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Abstract 

 

Stability is a fundamental property affecting function, activity, and regulation of 

biomolecules. Stability changes are often found for mutated proteins involved in 

diseases. Stability predictors computationally predict protein-stability changes caused 

by mutations. We performed a systematic analysis of eleven online stability predictors’ 

performances. These predictors are CUPSAT, Dmutant, FoldX, I-Mutant2.0, two 

versions of I-Mutant3.0 (sequence and structure versions), MultiMutate, MUpro, SCide, 

Scpred, and SRide. As input, 1784 single mutations found in 80 proteins were used, and 

these mutations did not include those used for training. The programs’ performances 

were also assessed according to where the mutations were found in the proteins, i.e., in 

secondary structures and on the surface or in the core of a protein, and according to 

protein structure type. The extents to which the mutations altered the occupied volumes 

at the residue sites and the charge interactions were also characterized. The predictions 

of all programs were in line with the experimental data. I-Mutant3.0 (utilizing structural 

information), CUPSAT, Dmutant, and FoldX were the most reliable predictors, and 

Scpred was the best of the stability-center predictors. However, at best, the predictions 

were only moderately accurate (~60%) and significantly better tools would be needed 

for routine analysis of mutation effects. 

 

Keywords: Protein stability, free energy, missense mutations, stability predictors, 

prediction programs, bioinformatics, computational methods, predictions 
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Introduction 

Stability is a fundamental property affecting function, activity, and regulation of 

biomolecules. Conformational changes are required for many proteins’ function (Muller 

et al. 1996; Hsu et al. 2008; Mohamed et al. 2009); therefore, conformational flexibility 

and rigidity must be finely balanced (Vihinen 1987).  

Incorrect folding and decreased stability are the major consequences of pathogenic 

missense mutations (Bross et al. 1999; Wang and Moult 2001; Ferrer-Costa et al. 2002; 

Yue et al. 2005). Single residue mutations can cause e.g. reduction in hydrophobic area, 

over packing, backbone strain, and loss of electrostatic interaction and thus lead to 

changes in protein stability (Steward et al. 2003). Alterations in atom-atom interactions 

affect the free energy difference (∆G) between the folded and unfolded states of 

proteins. Changes in the interaction among residues within a protein or between a 

protein and its surroundings affect the entropy of the system with consequent effects in 

local flexibility/rigidity of the structure (Yue et al. 2005). In addition to covalent 

disulphide bonds, proteins are stabilized by the noncovalent hydrophobic, electrostatic, 

and van der Waals interactions, and hydrogen bonds (Pace 1990; Ponnuswamy and 

Gromiha 1994). Cooperative, noncovalent, long-range interactions provide stability that 

counteracts local tendencies to unfold (Abkevich et al. 1995; Gromiha and Selvaraj 

2004). The importance of the interactions for stability has been revealed by site-directed 

mutagenesis experiments (Villegas et al. 1996; Akasako et al. 1997; Petsko 2001; 

Sawano et al. 2008). Intramolecular interactions define the overall structure and 

stability of a protein, as well as regions that can undergo conformational 
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rearrangements. Additionally, functions, such as catalysis, allosteric regulation, and 

ligand binding, depend mostly on the same interactions that define stability.  

Understanding the mechanisms by which mutations affect protein stability is an 

important subject. Accurate prediction of protein stability changes that arise upon 

mutagenesis is necessary if the structure-function relationship of a protein is to be 

understood or if a new protein is to be designed. Understanding the structure-function 

relationship is also essential when characterizing disease mechanisms (Sunyaev et al. 

2001; Thusberg and Vihinen 2009) and evolutionary dynamics (Bloom et al. 2005; 

DePristo et al. 2005; Pal et al. 2006; Bloom et al. 2007; Camps et al. 2007; Poelwijk et 

al. 2007), and when designing or engineering proteins (Baltzer and Nilsson 2001; 

Lehmann and Wyss 2001; Bolon et al. 2002; van den Burg and Eijsink 2002; Bloom et 

al. 2005; Butterfoss and Kuhlman 2006). 

Many computational methods have been developed to predict the difference in the free 

energy of unfolding (∆∆G) between a wild-type protein and its mutant. Some of these 

methods rely on energy functions to compute the ∆∆G, while others apply machine-

learning approaches. The methods that use energy functions can be subdivided to: 

physical potential approaches, statistical potential approaches, and empirical potential 

approaches (Capriotti et al. 2004). The physical potential approaches (Bash et al. 1987; 

Prevost et al. 1991; Pitera and Kollman 2000) simulate the atomic force-fields of a 

structure and cannot therefore be applied to large datasets because they are 

computationally intense. Statistical potential approaches (Gilis and Rooman 1997; Gilis 

and Rooman 2000; Zhou and Zhou 2002; Zhou and Zhou 2004; Magyar et al. 2005; 

Deutsch and Krishnamoorthy 2007) use potential functions derived from statistical 
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analyses of environmental propensities, substitution frequencies, and correlations of 

adjacent residues found experimentally in protein structures. For the empirical-potential 

approach (Guerois et al. 2002; Cheng et al. 2006; Parthiban et al. 2006), the energy 

function is a combination of the weighted physical and statistical energy terms and 

structural descriptors. Machine-learning methods (Dosztanyi et al. 1997; Dosztanyi et 

al. 2003; Capriotti et al. 2005; Cheng et al. 2006; Capriotti et al. 2008; Shen et al. 2008) 

are first trained using examples of proteins and their mutants for which the ∆∆Gs have 

been experimentally measured. Recently a combination of these approaches has been 

developed (Masso and Vaisman 2008). 

Experimental studies on the molecular effects of mutations are often laborious, time-

consuming, and costly. Computational and statistical methods may be used instead to 

predict many of the effects caused by mutations and to elucidate the underlying 

biological mechanisms (Thusberg and Vihinen 2009). We performed a systematic 

analysis of the performances of eleven stability predictors available on the Internet. The 

developers of these methods have used different datasets to test the accuracies of their 

programs; therefore; a comprehensive, comparative assessment of their performances 

has yet to be made. Our analysis revealed that the predictive performances of the 

methods clearly differ and there is a need for more reliable tools.  

 

Methods 

The novel methods that produce vast biological datasets demand bioinformatics tools 

and methods to analyze and interpret the observations. For certain tasks several tools 

may be available, but without reliable knowledge about the performance and quality of 
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predictions choosing the correct tool to use is not possible. We therefore performed a 

comprehensive evaluation of eleven bioinformatics tools designed to predict protein 

stability changes.  

 

Test Cases  

We built a dataset containing missense mutations for which the corresponding proteins 

had experimentally determined ∆∆G values from ProTherm database (ProTherm update 

Dec. 19, 2008) (Kumar et al. 2006). ProTherm is the most comprehensive database for 

experimentally determined protein stability free energy changes caused by mutations. 

Mutations with associated ∆∆G values between 0.5 and −0.5 kcal/mol were classified 

as neutral cases, not affecting stability, because the experimental error for measurement 

of ∆∆G has been estimated as ±0.48 kcal/mol (Khatun et al. 2004). We defined positive 

cases as having ∆∆G values ≥0.5 or ≤−0.5 kcal/mol. We did not consider proteins 

containing double mutations and used only one representative case when several ∆∆G 

values from different studies were available for a given mutation. The final dataset 

contained 1784 mutations from 80 proteins, with 1154 positive cases of which 931 were 

destabilizing (∆∆G ≥ 0.5 kcal/mol), 222 were stabilizing (∆∆G ≤ −0.5 kcal/mol), and 

631 were neutral (0.5 kcal/mol ≥ ∆∆G ≥ −0.5 kcal/mol). (Note that the signs for the 

∆∆G values are the opposite those given in the ProTherm database.) 

The sizes of the datasets used to test the stability predictors varied, because the majority 

of the predictors had been trained using data obtained from earlier versions of 

ProTherm; therefore, only those cases that had been added to the database after training 

had occurred were used. The datasets for I-Mutant2.0, CUPSAT, FoldX, Dmutant, and 
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MultiMutate included 174, 536, 1541, 1714, and 1757 mutations, respectively. The 

smallest datasets used that contained enough cases for statistical analysis was for 

MUpro (166 mutations) and both versions of I-Mutant3.0 (115 cases each). For the 

programs SCide, SRide, and Scpred, which predict the existence of stability centers, the 

datasets contained 1646, 1589, and 1784 mutations, respectively. For AUTO-MUTE, 

the dataset contained only 28 cases. 

 

Prediction Methods 

The effects of mutations on protein stabilities were predicted using the default 

parameters of the programs were always used. We ran the programs at the Pathogenic-

or-Not Pipeline (Thusberg and Vihinen 2009). This service submits the input data, i.e., 

the wild-type protein structure and/or sequence, and the amino acid substitution, to the 

selected predictors and parses the results of the individual methods into a single output.  

AUTO-MUTE (Masso and Vaisman 2008) (http://proteins.gmu.edu/automute/AUTO-

MUTE.html) uses a four body, knowledge-based, statistical contact-potential. The 

program calculates an empirical, normalized measure of the environmental perturbation 

for substitutions. A feature vector is used to estimate the effect of the mutation by 

considering the spatial perturbation inflicted by the mutation upon its nearest neighbors 

in the 3D structure. We used the random forest option.  

CUPSAT (Parthiban et al. 2006) (http://cupsat.uni-koeln.de) predicts ∆∆G using 

structural, environment-specific, atomic potentials and torsion-angle potentials derived 

from non-redundant protein structures (Wang and Dunbrack 2003). The torsion-angle 

potentials are derived from the distribution of protein backbone φ and ψ angles in the 

dataset. 
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Dmutant (Zhou and Zhou 2002) 

(http://sparks.informatics.iupui.edu/hzhou/mutation.html) uses a statistical potential 

approach with a distance-dependent, residue-specific, all-atom, and knowledge-based 

potential for protein structure-based predictions.  

FoldX version 3.0 (Guerois et al. 2002) (http://foldx.crg.es/) is an empirical potential 

approach that uses an energy function derived from a weighted combination of 

physical-energy terms, statistical-energy terms, and structural descriptors calibrated to 

fit experimental ∆∆G values. FoldX and Dmutant are the only programs discussed 

herein that return negative ∆∆G values for stabilizing mutations and positive values for 

destabilizing mutants.  

I-Mutant2.0 (Capriotti et al. 2005) (http://gpcr2.biocomp.unibo.it/cgi/predictors/I-

Mutant2.0/I-Mutant2.0.cgi) and I-Mutant3.0  (Capriotti et al. 2008) 

(http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi) are support 

vector machine (SVM)-based tools. The services use either a protein structure or a 

sequence as input. We used the sequence-based version of both the versions as well as 

the structure based version of I-Mutant3.0. I-Mutant2.0 programs can be used to predict 

the sign of the stability change upon mutation or as a regression estimator to predict 

∆∆G values. Unlike other stability predictors analysed here, the I-Mutant3.0 classifies 

the prediction in three classes: neutral mutation ( -0.5=<∆∆G=<0.5), large Decrease (< 

-0.5) and large Increase (> 0.5). 

MultiMutate (Deutsch and Krishnamoorthy 2007) 

(http://www.math.wsu.edu/math/faculty/bkrishna/DT/Mutate/) uses a four-body scoring 

function based on Delaunay tessellation of proteins. The method calculates the change 
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in how well packed the residues are in the wild-type protein and in the mutant. Score 

values between 0.5% and −0.5% are classified as negative.  

MUpro version 2.0.4 (Cheng et al. 2006) (http://www.igb.uci.edu/servers/servers.html) 

contains two machine-learning programs, SVM and Neural Networks. We used the 

sequence-based version of the program. The SVM method was run using the default 

parameters. The output of the program is the sign of the energy change (+ or −). 

The programs SCide (Dosztanyi et al. 2003), Scpred (Dosztanyi et al. 1997), and SRide  

(Magyar et al. 2005) identify stability centers from sequence data. Mutations found at 

stability centers were considered by us to be destabilizing and thus deleterious. SCide 

(http://www.enzim.hu/scide) attempts to identify stability centers within experimentally 

determined protein structures. Stabilizing, cooperative, long-range contacts identified 

by SCide are formed between regions that are sequentially well separated or that are 

part of different subunits within a complex. Scpred 

(http://www.enzim.hu/scpred/pred.html) locates stability-center elements that impart 

stability via cooperative, long-range interactions. Scpred uses a neural network to 

predict stabilizing residues in conjunction with sequence information for the protein 

under study and its homologues. SRide (http://sride.enzim.hu/) combines several 

methods to identify residues expected to play key roles in stabilization. It analyzes 

tertiary structures, rather than primary structures, and the evolutionary conserved 

residues contained within. A residue is predicted to be stabilizing if it is surrounded by 

hydrophobic residues, exhibits long-range order, has a high conservation score, and, if 

it is part of a stability center.  
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Determination of Protein Structural Classes for the Test Cases 

CATH (class, architecture, topology, homology; http://www.cathdb.info/), a 

hierarchical protein-domain classification system (Orengo et al. 1997), was used to 

group the proteins according to secondary structure type and tertiary organization 

(protein structure type). 

 

Determination of Secondary Structural Elements and Accessible Surface Areas  

Secondary structural information for each mutation site was obtained from ProTherm 

where the data is taken from PDB file annotations. Accessible surface area (ASA) 

values were obtained from ProTherm, originally computed using the program, 

Analytical Surface Calculation. We classified residues with <10% ASAs as buried and 

with >25% ASAs as exposed. 

 

Determination of Volume and Charge Changes 

To calculate the residue-site charge and volume changes that would occur upon 

mutation, we obtained from the literature amino acid isoelectric point values 

(Greenstein and Winitz 1961) and volumes (Pontius et al. 1996).  

 

Statistical Analyses 

In the analysis the net effect i.e. the sign of the predictions was used. The ∆∆G values 

were used only to separate neutral cases from positive ones. The quality of the 

predictions is described by four parameters. In the following equations, tp, fp, tn, and fn 

refer to the number of true positives, false positives, true negatives, and false negatives, 

respectively.  
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Accuracy = 
fnfptntp

tntp

+++

+
 

Specificity = 
fptp

tp

+
 

Sensitivity = 
fntp

tp

+
 

MCC= 
))()()(( fptnfntnfptpfntp

fpfntntp

++++

×−×
 

Matthew’s correlation coefficients (MCC) range from −1 to 1. A value of MCC = 1 

defines the best possible prediction, while MCC = −1 indicates the worst possible 

prediction (or anti-correlation). For MCC = 0, the prediction is the result of chance. To 

be able to correlate the quality parameters for different programs with different sizes of 

test sets containing different amounts of positive and negative cases, the numbers of 

negative cases were normalized to be equal to the number of positive cases for each 

program. We used receiver operating characteristics (ROC) curves to plot the balance 

between sensitivity and specificity. ROC analysis was run at http://www.jrocfit.org. 

Mutation statistics were analyzed by comparing the frequencies of the mutations with 

the expected values that were calculated using the distribution of all amino acids in the 

analyzed dataset. For the mutated residues, the expected values were calculated with 

regard to their codon diversity thereby taking into account all possible amino acid 

substitutions.  

The χ
2
 test was used to determine the significance of the results and χ

2 
was calculated 

as: 

e

eo

f

ff
2

2 )( −
Σ=χ  
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where fo is the observed frequency and fe is the expected frequency for an amino acid. 

P-values were estimated in a one-tailed fashion.  

Correlations between the program outputs were calculated by counting all of the 

common cases and those predicted correctly.  

 

Results 

The performances of the eleven stability predictors differed when tested with our 

ProTherm dataset. SCide (Dosztanyi et al. 2003) and Scpred (Dosztanyi et al. 1997), 

which predict stability centers, as well as SRide (Gromiha and Selvaraj 2004), which 

predicts stabilizing residues, can predict only destabilizing effects caused by mutations. 

The other programs evaluate both stabilizing and destabilizing changes.  

Fig. 1A diagrams the distributions of the predicted and the experimental ∆∆G values 

follow normal distribution curves. The values predicted by I-Mutant2.0 and CUPSAT 

are somewhat biased towards negative values, whereas, those for Dmutant trend 

towards positive values, although the highest peak in the curve for the Dmutant data is 

at ∆∆G = 0. The distribution for the FoldX results does not show a clear peak; however, 

there is a peak at the negative end, and many of the ∆∆G values predicted by FoldX are 

smaller than -4 kcal/mol.  

To evaluate the performances of the programs, we used four measures: accuracy, 

specificity, sensitivity, and MCC. Table 1 displays the values of these measures for all 

of the mutations and individually for the stability-increasing and -decreasing mutations. 

The overall performances are best for I-Mutant3.0 (structure version), Dmutant and 

FoldX, which all have accuracies varying from 0.54 to 0.64. MUpro returned the best 
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sensitivity value (0.74); while for I-Mutant2.0 and CUPSAT, the values are only 

slightly smaller (0.71 and 0.69, respectively). The specificity (0.63) is best for I-

Mutant3.0 (structure version). However, the MCC values are poor for all the predictors, 

the best being I-Mutant3.0 (structure version) that has MCC of 0.27. The worst overall 

MCC value (-0.39) was obtained for MUpro.  

All the programs succeed better when considering their ability to predict stability 

increasing or decreasing mutations individually. In these analyses only two classes were 

considered, stabilizing or destabilizing and neutral cases. The neutral cases thus 

contained also destabilizing or stabilizing cases, as well, depending on the analysis. 

CUPSAT has the highest accuracy, sensitivity and MCC for stabilizing mutation 

predictions, 0.74, 0.43 and 0.35, respectively. Due to low number of stabilizing cases 

(5) among I-Mutant3.0 datasets, they were excluded. I-Mutant3.0, FoldX and Dmutant 

are the best methods for the prediction of destabilizing mutations all having MCC 

around 0.38. Sensitivity measures the proportion of true positive cases that are correctly 

identified. MUpro and I-Mutant3.0 (sequence version) has the best sensitivity values. 

All the programs have specificity over 0.50. Of the stability-center predictors, which 

only predict destabilizing mutations were equally accurate, but on other terms Scpred 

was the most reliable and SRide was the poorest predictor. The results for these 

programs are somewhat poorer than for the best general predictors. The ROC curves for 

the performances of FoldX, I-Mutant2.0, Dmutant, and CUPSAT are shown in Figure 

1B. The steep increase in the curves indicates that these programs were all capable of 

predicting the stability effects caused by the mutations. However, the curves bend 

strongly already at tp ~0.6. The AUCs for these programs are between 0.79 and 0.83.  
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Analysis of Structural Properties 

The effects that the type of mutation had on prediction performance were tested by 

determining the number of times a mutation replaced or substituted for a given amino 

acid, occurred within a secondary structural element or within a protein folding type, 

and caused a change in residue size or charge. The distributions of the original 

(mutated) and substituted (mutant) residues are given in Supplementary table 1. Among 

the mutated residues that are replaced by stabilizing mutations, D and H are 

significantly overrepresented, and P and K are significantly underrepresented. Among 

the mutated residues that were replaced by ones causing destabilization, C, I, and V are 

significantly overrepresented, while E, G, K, Q and S are significantly 

underrepresented. For residues replaced by mutations that changed |∆∆G| by 0.5 

kcal/mol or less (neutral mutations), the distributions are also biased but involve 

different residues. Mutations to P, G and L are much rarer than expected, while E, D, 

and V are overrepresented. Among the mutant residues, the distributions are even more 

biased. For all categories, but particularly those involving destabilizing or neutral 

mutations, alanine substitutions are greatly overrepresented. This observation 

contradicts the basic assumption behind alanine-scanning mutagenesis (Cunningham 

and Wells 1989), i.e., alanine substitutions are assumed to affect only the function of 

the substituted residue (and not the stability of the protein). Destabilizing alanine 

substitutions were found mainly in coils, turns, and β-strands (33× greater than 

expected for coils, 26.3× greater for β-strands, and 15.5× greater for turns, when 

compared with the wild-type alanine distribution). The mutation profiles are clearly 
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different for stabilizing and destabilizing mutations. The distribution for stabilizing 

mutant residues is nearly random. 

The results for the mutations in the secondary structural elements are given in Fig. 2A. 

The dataset for I-Mutant3.0 was too small. Overall, the majority of the programs predict 

different secondary structural elements with almost equal accuracy. CUPSAT predicted, 

with somewhat better accuracy than did the other programs, the effects of mutations 

that occurred in coils and turns. For all structural categories, I-Mutant2.0, FoldX, 

MUpro, MultiMutate, and CUPSAT gave the best results for sensitivity. When 

accuracy, specificity and sensitivity were considered, Dmutant performed better for 

mutations found in α-helices and coils and performed poorly for mutations in strands or 

turns. FoldX, I-Mutant2.0 and MultiMutate are predicting different secondary structures 

with almost equal specifity, whereas other predictors have differences in this respect. 

Proteins are classified by CATH as mainly α-helical, as mainly β-stranded, as mixed α 

and β structures, or as having few secondary structures. The predictions obtained from 

the eleven programs differed with respect to performance depending on which protein 

class type a mutation was found in (Fig. 2B). CUPSAT, Dmutant, FoldX, I-Mutant2.0 

and MultiMutate made the most accurate and sensitive predictions for mutations that 

are in domains or proteins composed of few secondary structures. All programs showed 

great variability in specificity when different protein structure types were compared, 

e.g., I-Mutant2.0 predicted the effects of mutations in β-strand proteins with an 

accuracy of 0.34, in α and β proteins with an accuracy of 0.53, and in α-helical proteins 

with an accuracy of 0.84. The predictive specificities of MultiMutate and Scpred vary 

only slightly for the different protein structure types. Additionally, the MCCs for the 
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programs deviate widely. Five out of eight programs (MUpro lacks the respective 

value) have highest MCC for proteins composed of few secondary structures. 

Often, a mutation, associated with a disease state, drastically changes the chemical 

and/or physical properties at the mutated site. One such change is a change in the 

accessible surface area (ASA). We considered residues with ASA values of at least 

25% those of fully exposed amino acids to be surface residues and those having ASA 

values of ≤ 10% to be buried. All programs, except MultiMutate, predict exposed 

mutations more accurately than buried mutations (Fig. 2C). There are major categorical 

differences in prediction sensitivity for CUPSAT, Dmutant, FoldX, Multimutate and 

MUpro. Predictions for mutations among buried residues are more specific than for 

amino acids on surface except for MultiMutate. All programs predicted the effects that 

the buried mutations had on stability with more accuracy and specificity than they did 

the stability effects associated with surface residues.  

The performances of the predictors as a function of volume change upon mutation are 

shown in Supplementary Fig. 1. When the original residue is replaced with a residue of 

smaller volume, a cavity may form in the protein interior. Large volume changes were 

predicted better than were small changes by all the programs. In comparison with the 

experimental data, the distributions of correct predictions are similar for CUPSAT and 

MultiMutate. The distributions of the false positives for the stabilizing mutations are all 

quite similar except that the peak positions do not coincide. The distributions of 

destabilizing mutations predicted by the programs follow the experimental distribution 

very closely. For the false positive distributions, that produced by Scpred differs 

substantially from the others. The performances of the predictors were unbiased with 

regard to the type of mutation and the accuracy of the prediction. 
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The distributions caused by changes in charge are presented in Supplementary Fig. 2.  

For destabilizing mutations there are no significant performance deviations in the 

methods for different charge changes. The results obtained using I-Mutant2.0 and 

MUpro are not reliable because only eight mutations within their datasets changed 

charge. The distributions obtained for the neutral cases are similar to those found for the 

experimental data, except for those of the Scpred and MultiMutate. In summary the 

predictors performed similarly despite differences in the extent to which the volume or 

charge varied as functions of the original residue and the mutation. 

To further assess the performances of the programs we compared the predictions 

obtained for the same mutations used by the programs in a pairwise fashion (Table 2). 

The programs were tested with different datasets, which avoided using the training 

cases. The most similar test sets were for Scpred and MultiMutate, which shared 98.5% 

of the cases. Conversely, the dataset used for the CUPSAT and I-Mutant2.0 comparison 

had only 18 mutations (1% of the original dataset). The largest percentage of correctly 

predicted cases was 38% (for the Dmutant and I-Mutant2.0 comparison). On average, 

the number of correctly predicted cases was less than one-third of the total data in each 

set. The correlation between two programs was best for MUpro and SRide, relatively 

good for SCide and SRide and for CUPSAT and MUpro, and the worst for SRide and I-

Mutant2.0. In general however, the overall performances varied greatly because the 

correlations between programs were found to be small.  

Figure 6 shows the agreement among the programs with the experimental data. For the 

vast majority of cases when only the six general methods were considered, the 

predictions of just one to three of the methods are in agreement, and when all eleven 

predictors were considered, only one to four of the predictions agree. There was not a 
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single case for which all of the programs correctly predicted the experimental result, 

and when only the general predictors were considered together, in 16% none of their 

results agree with the experimental data.  

 

Discussion 

We evaluated how reliably the stability effects of missense mutations could be 

predicted. Stability changes can be studied experimentally, but such studies are 

laborious, time consuming, and often costly. Therefore, reliable computational methods 

that can predict stability changes are valuable tools. Mutations that decrease the 

stability of proteins are generally considered to be harmful. In some circumstances, 

mutations that increase protein stability can also be deleterious. Proteins are dynamic 

molecules, and mechanical flexibility is necessary for their function (Vihinen 1987; 

Fields 2001; Daniel et al. 2003). Increased stability can reduce flexibility (Somero 

1995; Wolf-Watz et al. 2004). The active-site residues of enzymes are generally polar 

or charged, and are usually located in hydrophobic clefts (Fersht 1999). Stabilizing 

mutations in active site residues can reduce enzymatic activities (Zhi et al. 1991; 

Meiering et al. 1992; Schreiber et al. 1994; Kidokoro et al. 1995; Shoichet et al. 1995; 

Garcia et al. 2000; Beadle and Shoichet 2002; Mukaiyama et al. 2006; Nagatani et al. 

2007; Counago et al. 2008). Additionally, a stabilizing mutation increased the 

resistance of ribonuclease A to proteolysis, (Markert et al. 2001), which, for example, 

would be an undesirable effect if it occurred in enzymes involved in cell signaling (Fink 

2005).  
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We tested the performances of eleven protein stability predictors. For this study, we 

used only sequence data as input for I-Mutant2.0, MUpro, and Scpred, even though the 

first two programs can also use structural information. CUPSAT, Dmutant, 

MultiMutate, SCide, and SRide require structural information as input data. 

Bioinformatic studies concerning protein stability predictions have often used tertiary 

structure information, because such information has improved the quality of the 

predictions and, indeed, we found that CUPSAT, Dmutant, and FoldX were the best of 

the predictors. However, even though Scpred uses only sequence data as input, it 

returned the most accurate predictions among the stability-center predictors. Although 

there are two versions of MUpro—one that uses structural and sequence data and one 

that uses only sequence data—the two versions of the program are quite similar (Cheng 

et al. 2006) and therefore, we used the sequence-based version. 

Certain aspects of the performance of stability predictors have been tested in three 

previous studies. Potapov and colleagues (Potapov et al. 2009) compared the 

performances of six programs, CC/PBSA, EGAD, FoldX, I-Mutant2.0, Rosetta, and 

Hunter. I-Mutant2.0 and FoldX are the only predictors also used in our study. Their 

dataset was composed of 2156 single mutations obtained from ProTherm. As with our 

study, mutations that were used to train the programs were not used in their trials. None 

of the programs they assessed performed as well as reported by their developers, which 

is what we also found. Of the tested programs, EGAD (Pokala and Handel 2005) cannot 

predict effects for all types of mutations, and a description of Hunter has not been 

published and the program is not available. We identified web services that could be 

used in conjunction with only sequence data, mutation positions, and, in some cases, 

coordinates of the wild-type protein as input, and then used those services without 
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subsequent user intervention. CC/PBSA (Benedix et al. 2009) did not meet these 

criteria, as it requires the use of two programs and extensive computing power. Rosetta 

software is used for protein modeling and design. The intent of Potapov et al. was to 

correlate experimental and predicted ∆∆G values, while we were interested in 

determining whether the stabilizing or destabilizing effect caused by a mutation could 

be correctly predicted, because, for mutations associated with disease states, the sign of 

the stability change is what is needed.  

Lonquety and colleagues (Lonquety et al. 2008) evaluated predictors that detect folding 

nuclei affected by mutations. The programs tested included Dmutant, the two versions 

of I-Mutant2.0, MUpro, and PoPMuSiC. Their dataset contained 1409 mutations from 

the ProTherm. However, they tested I-Mutant2.0 and MUpro with same dataset that had 

been used for training. Thus, their results indicated only how well the methods learned 

the training set. The correlation coefficients for PoPMuSiC and Dmutant were ~0.5. We 

did not test PoPMuSiC because the server for the version available at the time was very 

unstable. A new, more stable version (Dehouck et al. 2009) was released after we 

finished our study. We could not test the newer version because its neural network was 

trained using a more current set of ProTherm data, and thus, there were not enough test 

cases available.  

Tastan and colleagues (Tastan et al. 2007) used three structure-based programs, 

Dmutant, FoldX, and I-Mutant2.0, to investigate stability predictions for mutations in 

two types of membrane proteins, mammalian rhodopsins (279 mutations) and 

bacteriorhodopsins (54 mutations). The best prediction accuracy for the rhodopsin 

dataset was <0.60, while it was somewhat greater for the bacteriorhodopsin dataset. 
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Only 20% of the rhodopsin dataset and 35% of the bacteriorhodopsin dataset were 

accurately predicted by all three programs. 

There are other stability predictors, in addition to those mentioned above, that we did 

not test. Eris (http://eris.dokhlab.org) uses a physical force field in combination with 

atomic modeling and fast side-chain packing (Yin et al. 2007). The program is also 

designed to predict changes in backbone conformations caused by mutations by 

modeling backbone flexibility. Because the Eris website does not allow for batch 

submissions, we could not study its performance. iPTREE-STAB 

(http://210.60.98.17/IPTREEr/iptree.htm) uses a decision-tree method. The sequence-

based method determines stabilizing and destabilizing mutations but uses only a seven-

residue window, the mutation position in the middle. The service could not be accessed. 

Finally, although we attempted to assess the prediction accuracy of AUTO-MUTE, only 

28 cases that had not been used to train the program could be retrieved from ProTherm, 

which was too small a number for a statistical analysis. Of the 28 cases, AUTO-MUTE 

correctly predicted 6 (21%). 

 Overall, we found SRide to be the least accurate predictor and that SCide and MUpro 

also performed poorly. The latter two predictors use machine-learning approaches that 

are dependent on the quality and quantity of the training dataset.  

Mutations can introduce or relieve strain into the protein backbone. To properly 

estimate ∆∆G stability values, structural rearrangements that induce or release strain 

should be considered. Calculations of the ∆∆G values associated with strain are 

computationally possible using either molecular dynamics or Monte Carlo simulations 

but are also computationally very intense. The simpler methods, such as those that we 
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used, allow a large number of mutations to be surveyed and their effects on stabilities 

determined quickly but can not model protein dynamics.  

Our analyses showed that the predicted ∆∆G values are distributed in a fashion similar 

to those of the experimental data. However, the mutant and mutated residue 

distributions are strongly biased in the stabilizing, destabilizing, and neutral categories. 

These biases may have arisen because the designs of the original experiments that 

produced the mutations were biased, e.g., consider the excessive number of alanine 

mutations retrieved from ProTherm.  

Our ROC curves are quite similar to those found for a function-stability correlation 

study that used missense mutations (Bromberg and Rost 2009). The curves in Fig. 2 

increase sharply until a tp value of 0.6 is reached, but then bend sharply, and continue 

to rise more slowly.  

We found that the structural context of a residue strongly affected predictor 

performance. Disease-causing mutations have biased distributions in secondary 

structural elements (Khan and Vihinen 2007). Both the secondary structure type and the 

protein folding type had significant effects. There was also a clear difference between 

the prediction accuracies for buried and accessible residues. The structural context 

effect depended on the method used and influenced the values of the quality parameters 

differently. Conversely, the extent of volume or charge change upon mutation did not 

influence the prediction performances significantly. 

In conclusion, at best, the methods predicted the changes in stability caused by 

mutations with only moderate accuracies. However, the number of false positives and 

false negatives returned by the programs was substantial. As so many factors affect 

protein stability, even small differences in the ∆∆G values between a wild-type and its 
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mutant can be significant. Molecular dynamics and Monte Carlo simulations provide 

more accurate results in general; however, characterization of mutational effects is still 

problematic even when these methods are used. Additionally, the computational power 

demands of these two methods are prohibitively great for the analysis of large datasets. 

For mutation effect investigations the tested methods have only limited applicability, 

and should thus be used preferably together with other prediction approaches. One way 

to improve the performance of predictors might be to use additional features. 
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Figure Legends 

 

Figure 1. A) Distributions of predicted and experimental ∆∆G values. The predictors 

used were I-Mutant2.0 (red), Dmutant (green), CUPSAT (blue), FoldX (grey), and the 

experimental ∆∆G values are shown in black. B) Receiver operating characteristics 

curves diagramming the performances of FoldX, I-Mutant2.0, Dmutant and CUPSAT 

with the values for AUC ± SE derived from the areas under the curves. Color coding for 

the individual predictors is shown in the figure. 

 

Figure 2. The values of the four quality parameters, accuracy, specificity, sensitivity, 

and Matthew’s correlation coefficient for the secondary structures, the CATH 

classifications, and the accessible surface areas. A) Secondary structures: α-helices 

(red), β-strands (blue), coils (yellow), and turns (green). B) Protein structure types: 

mainly α-helical (red), mainly β-stranded (blue), α/β structures (green), and aperiodic 

structures (yellow). C) Accessible surface areas: exposed residues (blue, ASA ≥ 25%) 

and buried residues (red, ASA ≤ 10%). Color coding for the classifications is shown in 

the figure. 

 

Figure 3. Number of stability predictors that returned predictions that agreed with the 

experimental values. Black bars do not include the results of the stability-center 

programs (SCide, SRide and Scpred). The grey bars include the results of all of the 

programs. The signs of the tp, fp, tn, and fn values were taken into account. 
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Table 1. Performance of stability predictors 
All cases            

Parameters CUPSAT Dmutant FoldX I-Mutant2.0 

I-Mutant3.0  

(sequence) 

I-Mutant3.0 

(structure) 

MUpro MultiMutate SCide SRide Scpred 

tp 249 576 629 72 35 34 71 620 197 33 402 

fp 123 238 321 53 38 23 70 414 122 28 238 

tn 53 365 244 19 24 39 0 206 465 548 393 

fn 111 535 347 30 18 19 25 517 862 980 751 

Total
a
 536 1714 1541 174 115 115 166 1757 1646 1589 1784 

Accuracy
b
 0.50 0.56 0.54 0.48 0.52 0.64 0.37 0.44 0.49 0.49 0.49 

Specificity
b
 0.50 0.57 0.53 0.49 0.52 0.63 0.43 0.45 0.47 0.40 0.48 

Sensitivity
b
 0.69 0.52 0.64 0.71 0.66 0.64 0.74 0.55 0.19 0.03 0.35 

MCC
b
 -0.01 0.12 0.08 -0.03 0.05 0.27 -0.39 -0.13 -0.03 -0.04 -0.03 

Stability increasing cases 

Parameters CUPSAT Dmutant FoldX I-Mutant2.0 MUpro MultiMutate      

tp 25 91 86 8 8 91      

fp 45 131 134 7 15 193      

tn 131 472 431 65 55 427      

fn 33 123 125 15 17 128      

Total
a
 234 817 776 95 95 839      

Accuracy
b
 0.74 0.60 0.59 0.63 0.55 0.55      

Specificity
b
 0.63 0.66 0.63 0.78 0.60 0.57      

Sensitivity
b
 0.43 0.43 0.41 0.35 0.32 0.42      

MCC
b
 0.35 0.22 0.18 0.30 0.12 0.11      

Stability decreasing cases 

Parameters CUPSAT Dmutant FoldX I-Mutant2.0 

I-Mutant3.0  

(sequence) 

I-Mutant3.0 

(structure) 

MUpro MultiMutate 

  

 

tp 224 485 543 64 35 34 63 529    

fp 78 107 187 46 36 20 55 221    

tn 98 496 378 26 26 42 15 399    
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fn 78 412 222 15 13 14 8 389    

Total
a
 478 1500 1330 151 110 110 141 1538    

Accuracy
b
 0.65 0.68 0.69 0.59 0.57 0.69 0.55 0.61    

Specificity
b
 0.63 0.75 0.68 0.56 0.56 0.69 0.53 0.62    

Sensitivity
b
 0.74 0.54 0.71 0.81 0.73 0.71 0.89 0.58    

MCC
b
 0.30 0.38 0.38 0.19 0.16 0.39 0.14 0.22    

 
a
Total number of cases used by the given program.  

b
Accuracy,

 
specificity, sensitivity and MCC are calculated from normalized numbers. 
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Table 2. Pairwise prediction correlations. Upper table: The number of cases shared by 

two programs, reported as a percentage (upper right triangle). The number of cases 

predicted correctly, reported as a percentage (lower left triangle). Middle table: The 

absolute number of cases shared by two programs (upper right triangle). The 

percentage of correctly predicted cases (lower left triangle). Bottom table: Pairwise 

correlation  

 

 CUPSAT Dmutant FoldX I-Mutant2.0 

I-Mutant3.0  

structure 

I-Mutant3.0  

sequence MultiMutate MUpro SCide Scpred SRide 

CUPSAT  29.4 21.4 1.0 0.1 0.1 29.5 2.0 26.1 30.0 23.0 

Dmutant 8.1  82.5 9.6 6.3 6.3 94.6 9.1 90.4 96.1 87.7 

FoldX 8.1 31.5  9.8 6.4 6.4 84.9 9.3 78.7 86.2 75.3 

I-Mutant2.0 0.2 3.6 3.5  6.4 6.4 9.5 7.5 9.0 9.8 9.0 

I-Mutant3.0  

structure 0.0 3.2 3.0 2.1  6.4 6.4 5.9 6.4 6.4 6.4 

I-Mutant3.0  

sequence 0.0 2.6 2.4 2.4 2.7  6.4 5.9 6.4 6.4 6.4 

MultiMutate 7.8 30.7 27.2 3.3 2.2 2.0  9.2 90.8 98.5 87.7 

MUpro 0.7 2.9 2.9 2.0 1.5 1.7 2.6  8.5 9.3 8.5 

Scide 4.5 22.5 17.6 1.4 2.6 1.8 16.2 1.2  92.3 87.8 

Scpred 7.5 26.5 22.9 2.3 2.9 2.3 21.6 2.6 24.6  89.1 

Sride 2.6 19.9 13.5 1.2 2.4 1.6 11.5 0.4 26.2 19.8  

            

 CUPSAT Dmutant FoldX I-Mutant2.0 

I-Mutant3.0  

structure 

I-Mutant3.0  

sequence MultiMutate MUpro SCide Scpred SRide 

CUPSAT  524 381 18 1 1 527 35 465 536 411 

Dmutant 27  1471 171 113 113 1688 162 1613 1714 1565 

FoldX 38 38  174 115 115 1514 166 1404 1538 1344 

I-Mutant2.0 22 38 36  114 114 169 134 160 174 161 

I-Mutant3.0  

structure 0 50 46 33  115 114 106 115 115 115 

I-Mutant3.0  

sequence 0 42 37 37 43  114 106 115 115 115 

MultiMutate 26 32 32 35 34 31  164 1620 1757 1564 

MUpro 34 32 31 27 25 28 28  152 166 152 

Scide 17 25 22 16 40 28 18 14  1646 1566 

Scpred 25 28 27 24 45 36 22 28 27  1589 

Sride 11 23 18 14 37 25 13 5 30 22  

            

 CUPSAT Dmutant FoldX I-Mutant2.0 

I-Mutant3.0  

structure 

I-Mutant3.0  

sequence MultiMutate MUpro SCide Scpred SRide 

CUPSAT            

Dmutant 0.04           

FoldX 0.28 0.28          

I-Mutant2.0 0.16 0.18 0.24         

I-Mutant3.0  

structure - 0.38 0.38 0.17        

I-Mutant3.0  

sequence - 0.33 0.27 0.53 0.42       

MultiMutate 0.15 0.25 0.20 0.26 0.04 0.16      

MUpro 0.54 0.09 0.29 0.37 0.02 0.33 0.23     

Scide -0.14 0.10 -0.03 -0.26 0.24 0.01 -0.05 -0.30    

Scpred -0.07 0.12 0.06 0.07 0.44 0.30 0.04 0.22 0.35   

Sride -0.28 0.10 -0.15 -0.37 0.07 -0.12 -0.18 -0.65 0.64 0.22  
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Distributions of predicted and experimental ∆∆G values. The predictors used were I-Mutant2.0 
(red), Dmutant (green), CUPSAT (blue), FoldX (grey), and the experimental ∆∆G values are shown 
in black. B) Receiver operating characteristics curves diagramming the performances of FoldX, I-
Mutant2.0, Dmutant and CUPSAT with the values for AUC ± SE derived from the areas under the 

curves. Color coding for the individual predictors is shown in the figure.  
181x261mm (300 x 300 DPI)  
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The values of the four quality parameters, accuracy, specificity, sensitivity, and Matthew’s 
correlation coefficient for the secondary structures, the CATH classifications, and the accessible 

surface areas. A) Secondary structures: α-helices (red), β-strands (blue), coils (yellow), and turns 
(green). B) Protein structure types: mainly α-helical (red), mainly β-stranded (blue), α/β structures 
(green), and aperiodic structures (yellow). C) Accessible surface areas: exposed residues (blue, ASA 
≥ 25%) and buried residues (red, ASA ≤ 10%). Color coding for the classifications is shown in the 

figure.  
297x187mm (300 x 300 DPI)  
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Number of stability predictors that returned predictions that agreed with the experimental values. 
Black bars do not include the results of the stability-center programs (SCide, SRide and Scpred). 
The grey bars include the results of all of the programs. The signs of the tp, fp, tn, and fn values 

were taken into account.  
123113x95250mm (1 x 1 DPI)  
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Supplemental Table 1. Amino acid distributions. A) Mutated (original) and B) mutant amino acids 
A) Stabilizing  Destabilizing  Neutral 

Amino acid Observed Expected χ
2
 P value Observed Expected χ

2
 P value Observed Expected χ

2
 P value Total 

A 18 19 0.03 8.64E-01 70 79 0.94 3.32E-01 53 53 0 9.70E-01 141 

C 4 3 0.17 6.76E-01 27 14 13.15*** 2.88E-04 5 9 1.94 1.64E-01 36 

D 36 14 34.13*** 5.15E-09 46 59 2.88 8.96E-02 57 40 7.21** 7.26E-03 139 

E 14 14 0 9.90E-01 33 59 11.12*** 8.53E-04 69 40 21.71*** 3.17E-06 116 

F 5 8 1.17 2.79E-01 33 34 0.02 8.83E-01 13 23 4.31* 3.78E-02 51 

G 10 19 4.31* 3.78E-02 40 80 19.98*** 7.84E-06 29 54 11.72*** 6.20E-04 79 

H 12 5 11.55*** 6.79E-04 18 20 0.12 7.25E-01 18 13 1.7 1.92E-01 48 

I 10 11 0.12 7.29E-01 114 47 96.52*** 8.81E-23 37 32 0.88 3.48E-01 161 

K 12 17 1.29 2.56E-01 28 70 25.01*** 5.71E-07 47 47 0 9.66E-01 87 

L 7 18 6.61* 1.01E-02 96 75 5.91* 1.50E-02 28 51 10.23** 1.38E-03 131 

M 6 5 0.47 4.92E-01 24 19 1.3 2.54E-01 16 13 0.75 3.87E-01 46 

N 14 11 1.01 3.14E-01 29 45 5.63* 1.77E-02 25 30 0.97 3.25E-01 68 

P 3 9 4.11* 4.26E-02 35 38 0.28 5.97E-01 6 26 15.33*** 9.04E-05 44 

Q 9 9 0 9.81E-01 13 38 16.49*** 4.90E-05 23 26 0.3 5.83E-01 45 

R 5 9 1.62 2.04E-01 19 37 8.57** 3.41E-03 25 25 0 9.85E-01 49 

S 13 13 0 9.58E-01 26 55 15.54*** 8.09E-05 38 37 0.01 9.34E-01 77 

T 19 13 3.19 7.40E-02 67 53 3.68 5.51E-02 46 36 2.81 9.35E-02 132 

V 13 15 0.18 6.74E-01 149 61 125.72*** 3.55E-29 60 42 8.23** 4.11E-03 222 

W 0 4 3.76 5.26E-02 15 16 0.04 8.50E-01 7 11 1.27 2.61E-01 22 

Y 12 8 1.87 1.72E-01 49 34 6.61* 1.02E-02 29 23 1.54 2.15E-01 90 

total 222 222   931 931   631 631   1784 
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B) Stabilizing Destabilizing Neutral 

Amino acid Observed Expected χ
2
 P value Observed Expected χ

2
 P value Observed Expected χ

2
 P value Total 

A 25 14 9.58** 1.97E-03 307 57 1096.49*** 1.91E-240 138 39 255.58*** 1.57E-57 470 

C 12 8 2.09 1.48E-01 25 33 2.05 1.53E-01 12 23 4.93* 2.65E-02 49 

D 5 9 1.82 1.77E-01 25 38 4.45* 3.50E-02 24 26 0.12 7.29E-01 54 

E 8 8 0 9.80E-01 15 33 10.02** 1.55E-03 34 23 5.83* 1.57E-02 57 

F 12 9 0.95 3.29E-01 47 38 2.13 1.44E-01 35 26 3.32 6.85E-02 94 

G 14 13 0.07 7.87E-01 99 55 36.05*** 1.92E-09 23 37 5.31* 2.12E-02 136 

H 9 9 0 9.84E-01 23 38 5.92* 1.50E-02 17 26 2.98 8.45E-02 49 

I 19 12 4.25* 3.93E-02 26 50 11.43*** 7.23E-04 24 34 2.84 9.18E-02 69 

K 9 8 0.14 7.04E-01 25 33 2.05 1.53E-01 39 23 12.03*** 5.24E-04 73 

L 18 19 0.03 8.73E-01 33 78 26.27*** 2.97E-07 32 53 8.40** 3.76E-03 83 

M 10 5 4.72* 2.99E-02 31 21 4.33* 3.74E-02 22 14 3.9 4.84E-02 63 

N 9 9 0 9.84E-01 30 38 1.68 1.94E-01 23 26 0.29 5.87E-01 62 

P 4 14 6.77** 9.28E-03 20 57 24.02*** 9.55E-07 14 39 15.71*** 7.40E-05 38 

Q 5 8 1.08 2.98E-01 21 33 4.51* 3.36E-02 34 23 5.83* 1.57E-02 60 

R 11 19 3.54 5.99E-02 9 81 63.75*** 1.41E-15 22 55 19.57*** 9.68E-06 42 

S 13 21 3.02 8.23E-02 51 88 15.47*** 8.37E-05 36 60 9.32** 2.27E-03 100 

T 4 14 6.77** 9.28E-03 55 57 0.07 7.91E-01 20 39 8.99** 2.72E-03 79 

V 22 14 5.20* 2.26E-02 64 57 0.86 3.54E-01 50 39 3.34 6.74E-02 136 

W 5 4 0.27 6.03E-01 9 17 3.5 6.15E-02 10 11 0.14 7.06E-01 24 

Y 8 7 0.21 6.44E-01 16 29 5.48* 1.92E-02 22 19 0.37 5.41E-01 46 

total 222 222   931 931   631 631   1784 

a
The italicized χ

2
 values identify underrepresented residues and the values in bold identify overrepresented residues in comparison 

with random distributions derived from theoretical usage frequencies. Significance levels are * P < 0.05; ** P < 0.01; *** P < 

0.001 
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Supplementary Figure 1. The performances of the predictors as a function of the 

volume change resulting from mutation. A) Stabilizing true positives, B) stabilizing 

false negatives, C) destabilizing true positives, D) destabilizing false negatives, E) 

neutral true negatives, and F) neutral false positives. Color coding for the individual 

programs and the complete dataset is shown in the figure.  

 

Supplementary Figure 2. The performances of the predictors as a function of the 

charge change resulting from mutation. A) Stabilizing true positives, B) stabilizing 

false negatives, C) destabilizing true positives, D) destabilizing false negatives, E) 

neutral true negatives, and F) neutral false positives. Color coding for the individual 

programs and the complete dataset is shown in the figure.  
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The performances of the predictors as a function of the volume change resulting from mutation. A) 
Stabilizing true positives, B) stabilizing false negatives, C) destabilizing true positives, D) 

destabilizing false negatives, E) neutral true negatives, and F) neutral false positives. Color coding 
for the individual programs and the complete dataset is shown in the figure.  
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The performances of the predictors as a function of the charge change resulting from mutation. A) 
Stabilizing true positives, B) stabilizing false negatives, C) destabilizing true positives, D) 

destabilizing false negatives, E) neutral true negatives, and F) neutral false positives. Color coding 
for the individual programs and the complete dataset is shown in the figure.  
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