair the reconstitution of the CMV-specific T-cell response in a dose-dependent manner [Hakki et al., 2003; Gratama et al., 2008].

Thirdly, the marked expansion of functional CMV-specific T cells and the maintenance of peripheral pools of these T-cell subsets after CMV DNAemia clearance and cessation of antiviral therapy prevented the occurrence of relapsing episodes of active CMV infection at least during the following month. A similar conclusion was reached in earlier studies [Lilleri et al., 2008; Gratama et al., 2008; Moins-Teisserenc et al., 2008].

Journal of Medical Virology

Three patients developed CMV enteritis. In accordance with a previous report [Avetisyan et al., 2006], in all cases clinical onset of disease occurred in the face of undetectable IFN γ CD8⁺ and CD4⁺ T-cell responses. One of these patients recovered from CMV disease, and clinical improvement, as well as CMV DNAemia clearance, was concomitant with a robust expansion of both functional CMV-specific T-cell populations.

Our data may have several implications for the therapeutic management of active CMV infection in the allo-SCT recipient. A strategy of deferred antiviral therapy based on the detection of a CMV-specific immune response by ELISPOT at the time of CMV DNAemia detection was safely applied in a number of patients late (around 3 months) after transplant [Avetisyan et al., 2007]. In our cohort, however, no patient stratification could be established according to the magnitude of the CMV-specific T-cell response at the time of initiation of pre-emptive therapy, as all but one patient displayed undetectable responses. The lack of a detectable CMV-specific T-cell response, however, was not predictive of the outcome of CMV infection in terms of the duration of CMV DNAemia. Thus, no patients from our cohort would have benefited from the abovementioned strategy. Our study and that of Avetisyan et al. [2007], however, differ in the method employed for enumeration of CMV-specific functional T cells, and most importantly, in the time frame in which active CMV infections occurred (early after transplant in most of our patients and late after transplant in theirs). Further studies are required to determine the clinical usefulness of this therapeutic approach.

344 Early interruption (or dose reduction) of pre-emptive therapy provided that a
 345 significant expansion of CMV-specific T cells is documented may be a potential
 346 intervention strategy based on immunological monitoring. Our data indicate that
 347 peripheral levels of CMV-specific IFNγ CD8+ T cells above 1.3 cells/µL, which were

shown to be associated with CMV DNAemia clearance, might be a reasonable threshold
at which to interrupt antiviral therapy. Our data do not allow us to be certain about the
virological efficacy and clinical safety of this approach, as the antiviral therapy course
was not suspended in our patients until a second negative antigenemia or PCR result.
This question can only be answered by means of a controlled clinical trial.

Relapsing episodes of active CMV infection develop at an exceedingly high rate following the implementation of short duration pre-emptive treatment regimens [Gimeno et al., 2008]. We have previously shown that their occurrence is related to the presence of low peripheral levels of CMV-specific functional T cells after resolution of the preceding episode [Tormo et al., 2009]. Data obtained in the present study extend our previous observation. In effect, peripheral levels of both T-cell subsets above the abovementioned cut-off at the time of virological clearance and interruption of antiviral therapy consistently prevented the occurrence of relapsing episodes. In these patients a sustained but rather fluctuating CMV-specific T-cell response was observed. On the basis of this finding, maintenance antiviral therapy should be administered after CMV DNAemia clearance provided that protective levels of functional CMV-specific T cell are not reached at the end of the antiviral therapy course.

Adoptive transfer of CMV-specific functional T cells is a therapeutic option in episodes of active CMV infections that do not respond to antiviral therapy [Einsele et al., 2008]. According to our data, a lack of consistent expansion of CMV-specific T cells is associated with persistent CMV DNAemia, even in the absence of proven resistance to antivirals. In this sense, it would be reasonable to consider this therapeutic strategy, rather than switching antiviral therapy, in patients failing to respond to antivirals after 4 weeks of treatment (time at which expansion of functional CMV-specific T cells eventually controlling CMV replication was documented in most of cleared episodes in

1	
2 3 4	373
5 6	374
7 8 9	375
10 11	376
12 13	377
14 15 16	378
17 18	379
19 20 21	380
21 22 23	381
24 25	382
26 27 28	383
29 30	384
31 32	385
33 34 35	386
36 37	387
38 39 40	388
40 41 42	389
43 44	390
45 46 47	391
48 49	392
50 51	393
52 53 54	394
55 56	395
57 58	396
59 60	397

our cohort), provided that corticosteroid therapy is not underway, and that emergence ofantiviral-resistant strains is ruled out.

In summary, our data suggest that routine immunological monitoring during episodes of CMV DNAemia may yield useful information for the therapeutic management of active CMV infection in allo-SCT recipients. Larger studies are nevertheless needed in order to verify this assumption.

ACKNOWLEDGMENTS

We thank all the staff of the Microbiology Service of the Hospital Clínico
Universitario for technical assistance. This research was supported by a grant (06/1738)
from FIS (Fondo de Investigaciones Sanitarias, Ministerio de Sanidad y Consumo,
Spain).

2 3 4	398	REFERENCES
5 6 7 8 9 10 11 12 13	399	Aubert G, Hassan-Walker AF, Madrigal AJ, Emery VC, Morte C, Grace S, Koh MB,
	400	Potter M, Prentice HG, Dodi IA, Travers PJ. 2001. Cytomegalovirus-specific
	401	cellular immune responses and viremia in recipients of allogeneic stem cell
	402	transplants. J Infect Dis 184: 955-963.
14 15 16	403	Avetisyan G, Aschan J, Hägglund H, Ringdén O, Ljungman P. 2007. Evaluation of
17 18	404	intervention strategy based on CMV-specific immune responses after allogeneic
19 20 21	405	SCT. Bone Marrow Transplant 40: 865-869.
21 22 23	406	Avetisyan G, Aschan J, Hägglund H, Ringdén O, Ljungman P. 2007. Evaluation of
24 25	407	intervention strategy based on CMV-specific immune responses after allogeneic
26 27 28 29 30	408	SCT. Bone Marrow Transplant 40: 865-869.
	409	Boeckh M, Nichols WG, Papanicolau G, Rubin R, Wingard JR, Zaia J. 2003.
31 32	410	Cytomegalovirus in hematopoietic stem cell transplant recipients: Current status,
33 34 35	411	known challenges, and future strategies. Biol Blood Marrow Transplant 9: 543-
36 37	412	558.
38 39	413	Eid AJ, Brown RA, Hogan WJ, Lahr BD, Eckel-Passow JE, Litzow MR, Razonable RR.
40 41 42	414	2009. Kinetics of interferon-gamma producing cytomegalovirus (CMV)-specific
43 44	415	CD4+ and CD8+ lymphocytes and the risk of subsequent CMV viremia after
45 46	416	allogeneic hematopoietic stem cell transplantation. Transplant Infect Dis 11:519-
47 48 49	417	528.
50 51	418	Einsele H, Kapp M, Grigoleit GU. 2008. CMV-specific T-cell therapy. Blood Cells Mol
52 53	419	Dis 40: 71-75.
54 55 56	420	Foster AE, Gottlieb DJ, Sartor M, Hertzberg MS, Bradstock KF. 2002.
57 58	421	Cytomegalovirus-specific CD4+ and CD8+ T-cells follow a similar
59 60		

Page 19 of 27

1

Journal of Medical Virology

2 3	422	reconstitution pattern after allogeneic stem cell transplantation. Biol Blood
4 5 6	423	Marrow Transplant 8: 501-511.
7 8	424	Gimeno C, Solano C, Latorre JC, Hernández-Boluda JC, Clari MA, Remigia MJ, Furió
9 10 11	425	S, Calabuig M, Tormo N, Navarro D. 2008. Quantification of DNA in plasma by
12 13	426	an automated real-time PCR assay (CMV PCR Kit, Abbott) for surveillance of
14 15	427	active cytomegalovirus infection and guidance of pre-emptive therapy for
16 17 18	428	allogeneic hematopoietic stem cell transplant recipients. J Clin Microbiol 46:
19 20	429	3311-3318.
21 22 23	430	Griffiths P, Whitley R, Snydman DR, Singh N, Boeckh M. 2008. Contemporary
23 24 25	431	management of cytomegalovirus infection in transplant recipients: Guidelines
26 27	432	from an IHMF workshop, 2007. Herpes 15: 1-12.
28 29 30	433	Gratama JW, Brooimans RA, van der Holt B, Sintnicolaas K, van Doornum G, Niesters
31 32	434	HG, Löwenberg B, Cornelissen JJ. 2008. Monitoring cytomegalovirus IE-1 and
33 34 25	435	pp65-specific CD4+ and CD8+ T-cell responses after allogeneic stem cell
36 37	436	transplantation may identify patients at risk for recurrent CMV reactivations.
38 39	437	Cytometry Part B 74B: 211-220.
40 41 42	438	Hakki M, Riddell SR, Storek J, Carter RA, Stevens-Ayers T, Sudour P, White K, Corey
43 44	439	L, Boeckh M. 2003. Immune reconstitution to cytomegalovirus after allogeneic
45 46	440	stem cell transplantation: Impact of host factors, drug therapy, and subclinical
47 48 49	441	reactivation. Blood 102: 3060-3067.
50 51	442	Hebart H, Daginik S, Stevanovic S, Grigoleit U, Dobler A, Baur M, Rauser G, Sinzger
52 53	443	C, Jahn G, Loeffler J, Kanz L, Rammensee HG, Einsele H. 2002. Sensitive
54 55 56	444	detection of human cytomegalovirus peptide-specific cytotoxic T-lymphocyte
57 58	445	responses by interferon- γ enzyme-linked immunospot assay and flow cytometry
59 60		

3 4	446	in healthy individuals and in patients after allogeneic stem cell transplantation.
5 6 7	447	Blood 99: 3830-3837.
8 9	448	Lilleri D, Fornara C, Chiesa A, Caldera D, Alessandrino EP, Gerna G. 2008. Human
10 11	449	cytomegalovirus-specific CD4+ and CD8+ T-cell reconstitution in adult
12 13 14	450	allogeneic hematopoietic stem cell transplant recipients and immune control of
15 16	451	viral infection. Haematologica 93: 248-256
17 18	452	Ljungman P. CMV infections after hematopoietic stem cell transplantation. 2008. Bone
19 20 21	453	Marrow Transplant 42: S70-S72.
22 23 24	454	Ljungman P. 2006. Would monitoring CMV immune responses allow improved
25 26 27	455	control of CMV in stem cell transplant patients? J Clin Virol 35: 493-495.
28 29	456	Moins-Teisserenc H, Busson M, Scieux C, Bajzik V, Cayuela JM, Clave E, de Latour
30 31 32	457	RP, Agbalika F, Ribaud P, Robin M, Rocha V, Gluckman E, Charron D, Socié G,
33 34	458	Toubert A. 2008. Patterns of cytomegalovirus reactivation are associated with
35 36 27	459	distinct evolutive profiles of immune reconstitution after allogeneic
37 38 39	460	hematopoietic stem cell transplantation. J Infect Dis 198: 818-826.
40 41 42	461	Ohnishi M, Sakurai T, Heike Y, Yamazaki R, Kanda Y, Takaue Y, Mizoguchi H,
43 44	462	Kawakami Y. 2005. Evaluation of cytomegalovirus-specific T-cell reconstitution
45 46 47	463	in patients after various allogeneic haematopoietic stem cell transplantation
47 48 49	464	using interferon-gamma-enzyme-linked immunospot and human leucocyte
50 51	465	antigen tetramer assays with an immunodominant T-cell epitope. Br J Haematol
52 53 54	466	131: 472-479.
55 56	467	Pourgheysari B, Piper KP, McLarnon A, Arrazi J, Bruton R, Cook M, Mahendra P,
57 58 59 60	468	Craddock C, Moss PAH. 2009. Early reconstitution of effector memory CD4+

Journal of Medical Virology

- CMV-specific T cells protects against CMV reactivation following allogeneic SCT. Bone Marrow Transplant 43 :853-861.
- Quinnan GV, Kirmani N, Rook AH, Manischewitz JF, Jackson L, Moreschi G, Santos GW, Saral R, Burns WH.1982. Cytotoxic T cells in cytomegalovirus infection: HLA-restricted T-lymphocyte and non T-lymphocyte cytotoxic responses correlate with recovery from cytomegalovirus infection in bone-marrow-transplant recipients. N Engl J Med 307: 7-13.
- Reusser P, Riddell SR, Meyers JD, Greenberg PD. 1991.Cytotoxic T-lymphocyte response to cytomegalovirus after human allogeneic bone marrow transplantation: pattern of recovery and correlation with cytomegalovirus infection and disease. Blood 78: 1373-1380.
- Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD. 1992. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 257: 238-241.
- Solano C, Benet I, Clari MA, Nieto J, de la Cámara R, López J, Hernández-Boluda JC, Remigia MJ, Jarque I, Calabuig ML, Garcia-Noblejas A, Alberola J, Tamarit A, Gimeno C, Navarro D. 2008. Enumeration of CMV-specific IFNy CD8⁺ and CD4⁺ T cells early after allogeneic stem cell transplantation may identify patients at risk of active CMV infection. Haematologica 93: 1434-1436.
- Solano C, Muñoz I, Gutiérrez A, Farga A, Prósper F, García-Conde J, Navarro D, Gimeno C. 2001. Qualitative plasma assay (AMPLICOR CMV test) versus pp65 antigenemia assay for monitoring cytomegalovirus viremia and guiding pre-emptive ganciclovir therapy in allogeneic stem cell transplantation. J Clin Microbiol 39: 3938-3941.

1 2		
2 3 4	493	Tormo N, Solano C, Benet I, Clari MA, Nieto J, de la Cámara R, López J, López-
5 6 7	494	Aldeguer N, Hernández-Boluda JC, Remigia MJ, Garcia-Noblejas A, Gimeno C,
8 9	495	Navarro D. 2009. Lack of prompt expansion of cytomegalovirus pp65 and IE-1-
10 11	496	specific IFNgamma CD8(+) and CD4(+) T cells is associated with rising levels
12 13 14	497	of pp65 antigenemia and DNAemia during pre-emptive therapy in allogeneic
15 16	498	hematopoietic stem cell transplant recipients. Bone Marrow Transplant Jul 20
17 18 10	499	[Epub ahead of print].
20 21	500	Widmann T, Sester U, Gärtner BC, Schubert J, Pfreundschuh M, Köhler H, Sester
22 23 24 25	501	M.2008. Levels of CMV specific CD4 T cells are dynamic and correlate with
25 26 27	502	CMV viremia after allogeneic stem cell transplantation. PLoS ONE 3: 1-12.
28 29	503	
30 31 32	504	
33 34	505	
35 36 37	506	
38 39	507	
40 41 42	508	
42 43 44	509	
45 46	510	
47 48 49	511	
50 51	512	
52 53	513	
54 55 56	514	
57 58	515	
59 60	516	

FIGURE 1. Representative patterns of kinetics of CMV pp65 and IE-1-specific IFNyproducing $CD8^+$ (IFNy $CD8^+$ -open circles-) and $CD4^+$ (IFNy $CD4^+$) T cells (black diamonds) and CMV DNAemia (triangles) during episodes of active CMV infection. (A) Patient displaying an early expansion of CMV-specific T cells (specially involving the IFNy CD8⁺ T-cell subset) concomitant with CMV DNAemia resolution. Fluctuating levels of both T-cell populations were observed after interruption of antiviral therapy in the absence of CMV DNAemia; (B) Patient displaying an early expansion of both functional T-cell populations with delayed clearance of CMV DNAemia concomitant with a further expansion of CMV-specific T cells; Fluctuating levels of both T-cell subsets were observed prior to ultimate expansion leading to CMV DNAemia resolution (C) Patient failing to expand either CMV-specific functional T-cell subset and displaying persistent CMV DNAemia. This patient was under antiviral therapy throughout the observational period. The arrow (AT) points out to the time at which antiviral therapy was interrupted.

Parameter	
Patients	18
Median age, yrs (range)	52.5 (17-67)
Sex, no. male patients/no. female patients	12/6
Diagnosis, n° patients (%)	
Non-Hodgkin`s lymphoma	8 (44)
Acute myeloid leukaemia	4 (22)
Multiple myeloma	3 (16)
Myelodysplastic syndrome	2 (11)
Chronic lymphocytic leukaemia	1 (6)
CMV serostatus, nº patients (%)	
D+/R+	9 (50)
D-/R+	6 (33)
D+/R-	3 (16)
Donor type, nº patients (%)	
HLA-identical sibling	10 (55)
Matched unrelated donor	5 (28)
Mismatched related donor	3 (16)
Conditioning regimen, nº patients (%)	
Non-myeloablative	14 (77)
Myeloablative	4 (22)
Stem cell source	
Peripheral blood	16 (88)
Umbilical cord blood	1 (6)
Bone marrow	1 (6)
Acute or chronic GvHD during episodes 🛛 🧹	
of active CMV infection	
Grades 0-I	12 (66)
Grades II-IV	6 (33)

TADICID . 1. : .1.1 £ 41

D,donor; R, recipient; +, CMV seropositive; -, CMV seronegative; GvHD,Graft versus host disease.

Episode (Day PT)	CM (Co	CMV DNAemia (Copies/mL)		CMV-specific T-cell response IFNγ CD8 ⁺ / IFNγ CD4 ⁺ (cells/μL)		
	Initial	Peak	Duration (days)	First detected response (day)	At first negative PCR (day)	
1 (232)	1125	1125	7	15.13/0.12 (7)	*	
2 (115)	800	800	3	2.09/1.61 (3)	-	
3 (293)	2460	2460	7	15.20/5.20 (7)	-	
4 (41)	890	890	7	14.01/1.90 (7)	-	
5 (40)	1800	1800	6	1.31/0.43 (6)	-	
6 (59)	560	1200	15	0.90/0.38 (15)	-	
7 (14)	1100	3200	16	1.45/0.67 (16)	-	
8 (30)	1100	6200	94	0.50/0.40 (21)	6.24/0.55 (94)	
9 (26)	1980	1980	20	0.65/0.19 (7)	0.82/0.56 (20)	
10 (53)	3600	4560	55	0.21/0.62 (21)	2.46/1.23 (55)	
11 (63)	1270	3700	61	0.22/0.01 (7)	1.36/0.48 (61)	
12 (27)	1200	3100	31	0.67/0.06 (5)	4.34/0.70 (31)	
13 (65)	7200	15110	31	1.28/0.46 (9)	10.62/0.35 (31)	

TABLE II. Virological and immunological data of episodes of active CMV infection, the resolution of which occurred during the study period.

PT, post-transplant. Day in the column for the first detected CMV-specific T-cell responses refers to days after initiation of pre-emptive therapy. Episodes 2 and 3 developed in the same patient.^{*}-, First detected response concomitant with first negative PCR.

EpisodeCMV DNAemia(Day PT)(Copies/mL)		DNAemia s/mL)	CMV-specific T-cell IFNγ CD8 ⁺ / IFNγ C	Treatment	
	Initial	Peak (day)	First detectable response (day)	Peak level (day)	
1 (330)	2390	3790 (7)	0.96/0.19 (20)	* _	FOS/ <mark>VGCV</mark>
2 (62)	2320	35,450 (12)	1.28/1.27 (8)	-	VGCV
3 (160)	1350	10,200 (30)	0.03/0.06 (7)	-	VGCV
4 (42)	5440	5500 (9)	0.09/0.46 (9)	-	FOS
5 (55)	5600	23,450 (19)	ND	ND	VGCV
6 (36)	720	1290 (23)	0.03/0.26 (0)	0.53/0.66 (8)	GAN

TABLE III. Virological and immunological data of episodes of active CMV infection that were still active at the end of the study period.

FOS, Foscarnet; VGCV,Valganciclovir; GAN, Ganciclovir; ND, Not detectable; PT, Post-transplant. Day in columns refers to days after initiation of pre-emptive therapy. *-, The peak level was the first detected response.

