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ABSTRACT 

 

 Cohesin is responsible for sister chromatid cohesion, ensuring the correct chromosome 

segregation. Beyond this role, cohesin and regulatory cohesin genes seem to play a role in 

preserving genome stability and gene transcription regulation. DNA damage is thought to be a 

major culprit for many human diseases, including cancer. Our present knowledge of the 

molecular basis underlying genome instability is extremely limited. Mutations in cohesin genes 

cause human diseases such as the Cornelia de Lange syndrome and the Roberts syndrome/SC 

phocomelia, and all the cell lines derived from affected patients show genome instability. 

Cohesin mutations have also been identified in colorectal cancer. Here, we will discuss the 

human disorders caused by the alterations of cohesin function, with emphasis on the emerging 

role of cohesin as a genome stability caretaker. 

 

Key words: Cohesin, genome instability, cancer,  Cornelia de Lange syndrome, Roberts 

syndrome 
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OVERVIEW OF COHESIN FUNCTIONS 

 

Canonical role of cohesin 

The discovery of the cohesin complex has led to a breakthrough in clarifying the “cohesive 

force” in play during mitosis in holding the sister chromatids together and ensuring correct 

chromosome segregation. Cohesin is composed of four subunits, a pair of SMC proteins, 

SMC1A (MIM# 300040) and SMC3 (MIM# 606062), which are members of the Structural 

Maintenance of Chromosome family, and two non-SMC proteins, RAD21/Scc1 (MIM# 606462) 

and STAG/Scc3/Sa (Table 1) [Michaelis et al., 1997]. In vertebrates, there are two closely 

related Scc3 homologs, called STAG1 (MIM# 604358) and STAG2 (MIM# 604359) [Losada et 

al., 2000; Sumara et al., 2000]. In addition, a meiotic isoform is also present, named STAG3 

(MIM# 608489) [Prieto et al., 2001]. SMC proteins are characterized by a globular hinge domain 

flanked by two α-helical domains (Figure 1A) which fold back on themselves at the hinge, 

forming a long antiparallel α-helical coiled coil arm that brings the  N and C termini together. 

The N-terminal contains the Walker A box (or P-loop) which binds ATP. The C-terminal holds 

the Walker B, binding to DNA. SMC1A and SMC3 dimerize at the hinge domains, forming a V-

shaped structure through hydrophobic interactions. Basically, the cohesin complex acts as a 

tripartite ring in which SMC1A and SMC3 are connected by their hinge domains on one side, 

and RAD21 closes the ring by connecting the SMC1A and SMC3 head domains on the other side 

[Anderson et al., 2002; Haering et al., 2002] (Figure 2).  The cohesin ring shape supports the 

model where interaction between cohesin and DNA is topological, the so-called “ring” or 

“embrace” model. According to this model, cohesin topologically encircles sister chromatids. 

The cohesin opens at the head domain followed by the sister chromatid entering the ring and 
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becoming topologically entrapped when RAD21 locks the ring [Gruber et al., 2006; Gruber et 

al., 2003; Haering, et al., 2002; Haering et al., 2004; Ivanov and Nasmyth, 2007]. Transient 

dissociation of SMC hinge domains also seems to contribute towards the entry of DNA into the 

cohesin ring [Gruber et al., 2006]. Several alternative models, as well as the bracelet, 

oligomerization and snap models  have been proposed as the molecular basis of sister chromatid 

cohesion [Diaz-Martinez et al., 2008; Guacci 2007; Huang et al., 2005; Milutinovich and 

Koshland, 2003]. These models have stimulated the research in this field and the true mechanism 

may be a combination of those proposed. The cohesin binding to chromatin is dynamic and 

occurs during the G1/S phase in the budding yeast or in the telophase of the previous cell cycle 

in vertebrates [Haering et al., 2004]. In yeast, cohesin binds along chromosome arms every 10-20 

kb, while its density is higher at centromeric regions [Glynn et al., 2004; Kogut et al., 2009; 

Lengronne et al., 2004]. By contrast, in Drosophila the cohesin binding regions cover from a few 

kilobases up to 100 kb  in length [Misulovin et al., 2008]. Though the chromosome arm 

dissociation process has yet to be fully understood, removal of cohesin begins in the prophase 

and is completed by the anaphase. In the first step, RAD21 and STAG subunits are 

phosphorylated by Polo-like kinase 1, causing the dissociation of the cohesin only along the 

chromosome arms [Hauf et al., 2005], while the bulk of centromeric cohesin remains unchanged 

[Waizenegger et al., 2000]. Once chromosomes are bi-oriented on the mitotic spindle at 

anaphase, cohesin is completely removed from chromosomes by the separase protein (MIM# 

604143) that cleaves RAD21, triggering sister chromatid disjunction. Initially, separase is 

inactivated through an association with securin (MIM# 604147),   which is released after 

degradation through the ubiquitin dependent proteolysis pathway [Hauf et al., 2001; Uhlmann et 

Page 4 of 37

John Wiley & Sons, Inc.

Human Mutation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

5 

 

al., 2000]. This model suggests that cohesin, preserved from degradation by separase during the 

prophase, can be loaded onto chromatin just after the restoration of the nuclear membrane. 

 

Cohesin regulatory factors 

Cohesin interacts with several other proteins contributing towards its function (Table 1).  

The loading of cohesin onto chromatin requires NIPBL activity (MIM# 608667, homolog of 

fungal Scc2 and Drosophila Nipped-B). It has been speculated that NIPBL may be involved in 

the activation of SMC ATPase and chromatin remodeling [Arumugam et al., 2003; Jahnke et al., 

2008]. PDS5A (MIM# 613200) and PDS5B (MIM# 605333) proteins are essential for the 

association of cohesin with chromatin and sister chromatid cohesion. Their amino acid sequences 

are conserved during evolution and are characterized by HEAT repeats which promote protein 

interaction [Panizza et al., 2000]. The presence of two PDS5 and STAG proteins renders possible 

the existence of four different types of cohesin containing either STAG1 or STAG2 and either 

PDS5A or PDS5B [Losada et al., 2005; Sumara et al., 2000]. Cohesin is also associated with 

WAPL; and like the PDS5 proteins, WAPL (MIM# 610754) also contains motifs which promote 

protein-protein interaction. In fact, it has been shown that the FGF motifs of the WAPL protein 

allow the physical interaction with PDS5 and cohesin subunits [Shintomi and Hirano, 2009]. It is 

thought that WAPL is involved in the process of removing cohesin from chromatin [Gandhi et 

al., 2006; Kueng et al., 2006]. ESCO2 (MIM#  609353) is involved in the  establishment of 

bridges between chromatid sisters during the cell cycle [Ivanov et al., 2002; Skibbens et al., 

1999; Toth et al., 1999]. It is also involved in the SMC3 acetylation [Heidinger-Pauli et al., 

2009; Zhang et al., 2008a], necessary for replication fork progression [Terret et al., 2009]. 

Sororin (MIM# 609374) is the last identified protein known to be involved in cohesin activity. 

Page 5 of 37

John Wiley & Sons, Inc.

Human Mutation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

6 

 

Data regarding this protein are limited; however, it has been hypothesized that it is involved in 

sister chromatid cohesion [Rankin et al., 2005; Schmitz et al., 2007]. It is clear that cohesin 

activity is tightly regulated and it is possible that new regulatory proteins will be identified in the 

near future. 

 

NON CANONICAL ROLE OF COHESIN: GENE EXPRESSION REGULATION 

There is increasing experimental evidence suggesting that  cohesin plays a part  in the regulation 

of gene expression. The first proof that cohesin factors regulate gene expression comes from 

studies on the Drosophila Ultrabithorax and Cut genes which are involved in many 

developmental processes [Rollins et al., 1999]. In fact, the expression depends on Nipped-B 

which might facilitate the interaction between promoter and remote enhancers possibly by 

regulating chromosome architecture. Since Nipped-B acts as a cohesin regulatory protein, it was 

hypothesised that cohesin would have the same effect as Nipped-B on the gene expression 

regulation. Surprisingly, the inhibition of Smc1a,  Rad21 and Sa led to an increase of Cut 

expression [Dorsett et al., 2005; Rollins et al., 2004]. These findings highlighted a possible role 

of cohesin as an insulator, inhibiting enhancer-promoter communication in Cut, and suggested 

that Nipped-B promotes enhancer-promoter interaction by altering cohesion binding to chromatin 

[Rollins et al., 2004] . Notably, cohesin contributes to the insulator activity of the CCCTC 

binding factor (CTCF), a zinc finger DNA-binding protein that is evolutionary conserved 

[Parelho et al., 2008; Rubio et al., 2008; Stedman et al., 2008; Wendt et al., 2008].  However, 

recent data suggest that the manner in which cohesin regulates gene expression is more complex. 

The fact that the depletion of either Rad21 or Smc3 in Zebrafish results in the reduced expression 

of Runx genes, involved in the activation of hematopoietic and neurogenic genes has been 
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demonstrated [Horsfield et al., 2007]. Studies in Drosophila show  that cohesin can exert 

opposing effects, both positive and negative,  on gene expression [Schaaf et al., 2009]. These 

results are consistent with gene expression data obtained in Cornelia de Lange syndrome (CdLS; 

MIM#s 122470, 300590, 610759) cell lines and in Nipbl
+/- 

 mutant mice where many genes are 

down- and  up-regulated [Kawauchi et al., 2009; Liu et al., 2009b]. Beyond its role in sister 

chromatid cohesion, emerging data show that the activity of cohesin and cohesin regulatory 

factors is critical for the proper development of organisms by  regulating  gene expression in 

multiple ways.  

Mutations in NIPBL, SMC1A and SMC3 cause CdLS while mutations in ESCO2 are associated 

with Roberts syndrome (RBS; MIM#  268300) /SC phocomelia (MIM# 269000) [Deardorff et 

al., 2007; Krantz et al., 2004; Musio et al., 2006; Schule et al., 2005; Tonkin et al., 2004; Vega et 

al., 2005].  CdLS and RBS are collectively termed “cohesinopathies” [reviewed in Liu and 

Krantz, 2008]. CdLS is the most frequent disease among those due to cohesion pathway defects. 

Though the molecular pathobiology of CdLS is largely unknown, it is noteworthy that the 

dysregulation of gene expression likely represents the underlying pathogenesis of CdLS. It has 

recently been discovered, by using a genome-wide approach to study gene expression, that 

alteration of a restricted number of genes which can be considered as CdLS biomarkers are 

capable of differentiating CdLS from non-CdLS samples. Their expression levels also correlate 

with the phenotypic severity of the disorder [Liu et al., 2009b]. In addition, small changes in 

Nipbl activity affect appropriate development in the Nipbl
+/-

 mouse model. In particular, gene 

expression profiling demonstrates that Nipbl deficiency leads to modest but significant 

transcriptional dysregulation of many genes [Kawauchi et al., 2009].  
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Cohesinopathy cell lines show both spontaneous and induced genome instability. In addition, 

mutations or dysregulation of cohesin and regulatory cohesin genes are associated with human 

cancer (see below). These observations suggest that the cohesin pathway may be involved in 

genome stability maintenance and tumorigenesis. This review focuses specifically on the 

emerging role of cohesin as a new genome stability caretaker involved in human disease and 

cancer. 

 

COHESIN AND GENOME INSTABILITY 

Genome instability has been discovered as one of the major factors responsible for human 

diseases, including cancer. It manifests as point mutations, gene amplifications, aneuploidies (i.e. 

the gain or loss of entire chromosomes),  deletions and translocations. The genomic stability 

depends on an intricate machinery of DNA repair mechanisms, correct chromosome segregation 

pathways and the activation of cell cycle checkpoints in order to arrest cell cycle progression. 

The initial confirmation that cohesin is involved in genome stability came from studies in S. 

pombe. Scc1 mutants are hypersensitive to DNA damage [Birkenbihl and Subramani, 1992], 

suggesting that cohesin plays an important function in the DNA damage response. In recent 

years, ample experimental evidence supports the notion that cohesin is also involved in genome 

stability maintenance in human cells. SMC1A was shown to be the target of the ATM kinase 

with phosphorylation of SMC1A-Ser957 and SMC1A-Ser966, occurring in an ATM dependent 

manner after ionizing irradiation [Kim et al., 2002; Yazdi et al., 2002]. Subsequently, it has been 

shown that NBS1 and BRCA1 are required for the recruitment of activated ATM at the sites of 

DNA double strand breaks, and that this process is necessary for the phosphorylation of SMC1A 

by ATM following irradiation [Kitagawa et al., 2004]. We showed that SMC1A phosphorylation 
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can be ATM-independent, depending on the type of DNA damage. Moreover, we found that 

SMC1A is phosphorylated on Ser966 by ATR after replication stress induced by aphidicolin, 

while no phosphorylation occurred on Ser957 [Musio et al., 2005]. The finding that ATM is not 

involved in the SMC1A phosphorylation following replication stalling is not surprising because 

it seems to be specifically involved in response to irradiation [Kim et al., 2002; Yazdi et al., 

2002]. These observations suggest that cohesin participates in two different pathways, triggering 

a specific response to different DNA damage types that challenge genome stability.   

The heterodimer SMC1A-SMC3 is also a member of a mammalian protein complex, called  

recombination complex RC-1, which promotes DNA recombination [Jessberger et al., 1996; 

Stursberg et al., 1999]. There are three additional members belonging to the RC-1 complex: 

DNA ligase III, DNA polymerase ε, and unidentified structure-specific DNA endonuclease. It is 

thought that the RC-1 complex catalyses several recombination-related reactions such as the 

homology-dependent transfer of DNA between two dsDNA molecules, DNA single-strand re-

annealing, and the repair of gaps or deletions in dsDNA substrates [reviewed in Jessberger, 

2002]. 

Following DNA damage, cohesin accumulates in a large 50 kb domain that surrounds the 

damage site [Strom et al., 2004; Unal et al., 2004] and SMC1A-SMC3 are phosphorylated  [Kim, 

et al., 2002; Luo et al., 2008; Yazdi et al., 2002]. Cohesin’s ability to establish cohesion de novo 

is essential for DNA damage repair [Strom, et al., 2004; Unal et al., 2004] and we found that fork 

stalling induced an increase in SMC1A synthesis levels [Musio et al., 2005]. These findings 

suggest that the cohesin increase and its accumulation can stabilize the broken sites, acting as 

scaffolding to improve the recruitment of DNA repair machinery. Furthermore, the 
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phosphorylation of cohesin proteins may be required for activation of cell cycle checkpoints, 

allowing cell cycle arrest and DNA repair. 

 

COHESIN AND CANCER 

Genome instability is thought to play a pivotal role in the tumorigenic process and it is 

considered a hallmark of cancer cells.  So far, only a limited number of genes thought to be 

involved in the maintenance of genome instability have been identified as having somatic 

mutations in human cancer. The recent finding that human colorectal cancers cells carry  

mutations in cohesin genes (Figure 3) further support the notion that cohesin is involved in 

genome instability and cancer. Eleven somatic mutations have been identified in more than 130 

colorectal cancer cases. Six of them map to three core cohesin genes (SMC1A, SMC3 and 

STAG3), four to a regulatory cohesin gene (NIPBL)  and one to RNF20, a non related cohesin 

gene [Barber et al., 2008].  SMC1A and NIPBL account for 8 out of 10 mutations (Figures 3A, 

3B). All SMC1A mutations are missense (Supp. Table S1): c.1186T>C, c.1300C>T, c.1680C>G 

and c.3556G>A leading to Phe396Leu, Arg434Trp, Ile560Met and Val1186Ile changes, 

respectively. The first two mutations map to the coiled-coil domain, the third to the hinge 

domain and the last to carboxy terminal P-loop NTPase domain (Figure 3A). It is interesting to 

note that SMC1A mutations are only missense in both SMC1A-mutated CdLS patients (see 

below) and in cancer cells, suggesting that frameshift and nonsense mutations are lethal. The 

four mutations in NIPBL are: c.1435C>T, c.2967_2968 insT, c.1660C>T, c.5378T>A leading to 

Arg479X, Val992fsX, Gln664X and Met1793Lys changes (Figure 3B, Supp. Table S1). Finally, 

SMC3 and STAG3 show the mutations c.2635C>T and c.24117C>T (Supp. Table S1), which 

cause the Arg879X (Figure 3C) and Ile795Thr (Figure 3D) amino acid changes, respectively. 
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The majority of these mutations are heterozygous nonsense mutations which disrupt protein 

function through the creation of stop codons. This finding raises the possibility that nonsense 

mutations might be more predisposed to cancer than missense mutations. These mutations could 

dysregulate cohesin activity by preventing correct protein association,  by altering the SMC 

ATPase activity or affecting the dynamic  displacement of  cohesin from chromatin.  Colorectal 

cancer cells are characterized by chromosomal instability, resulting in chromosome gain or loss. 

It is possible to argue that abnormal cohesion pathway activity leads to chromosome 

missegregation and chromosome instability. This hypothesis is supported by the observation that 

colorectal cancer cells exhibit up to 100-fold higher rates of missegregation than normal cells 

[Lengauer et al., 1997]. Therefore chromosomal instability in colorectal cancer cells could be  a 

direct consequence of cohesin mutations. 

In addition to core cohesin genes, there is increasing evidence also linking cohesin regulatory 

genes to tumorigenesis. The overexpression of WAPL correlates with the progression of cervical 

cancer malignancy (Table 1), and cells overexpressing WAPL develop tumors after injection into 

nude mice [Oikawa et al., 2004]. Separase  is found to be significantly overexpressed in human 

breast cancer [Zhang et al., 2008b], osteosarcoma and prostate cancer (Table 1) [Meyer et al., 

2009]. Its induction leads to premature separation of chromatids, lagging chromosomes with 

specific chromosome aneuploidies [Zhang, et al., 2008b]. Finally, ESCO2 is  up-regulated in 

more aggressive melanomas [Ryu et al., 2007], Securin (also known as proto-oncogene pituitary 

tumor transforming gene, PTTG) is overexpressed in pituitary tumors [Zou et al., 1999] and 

RAD21 is overexpressed in breast [Atienza et al., 2005; Oishi et al., 2007] and prostate cancer 

(Table 1) [Porkka et al., 2004]. ESCO2 and Securin promote cohesin function while WAPL and 

Separase antagonize this function. Therefore the fact that those genes are overexpressed in 
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cancer suggests that cohesin and positive and negative regulatory proteins  have a complex 

relationship with tumorigenesis. Indeed, in some cases these genes might act as oncogenes and in 

others as tumor suppressor genes. At present, the genetic factors which determine these opposite 

effects are not known.  

Cancer is thought to be a multistep process in which abnormalities in proto-oncogenes and tumor 

suppressors predispose cells to the acquisition of many other genetic changes which are 

responsible for the acquisition of the full malignant phenotype. Cohesin could play an important 

role in  genome instability and tumorigenesis, and chromosome aneuploidy  due to defects in 

correct chromosome segregation could cause  the loss of heterozygosity of tumor suppressor 

genes or  the improper activation of  proto-oncogenes. SMC1A associates with mitotic 

microtubules at the spindle pole, and SMC1A imbalance leads to multipolar spindles [Wong and 

Blobel, 2008]. Furthermore, the inhibition of cohesin genes by RNA interference or antisense 

oligonucleotide causes aneuploidy and micronuclei formation in dividing cells [Barber, et al., 

2008; Musio et al., 2003]. These observations suggest that the association of SMC1A with 

microtubules is required for proper segregation, and its dysfunction leads to aneuploidy.  In 

addition, cohesin mutations could  dysregulate  the expression of proto-oncogenes or tumor 

suppressor genes, triggering uncontrolled cell proliferation and the development of malignant 

cells. In human cells, cohesin depletion leads to changes in transcription at the imprinted 

H19/IGF2 locus [Nativio et al., 2009; Wendt et al., 2008]. Several lines of evidence support the 

hypothesis that the altered imprinting process at H19/IGF2 locus is important in tumorigenesis 

[Feinberg, 1999; Pollak 2008]. It is therefore possible that defects in cohesin affect this imprinted 

domain and the genes within it. 
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COHESINOPATHIES AND GENOME INSTABILITY 

CdLS consists of characteristic facial features, hirsutism, gastroesophageal reflux, upper 

extremity malformations ranging from small hands to severe forms of oligodactyly and 

truncation of the forearms and mental retardation. Approximately 60% of CdLS probands carry a 

NIPBL mutation, most of which are point mutations or small insertions and deletions in coding 

regions or splice junctions. It is thought that these mutations produce either abnormal full length 

or truncated NIPBL proteins [Gillis et al., 2004]. A subset of CdLS probands carry mutations in 

the SMC1A and SMC3 genes [Deardorff et al., 2007; Musio et al., 2006]. SMC1A is responsible 

for 5% of CdLS cases whereas up until now only a single proband has been found to have a 

mutation in SMC3. The PDS5B gene could be an additional CdLS gene. Moreover, the Pds5B 

knockout mice show several features reminiscent of the CdLS phenotype, and the genetic 

screening of a large cohort of CdLS patients allowed the identification of a patient carrying a 

mutation in the PDS5B gene. However, the same mutation has been found in unaffected relatives 

making the role of this mutation in CdLS less clear [Zhang et al., 2009]. 

Collectively, a total of 23 mutations in the SMC1A and SMC3 core cohesion genes have been 

identified in CdLS (Supp. Table S1).  All mutations are missense or small in-frame deletions (3 

or 15 nucleotides deletion) [Deardorff et al., 2007; Liu et al., 2009a; Mannini et al., 2010].  The  

SMC3 amino acid change maps to the  coiled coil domain (Figure 1B) whereas the SMC1A 

amino acid changes  encompass all gene domains (Figure 1C) and do not affect the synthesis of 

the SMC1A protein [Liu et al., 2009a; Musio et al., 2006; Revenkova et al., 2009]. SMC1A maps 

to Xp11.2 which escapes X chromosome inactivation [Brown et al., 1995; Tsuchiya and Willard, 

2000]. Both hemizygous male and heterozygous female CdLS patients have been identified 

[Deardorff et al., 2007; Liu et al., 2009a; Musio et al., 2006]; it is likely that SMC1A mutations 
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act as a dominant negative in females [Liu et al., 2009a; Mannini et al., 2010; Revenkova et al., 

2009]. 

RBS is an autosomal recessive developmental disorder characterized by pre-and post-natal 

growth retardation, tetraphocomelia, and craniofacial abnormalities. The causative gene of RBS 

is ESCO2 which encodes a protein belonging to the highly conserved ECO1/CTF7 family of 

acetyltransferase which is involved in regulating sister chromatid cohesion [Vega et al., 2005]. 

Most ESCO2 mutations are expected to cause stop codons that result in truncated protein or 

mRNA instability due to nonsense-mediated mRNA decay [Gordillo et al., 2008].  

All cohesinopathy cell lines are characterized by genome instability. A number of chromosomal 

rearrangements (balanced de novo translocations, duplications, deletions) have been reported in 

CdLS probands. The molecular characterization of the chromosomal rearrangement 

t(5;13)(13.1;q12.1) allowed the identification of the NIPBL gene [Krantz et al., 2004]. CdLS cell 

lines show a statistically significant increase of both spontaneous and induced chromosome 

aberrations through genotoxic treatments such as irradiation and Mitomycin C [Revenkova et al., 

2009; Vrouwe et al., 2007]. It is possible that dysregulation of cohesion activity triggers 

spontaneous genome instability and confers sensitivity to genotoxic treatments. Increased DNA 

damage seems to be a common feature of CdLS, suggesting that genome instability analysis and 

genotoxic agent treatments can be a useful diagnostic assay and can serve as a classification tool. 

We found that spontaneous genome instability analysis is able to discriminate among the 

different types of SMC1A mutations. In fact, CdLS patients carrying mutations in the head 

domain show higher frequency of chromosome aberrations than patients with mutations in the 

other domains [Revenkova et al., 2009]. 

RBS cell lines also display genome instability occurring as chromosome aneuploidies 

Page 14 of 37

John Wiley & Sons, Inc.

Human Mutation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

15 

 

andmicronuclei formation, in addition to poor growth, reduced plating efficiency and lower 

density for confluent cultures [Jabs et al., 1991; Musio et al., 2004]. Cells from RBS patients 

exhibit a characteristic abnormality of their constitutive heterochromatin, described as 

precocious sister chromatid separation and puffing of the peri- and para-centromeric regions of 

chromosomes 1, 9 and 16. Less clear is the situation in CdLS; a study reported precocious sister 

chromatid separation [Kaur et al., 2005; Musio, et al., 2004], however more recent studies 

showed no cohesion defects in CdLS cell lines [Castronovo et al., 2009; Liu et al., 2009b; 

Revenkova et al., 2009; Tonkin et al., 2004; Vrouwe et al., 2007]. Similar observations have also 

been reported in Nipbl
+/-

 mice [Kawauchi et al., 2009] and Nipped-B  mutant fly [Rollins et al., 

2004].   

To date, no mutations have been identified in other cohesin pathway genes, their effect on 

cohesion can be inferred only by in vitro treatments. The depletion of WAPL prevents the 

resolution of sister chromatids, while its overexpression induces premature sister chromatid 

separation [Gandhi et al., 2006; Kueng et al., 2006]. The inactivation of Sororin  leads to 

precocious sister chromatid separation [Schmitz et al., 2007] and  the inhibition of  Separase 

prevents sister chromatid separation leading to diplo- or quadruplochromosomes, indicating that 

sister chromatids were not disjoined in the previous cell cycle [Wirth et al., 2006]. 

Cohesinopathy probands have a low rate of cancer; up till now only a few cases of cancer have 

been described. In fact,  four RBS patients developed  oculomotor nerve cavernous angiomas, 

malignant melanoma and rhabdomyosarcoma [Feingold 1992; Ogilvy et al., 1993; Parry et al., 

1986; Wenger et al., 1988] while some CdLS patients developed esophageal adenocarcinoma 

[reviewed in Kline et al., 2007]. It is possible to speculate that genomic instability in CdLS leads 

to the formation of certain tumors. Consistent with this notion is the observation that trisomy 21 
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promotes the development of leukemia while the frequency of  solid cancers is low in  Down 

syndrome patients [Satgé et al., 1998].  Further epidemiologic studies will address the argument 

as to whether cohesinopathies lead to cancer development.   

 

CONCLUSION 

It is becoming clearer that the role of cohesin is not limited to holding sister chromatids together 

and ensuring correct chromosome segregation. More recent works have revealed that the 

universe of cohesin functions is rapidly expanding. In fact, cohesin is essential for gene 

expression regulation, cell cycle control, DNA damage response and genome stability 

maintenance. Mutations or dysregulation of cohesin and regulatory cohesin genes are associated 

to cohesinopathies and cancer. In addition, cohesinopathy cell lines show both spontaneous and 

induced genome instability, and in some cases it is responsible for the CdLS etiopathology. 

However, whether genome instability is a cause or a consequence of cohesinopathies is still open 

to debate. The dysfunction of cohesin pathways can cause missegregation, leading to 

chromosome aneuploidy, a hallmark of cancer cells, and improper activation or inhibition of 

proto-oncogene or tumor suppressor genes, respectively. However, it has recently been shown 

that aneuploidy represents a barrier towards cancer development [Williams et al., 2008]. It is 

possible that within a population of genomic-deregulated cells those with   tolerated aneuploidy 

and high proliferative capacity are selected, leading to cancer development [Williams et al., 

2008].  Altogether this evidence supports the intriguing notion that cohesin may represent a new 

genome stability caretaker in mammalian cells involved in human disease and cancer. It is 

becoming increasingly clear that cell lines derived from cohesinopathy probands suffer from 
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defects in surveillance mechanisms, leading to genome instability. Cohesin defects and/or 

genome instability, in addition to dysregulation of gene expression resulting from mutations in 

cohesin genes could account for the growth retardation as well as developmental defects  by 

affecting  the number of cells in developing tissue, leading to specific cohesinopathy phenotypes.    
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FIGURE LEGENDS 

Figure 1. SMC core cohesin protein organization and CdLS. (A) Schematic organization of 

SMC proteins. They contain five distinct domains: N-terminal (or P-loop NTPase), a hinge motif 

flanked by two coiled coil regions and a C-terminal (or P-loop NTPase); (B) Mapping of the 

amino acid change identified in a  CdLS patient in the SMC3 protein; (C) Localization onto the 

SMC1A protein of the twenty two amino acid mutations identified in CdLS. 

 

Figure 2. Structure of cohesin complex. The somatic vertebrate core cohesin complex consists of 

two SMC subunits, namely SMC1A and  SMC3, and two non SMC subunits,  RAD21 and 

STAG. Each SMC subunit forms a rod shaped protein with a globular hinge domain at one end 

and  an ATP nucleotide binding domain at the other. SMC1A and SMC3 are connected by their 

hinge domains on one side and the RAD21 closes the ring by connecting SMC1A and SMC3 

head domains on the other side, creating a huge tripartite ring. 

 

Figure 3. Cohesin and regulatory cohesin proteins and colorectal cancer. Localization of the four 

amino acid changes identified in both SMC1A (A) and NIPBL (B), and the single change 
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detected in SMC3 (C) and STAG3 (D).  The protein length is not in scale. 
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Table 1. Components of cohesin pathway and their involvement in human diseases 

Gene OMIM  Role Disease 

SMC1A 300040 Core cohesin member CdLS 

Colorectal cancer 

SMC3 606062 Core cohesin member CdLS 

Colorectal cancer 

RAD21 606462 Core cohesin member Breast cancer 

Prostate cancer 

STAG1 604358 

 

Core cohesin member  

STAG2 604359 Core cohesin member  

STAG3 608489 Core cohesin member Colorectal cancer 

ESCO2 609353 Cohesin regulatory, 

sister chromatid 

cohesion 

RBS 

Melanoma cancer 

NIPBL 608667 Cohesin regulatory, 

cohesin loading 

CdLS 

Colorectal cancer 

PDS5A 613200 Cohesin regulatory, 

sister chromatid 

cohesion 

 

PDS5B 605333 Cohesin regulatory, 

sister chromatid 

cohesion 

CdLS 
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PTTG1 

(Securin) 

604147 Cohesin regulatory, 

sister chromatid 

dissociation 

Pituitary cancer 

ESPL1 

(Separase) 

604143 Cohesin regulatory, 

sister chromatid 

dissociation 

Breast cancer 

Osteosarcoma 

Prostate cancer 

CDCA5 

(Soronin) 

609374 Cohesin regulatory, 

sister chromatid 

cohesion 

 

WAPL 610754 Cohesin regulatory, 

cohesin dissociation 

Cervical Cancer 
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Supp. Table S1. Mutational spectrum of the SMC1A, SMC3, STAG3 and NIPBL in 
human disease 
 
Gene Nucleotide changes* Effect on amino acid Disease 

c.173_187del15 p.Val58-Arg62del CdLS 
c.397T>G p.Phe133Val CdLS 
c.421G>A p.Glu141Lys CdLS 
c.587G>A p.Arg196His CdLS 
c.802_804del3 p.Lys268del CdLS 
c.916_918del3 p.Ser306del CdLS 
c.1193G>A p.Arg398Gln CdLS 
c.1478A>C p.Glu493Ala CdLS 
c.1486C>T p.Arg496Cys CdLS 
c.1487G>A p.Arg496His CdLS 
c.2046_2048del3 p.Glu683del CdLS 
c.2077C>G p.Arg693Gly CdLS 
c.2131C>T p.Arg711Trp CdLS 
c.2342G>T p.Cys781Phe CdLS 
c.2369G>A p.Arg790Gln CdLS 
c.2446C>G p.Arg816Gly CdLS 
c.2467T>C p.Phe823Leu CdLS 
c.2493_2495del3 p.Asp831-

Gln832del 
CdLS 

c.3146G>A p.Arg1049Gln CdLS 
c.3254A>G p.Tyr1085Cys CdLS 
c.3364T>C p.Phe1122Leu CdLS 
c.3367C>T p.Arg1123Trp CdLS 
c.1186T>C p.Phe396Leu Colorectal cancer 
c.1300C>T p.Arg434Trp Colorectal cancer 
c.1680C>G p.Ile560Met Colorectal cancer 

SMC1A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
c.3556G>A p.Val1186Ile Colorectal cancer 
c.1464_1466del3 p.Phe488del CdLS SMC3 

 c.2635C>T p.Arg879X Colorectal cancer 

STAG3 c.2384T>C p.Ile795Thr Colorectal cancer 
c.1435C>T p.Arg479X Colorectal cancer 
c.2967_2968insT p.Val992fsX Colorectal cancer 
c.1660C>T p.Gln554X Colorectal cancer 

NIPBL 
 
 
 c.5378T>A p.Met1793Lys Colorectal cancer 

* Nucleotide numbering reflects cDNA numbering with +1 corresponding to the A of the 
ATG translation initiation codon in the reference sequences NM_006306.2 (for SMC1A), 
NM_005445.3 (for SMC3), NM_012447.2 (for STAG3), NM_015384.3 (for NIPBL)  
according to journal guidelines (www.hgvs.org/mutnomen). The initiation codon is codon 
1.  
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