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Abstract 

 

The flexibility and feasibility of a 5 kW SOFC generator designed for natural gas and fuelled by a 

non-conventional liquid fuel such ethanol is analysed. A complete generator model is implemented 

to predict and determine the main criticalities when ethanol fuel is adoperated. The main Balance-

of-Plant (BoP) units considered are the reformer, the recirculation system based on an ejector, the 

tubular cells bundles constituting the stack unit, the after-burner zone and the air blower. The 

electrical and global efficiencies achieved at nominal operating conditions show how ethanol 
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maintains generator performance good,  while only slightly reducing the system AC efficiency from 

48% (achieved by natural gas) to 45%. The effectiveness and flexibility of the recirculation system 

when changing the fuel is also verified since a safe steam-to-carbon ratio (STCR) is established 

after the fuel is switched from natural gas ehtanol. The stack thermal management is analysed in 

detail and related to the system performances, showing how a high endothermic fuel reforming 

reaction is required to maintain the overall system efficiency.  A preliminary experiment with 

ethanol feeding the Siemens generator is finally presented. The system response to the new fuel is 

monitored by several measured parameters and the system regulation is explained. 

 

 

1. Introduction 

 
Natural gas (NG) is considered the major fuel for SOFCs due to its widespread availability, well-

known catalytic reforming techniques to produce hydrogen and carbon monoxide, and reduced 

costs. Several SOFC systems running on natural gas are already installed, and some of them have 

already achieved several operating hours with high conversion efficiency rates for electricity 

production [1,2]. Still, natural gas is a fossil fuel, and its consumption to produce energy implies 

having a net balance of CO2 emissions. One attractive feature of SOFC technology is the possibility 

to operate on different fuels. The relatively high operating temperature permits to have an integrated 

plant for converting hydrocarbons or alcohols into H2 and CO, which are subsequently electro-

oxidised in  a SOFC to produce electricity).  

Among the others, fuels that can be derived from a biological path (e.g. biogases or bio-fuels) are of 

great interest to assure a sustainable energy production since the net carbon dioxide balance 

emissions is in principle zero. Of course, depending on the particular fuel composition, a proper 

device for the catalytic reforming (preferably internally integrated into the stack) has to be selected 

in order to assure both an adequate conversion of the hydrocarbons or alcohols, as well as to prevent 

carbon deposition on the anode side of the cells.  
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The physical status of a fuel at environmental pressure and temperature is also a feature to consider 

when selecting a fuel. The general advantage of liquid fuels is the high specific energy density, 

which translates directly into easier and more convenient storage and transportation. Especially for 

maritime transportation and aircrafts (where the fuel volume storage is a significant parameter), 

liquid fuels are of a great interest. One available option is the use of alcohols (e.g. methanol, 

ethanol, DME) in an SOFC generator with internal or in-stack fuel reforming to provide power to 

high energy-demanding auxiliary units [3]. Methanol is a good candidate since it is readily 

available, but usually a fossil fuel such as natural gas or coal is used as the initial feedstock. 

Moreover, methanol is toxic and special handling and safety issues must be considered. Ethanol is a 

very promising candidate as well since it can be produced from renewable resources and has no 

toxicity issues.  

In general, an important issue arising when considering bio-fuels, either gaseous or liquid, is how 

much energy is actually spent to produce a certain available amount fuel starting from the biomass: 

the debate was and still is very intense, particularly regarding the ethanol production. In fact, the 

Well-to-Tank (WTT) value of the first-generation bio-ethanol, is around 1.51 MJ/MJ (mean value 

obtained from different production pathways), which is still far from the values reached by the 

traditional fossil fuels (e.g. 0.19 for natural gas) [4]. It has recently been reported [5] that corn 

ethanol is energy-efficient, as indicated by an energy output/input ratio of 1.34, while other studies 

state that producing ethanol requires more energy than that stored in the final fuel [6]. Of course, 

this clearly depends strongly on the specific production pathway selected and the type of starting 

biomass.  

There is still of course a great opportunity to improve the production and distribution paths of bio-

fuels, and the second generation is developing fast. In addition, bio-ethanol could reach a good 

performance level in terms of the «generalised» Tank-to-Wheel (TTW) ratio. As shown in the 

results of this paper, a good electric and CHP efficiency can be reached when a SOFC is used as the 

device converting the bio-fuel into electricity and heat. 
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The consolidated bio-ethanol production technology essentially uses biomass waste as the raw 

material. Most of the worldwide production relies on the microbial fermentation of sugars (prior 

eventually the hydrolysis of the starch-containing compounds to the corresponding sugar).  

The standard path from sugar (glucose) follows the basic overall reaction: 

 2236126  2 2 COOHCHCHOHC +→  (1)  

Sugarcane (wide production and use in Brazil) or corn (especially in the US) can be used as 

feedstock biomass and the two have different ethanol yields per kg of biomass.  

Through hydrolysis, a cellulosic biomass is feasible as well, since enzymes capable of hydrolysing 

cellulose and preparing it for fermentation have been widely discovered and selected. This 

technology could turn a number of cellulose-containing agricultural by-products such as corncobs, 

straw, and sawdust into renewable energy resources. Some enzymes are able to hydrolyse 

agricultural residues such as corn stover, wheat straw, and sugar cane bagasse as well as energy 

crops such as switchgrass into fermentable sugars [7]. 

Ethanol is also relatively easy to convert in hydrogen and carbon monoxide through catalytic steam 

reforming (which is already generally performed in large SOFC systems to convert natural gas). 

When bio-ethanol is coupled with a high-energy conversion system, such as an SOFC, a complete 

sustainable and efficient electricity production is available. For these reasons, an SOFC system 

fuelled by ethanol is an option worthy of consideration. 

 

 

 

2. Scope of this study 

The main purpose of this study is to establish a detailed and complete modelling framework  of an 

SOFC generator that is able to consider both hydrocarbons and alcohols as fuel inlet. The model is 

validated against the real generator operating with tubular cells and running on natural gas. 

System simulations are performed to show how ethanol could be used to efficiently produce energy 

(electricity and heat) using an SOFC device as power generator. An experiment with ethanol fuel 

feeding the real generator is finally performed to check the validity of the simulation results and 
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support the main findings. In particular, the generator fuel-flexibility is checked with particular 

concern to the ejector-based recirculation system and the stack thermal management. 

 

3. Balance-of-Plant of the SOFC system 

 

In this section, the reference case (a generator fuelled by natural gas) and the proposed alternative (a 

generator running on ethanol fuel) are compared together. A wide range of topics related to the 

operation with a non-conventional fuel are discussed. For both feeding cases, the BoP is maintained 

the same; in this way, the fuel flexibility of the generator is assessed while the system design and 

configuration are kept unchanged. 

A complete system model of a 5 kW SOFC generator was developed in the present work. The main 

modules considered are the fuel processing zone (with a thermally integrated in-stack reformer), the 

stack unit, the after-burner zone, the ejector-based recirculation system and the cathode air blower. 

The SOFC system described is representative of the SFCα6 Siemens Fuel Cell design, of which a 

prototype unit was installed and has been running at Turbocare Spa (Torino) since April 2006. 

The stack consists of 88 tubular cells with a 75 cm active length. The cell design and materials are 

well known and are reported in [8]. The cells are packed together in a 4 bundles arrangement, each 

one consisting of 22 tubular cells. Within every bundle, two strings of 11 series-connected cells are 

connected together in parallel. According to this electrical connection, the voltages produced by the 

4 bundles are summed together to provide the overall stack voltage.  

Figure 1 - Installation of the 5 kW Siemens Generator in Turbocare Spa 

The generator has a nominal AC electric power around 3-3.5 kWel, with a respective DC stack 

current of 120-150 A and a voltage of 29-26.5 V. The peak power is 5 kW DC. The nominal 

thermal recovered power is in the range of 2.5-3.1 kWth. The nominal operating temperature of the 

stack is 970 °C. A scheme of the BoP main modules is presented in Figure 2.  

Natural gas is the designed fuel and can be provided directly from the industrial grid, where it is 

available at pressure of approximately 5 bars. A valve reduces the pressure to a value of 3 bars just 
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before the generator inlet. As the first step, the fuel enters the desulphuriser, a two reactor beds 

connected in series, the first one filled with zeolites and the second one with activated carbon. After 

the cleaning stage, the NG enters the ejector at a pressure that is dependent on the nominal flow. A 

maximum NG flow of 30 SLPM with an inlet pressure of 2.75 bars is achievable at the ejector inlet. 

The fuel flow is heated as it is piped inside the hot-box of the system: measurements provide an 

inlet ejector temperature of around 700°C. Inside the ejector, the primary fuel (NG) entrains part of 

the anodic exhaust due to fluid-dynamics effects. By mixing with the latter flow, NG is additionally 

heated. The recirculation factor of the ejector, and especially the exhaust composition, are strictly 

dependent on the main operative parameters of the system, which are essentially the Fuel Utilisation 

(FU) and the current load requested to the stack. 

Figure 2 - Basic BoP design of the SOFC generator analysed 

In the system BoP is included an auxiliary steam line used mainly for the start-up and partial load 

operation of the generator.  Under these circumstances, the NG flow entering the generator is much 

reduced from the nominal value and is unable to entrain water (steam) enough from the anode 

exhaust to accomplish the reforming reactions. Additional steam is therefore externally added to the 

stack to guarantee a safe operation in terms of carbon-deposition (that could affect both the 

reformer and the cells catalytic activity and long-term integrity). 

With regards to the ethanol feeding case study, the steam line is actually used to pump the ethanol 

into the ejector. This option was selected since it represented the most convenient and easy way to 

feed the stack with a liquid fuel. A benefit of dealing with a liquid fuel is that the energy required to 

pump the fuel into the ejector at an adequate pressure is a negligible fraction of the overall stack 

power output. Thus the ethanol was pumped at room temperature as a liquid towards the ejector and 

the stack. Before reaching the ejector,  the steamer available was used to vaporise it. A more 

detailed description is reported in the experimental section of this paper.  

4. Cell, stack and system modelling of the 5 kW Generator 
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4.1 Tubular cell model 

The Siemens Generator employs cathode-supported tubular cells. The cathode support consists of a 

2.2 mm thick doped LaMnO3 layer fabricated by extrusion-sintering. The inner diameter is ~22 cm. 

The YSZ electrolyte (40 µm), the Ni-YSZ anode (100 µm) and the doped LaCrO3 interconnector 

(100 µm) layer are successively deposited onto the cathode surface by atmospheric plasma-spraying 

technique. A thin protective interlayer of CeO2 is deposited between the cathode and the electrolyte 

using an impregnation technique. 

The cathode tube is continuous, generating a seal-less design, where air is always contained on the 

inside of the cells. Each cell has an uncovered portion of cathode (where nor electrolyte or anode 

are deposited) where the interconnector layer is placed. A nickel felt is attached onto this layer to 

provide electrical connection with the other stack cells.  

Once the cell geometry and materials are defined, the cell voltage characteristics have been 

modelled as a function of the current load with a detailed polarisation model. Many models of 

SOFC single cells exist in the literature; those used here as references are reported in [9-11].  

The Nernst potential has been calculated as: 
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where the oxygen partial pressures are evaluated respectively in the fuel and air channels, before the 

gas mixture enters the diffusion zone inside the porous electrodes. The losses arising from the 

diffusion of reacting and produced species inside the anode and cathode layers are evaluated as 

concentration losses, as later described.  

Ohmic losses occur due to the flow of electrons or ionic species inside the cells. The electron paths 

inside the cells’ active layers due to the particular cylinder shape of the cells have been calculated, 

along with ohmic losses arising in the Ni-felts and the interconnector contact layers between one 
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cell and another. The path is circumferential inside the anode and cathode, and radial into the 

electrolyte, interconnector and felt. The formulas used are those proposed in [12]: 

 feltohmerohmelyohmcatohmanohm
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ohm ,int,,,, ηηηηηη ++++= , (3)  
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Figure 3 shows a schematic view of the electrons migrating from the Ni-felt of a cell to that of the 

subsequent cell, passing through the anode, cathode and electrolyte layer. The current collector 

zones (interconnector + felt) are located at each semicircle. A uniform current distribution inside the 

tube is assumed.  

 

Figure 3 – Ohmic losses in the tubular cell 

 

The anodic concentration losses are evaluated with the flowing expression: 
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An analogous expression was derived for the CO diffusion, being this species considered 

electrochemical active as well as H2 in the proposed electrochemical model.  

The Fick’s law is solved at the anode to account for the partial pressure change of the gas species 

diffusing through the electrode along the anode thickness direction [13]: 

 i

eff

ii y
RT

p
DN ∇−= . (8)  

 

Since a multi-species gas diffusion is present, the diffusion coefficient of each species inside the 

mixture is calculated as reported in [14]: 
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αi,m is a dimensionless parameter defined as: 
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The dusty-gas model is used at the cathode side [15]. The most significant concentration loss occurs 

here due to the higher thickness of the cathode compared to the anode layer. An higher accuracy is 

sought when in evaluating this overpotential. The superiority of dusty-gas model with respect to the 

Fick’s law has been reported in literature [16]. The equation for oxygen partial pressure at the 

cathode/electrolyte interface, considering O2 self-diffusion into the cathode layer, takes the 

following form once solved: 
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The binary diffusion and Knudsen diffusion coefficients have been calculated according to the 

Chapman-Enskog kinetic theory [17]. For a low-density gas, the binary coefficients are calculated 

as: 
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σ
, (15)  

,  

where p is the total pressure (in atm), σAB = (σA + σB)/2 is the collision diameter (in Å) and ΩDAB is 

the ‘collision integral’ for diffusion, based on the Lennard-Jones potential that can be obtained from 

the dimensionless temperature kT/εAB, where εAB  is the Lennard-Jones parameter for the energy of 

molecular interaction, which is expressed in ergs. 

The Knudsen diffusion coefficients are calculated as: 
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The effective diffusion coefficients are evaluated using the Bousanquet formula, multiplying the 

binary and Knudsen coefficients for the porosity over tortuosity factor. 

The cathodic diffusion overpotential is defined as: 
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Table 1 - Parameters for the cell electrochemical model 

 
The activation overpotentials are derived from the Butler-Volmer equation, which was obtained in 

its explicit form by means of the hyperbolic sine approximation. The anodic exchange current has 

been calculated as reported in [18]:  
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The sum of the anodic and cathodic overpotentials holds the following expression: 
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The total cell polarisation can finally be written as: 
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 catdiffandiffcatactanact
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The set of equations (Eqs. 2-21) provided permits to evaluate the cell polarisation behaviour as a 

function of the current load requested. The present model was solved for a 1D discretised domain of 

the tubular cell (see Figure 4). The domain has been divided into equidistant sectors along the tube 

length, and the polarisation model is solved for each discretised tube element. Because the gases in 

each solved tube section diffuse in a direction orthogonal to the fuel flow in the channel, a quasi 2-

D model is derived. An uniform current distribution along the tube length is assumed. Since both 

the H2 and CO coming from the reforming of CH4 are considered as being electrochemical active 

species, a value of 3 was assumed as the one expressing that ratio between H2 and CO reacted to 

provide the overall current requested. This empirical assumption agrees with the literature [11], and 

in our case it is supported also by the chromatographic analysis of the stack outlet gas, which were 

performed routinely during the generator operation.  

Along the tube, the anodic and cathodic gas mixtures change composition according to Faraday’s 

law. At the generic tube element along the domain, the following equations hold:  
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Figure 4 - Fuel and air flows along the tubular cell 

Formatted: English (U.K.), Lowered
by  7 pt

Formatted: Bullets and Numbering

Formatted: English (U.K.), Lowered
by  12 pt

Formatted: Bullets and Numbering

Formatted: English (U.K.), Lowered
by  12 pt

Formatted: Bullets and Numbering

Formatted: English (U.K.), Lowered
by  12 pt

Formatted: Bullets and Numbering

Formatted: English (U.K.), Lowered
by  12 pt

Formatted: Bullets and Numbering

Formatted: English (U.K.), Lowered
by  12 pt

Formatted: Bullets and Numbering

Formatted: English (U.K.), Lowered
by  12 pt

Formatted: Bullets and Numbering

Formatted: Left

Formatted

Deleted: 
tot

ohmNernstVjV )( η +−=
. (20)¶

Deleted: giving 

Deleted: under 

Deleted:  is

Deleted: Because 

Deleted: (

Deleted: )

Deleted: available 

Deleted: to provide current through 
electrochemical oxidation at the anod

Deleted: e

Deleted: ratio 

Deleted: of 

Deleted: has been

Deleted: assumed 

Deleted: to 

Deleted: reacting 

Deleted: in the stack

Deleted:  fully 

Deleted: several times

Deleted: 
N

I
II TOT

iCOiH =+ ,,2

Deleted: (21)¶

Deleted: ¶

... [2]

... [1]

... [3]

Page 11 of 90

Wiley-VCH

Fuel Cells

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 
 

12 

The value representative of the cell voltage is the mean of the voltage values calculated at each 

discretised sector (or element) along the tube length. 

In Table 1 the main geometrical, microstructural and electrochemical parameters used as an 

input to solve the tubular cell model are reported. 

4.2 Stack model 

Each tubular cell is assumed to work under the same identical conditions to the other cells inside the 

stack and with the same performances. Thus, the polarisation model presented in Section 4.1 is 

solved just for one cell and the results obtained are extended to every cell in the stack. As 

mentioned in Section 3, the total number of cells is 88, and they are stacked together in bundles of 

22 cells each. A schematic view of the electrical connection among the cells inside a bundle is 

reported in Figure 5. The terminal cells at both sides of the bundle are welded to current-collecting 

metallic sheets.  Referring to the electrical arrangement described before, the same current is 

flowing in each bundle being all connected together in series. Therefore the overall stack current 

output is the double of that flowing in each cell. When measuring the generator stack voltage (the 

only voltage measurement available for the real generator), the cells average voltage can be 

obtained by dividing the former voltage by 44 (which is half of the total number of cells within the 

stack).  

Figure 5 - Cells arrangement inside a bundle 

The stack is air-cooled, which means that air in excess to the stoichiometric quantity needed for the 

electrochemical reactions is used to cool the stack. The stack thermal balance is solved to evaluate 

the stoichiometric air excess. 

The heat internally produced by the stack is calculated as:

 lossstackstacklossreactstack QSTQQQ +∆⋅=+=  (28)  

.               
 
 

The two heat source terms in Eq. 28 are respectively defined as: 
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The first equation refers to the entropic heat of reaction, arising from the electrochemical oxidation 

of H2 and CO in H2O and CO2 respectively, while the second term is related to the irreversibilities 

originated by the cells’ overvoltages.  

The air excess ratio is the parameter used to control the stack temperature; it can be calculated 

solving the energy balance equations around a control volume representative of  the stack itself; the 

following expression is obtained for the air excess ratio: 

 )( ,,, inletairstackairpstechair

fuelrefstack

air
TTcn

QQQ

−⋅

++
=λ  (30)  

.                      

 

 
The stack air inlet temperature has been set to 750 °C, as measured during the real generator 

operation. A particular feature of the Siemens BoP is the air pre-heating zone, which is integrated 

into the stack ‘hot-box’. The cathode inlet air enters the generator at the upper side. As the air heads 

down towards the stack, it encounters the after-burner unit, just located at the top of generator. In 

this way, the inlet air, before entering the stack, is preheated to the temperature mentioned before. 

 
4.3 System model 

Several works on the modelling of a complete SOFC system are available in literature. Notably are 

those reported in [19-25]; among these, only Riensche et al. [19,20], Marsano et al. [21],  Milewski 

et al. [22] and Campanari [23] have included an ejector model in their simulations. Of these, just 

Marsano included a detailed fluid-dynamic description of the ejector-based recirculation system, 

and accounted in his model for a detailed ejector geometry.  

The other equations required to describe the generator behaviour consist of mass and energy 

balances throughout each component of the BoP, coupled to the electrochemical balances and 

reactions previously described for the stack (which are basically the Faraday’s law and an 

electrochemical polarisation model of the tubular cell). A simple combustion model for the after-

burner is used for the stack exhaust burning. 
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Since gas mixtures are generally present throughout the system (namely CH4, C2H5OH, H2, CO, 

H2O, CO2, O2, N2), detailed polynomial fitting functions for the specific heats, enthalpies, entropies 

and Gibbs function values are considered according to the thermochemical data available from the 

literature [26, 27].  

4.3.1 Ejector  

The ejector is one of the most important components of the BoP since a proper management of 

anode recirculation mechanism is crucial to safely operate the generator. The ejector is required to 

provide the reformer with a sufficient amount of steam, which has to be enough to fully reformate 

the NG hydrocarbons (of which CH4 is the most abundant) as well as to avoid carbon deposition on 

the catalyst present in the reformer or in the piping within the generator. The ejector behaviour for 

SOFC applications is well described in [21,28-30]. The fluid-dynamic equations used in this work 

are those proposed by Zhu et al. [28,29]. The ejector has a nozzle where the fuel (natural gas or 

NGEtOH/H2O as in our case) is injected at a relatively high pressure and accelerated at sonic 

velocities (Ma > 1). The fuel flow (‘primary flow’) is thus able to entrain a secondary flow, which 

is a fraction of the total anodic exhaust produced into the stack. The entrainment is mainly due to 

the combined effects of viscous forces and a local pressure differential occurring at the nozzle outlet 

between the primary and the secondary flows. The model considered solves the conservation 

equations (of mass, momentum and energy) at the main sections of the ejector. The assumption of 

the fuel reaching a Ma > 1 at the nozzle outlet is used to determine the velocity profile of the 

secondary flow between the primary/secondary streams boundary and the wall. This assumption 

was verified observing that the inlet fuel pressure measured at the nozzle inlet was always such to 

enable a critical flow through  the nozzle, which indeed means having a Ma = 1 at the nozzle throat. 

Further detail on this aspects are nicely reported in the extensive work on ejectors developed by De 

Chant [31]. The mass flow of the entrained secondary stream is finally determined integrating the 

radial velocity profile over the available flow area and multiplying it over the density [28].  
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Besides the fuel nozzle area, the ejector includes a mixing zone, where the two flows have time and 

space enough to get homogeneous before entering the reformer/stack zone, and a diffuser which 

converts part of the dynamic pressure of the flow into static pressure in order to overcome the 

reformer and stack fuel compartment pressure drops. A schematic design of the ejector is reported 

in Figure 6. 

Figure 6 - Ejector scheme 

The primary flow is accelerated in the nozzle (just convergent in our design) to obtain high 

entrainment ratios of the secondary flow: the anodic exhaust. The molar entrainment ratio of the 

ejector is hence defined as the ratio between the recirculated flow (a fraction of the total anodic 

exhaust) and the incoming fresh fuel: 
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Since an ejector is generally designed to operate at supersonic speeds, the inlet primary fuel flow 

passing through the nozzle can be expressed by the following relation: 
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The previous equation expresses the critical mass flowing into a nozzle of a defined geometry 

(where At represents the throat area of the nozzle), once provided the thermodynamic properties of 

the fluid. By substituting the ideal gas law into the density term, the pressure term becomes explicit.  

As stated before, the ejector has the task of providing enough steam for reforming the NG. Rather 

than using an external water source, the steam produced by the electrochemical oxidation of H2 is 

internally “recycled”, and part of it is transferred from the stack zone to the reformer zone. At the 

top of the anodic chamber containing the tubular cells, a duct is placed in such a way to permit part 

of the anodic exhaust to reach the ejector. The exhaust anodic gas consists of a mixture of unspent 

fuel (H2, CO), whose quantity depends on the FU of the generator, and by-products of the 
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electrochemical reactions (H2O, CO2). Since the driving force to entrain the exhaust gas is provided 

by the accelerated primary fuel (NG) through the ejector nozzle, once the ejector geometry is fixed, 

the fraction of the anodic exhaust recirculated depends  on its molar composition and on the 

thermodynamic state and mass flow of the primary stream.  

4.3.2 Reformer and after-burner 

The component where the reforming of NG takes place to produce hydrogen and carbon monoxide 

is the so-called ‘in-stack reformer’. The reformer is placed just between the two central bundles of 

the generator. The BoP has been designed in such a way that the high endothermic reforming 

reactions receive heat directly from the bundles where heat sources are actually located. The heat 

exchanged between the reformer and the stack bundles is predominately ruled by radiative 

phenomena. Since the reformer is receiving heat from the stack, its average temperature is always 

lower than that of the stack. In our calculations, the reforming equilibrium reactions have been 

carried out at a temperature of 800 °C. This temperature can be regarded as an average between the 

reformer inlet and outlet temperatures.  

A chemical equilibrium software provided by NASA [24], based on the minimisation of the Gibbs 

free energy, has been used to determine the equilibrium composition of the flow entering the 

reformer (fresh fuel + anodic recirculated flow). The NASA code, written in FORTRAN, has been 

built into a Matlab© code, which we developed to solve all of the equations reported in the present 

work.  

The reformer is catalysed by Ni-Al-Mg pellets through which the fuel mixture flows. In the real 

plant operation, up to 95% of the methane fuel is known to be converted inside the reformer. The 

rest is converted directly over the cells’ anode surface. In our calculations, the methane is allowed 

to react entirely in the reformer.  The reformer is treated as being completely selective towards H2O 

in the methane conversion reactions, while the CO2 remains unreacted. In this way, a full steam 

reforming reaction takes place, while dry-reforming is completely inhibited even if the CO2 is 

available as significant fraction in the recirculated flow. CH4 is by itself thermodynamically more 
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favoured to choose steam rather than CO2, if both available, for its conversion in H2 and CO, but of 

course is the catalyst chosen inside the reformer that determines the reactions taking place inside it. 

Our assumption is therefore supported by the particular catalyst known to be available in the 

reformer. The reformer selectivity has been intrinsically taken into account in our model as a non-

reacting CO2 was constrained within the equilibrium routine solved for calculating the reformer 

outlet composition. 

The fraction of the anodic exhaust that is not recirculated join the exhaust air in the upper part of the 

stack module: the after-burner-zone.  

The after-burner section is the region where the hot exhaust cathodic air and the non-recirculated 

fraction of the anodic exhaust mix together in a combustion chamber. What actually burns are the 

H2 and CO not consumed by the electrochemical reactions within the stack. The combustion is 

therefore strictly related to the generator FU. The combustion has been modelled again by a tool 

available within the NASA program CEA [24], assuming a constant volume and pressure 

combustion, which is highly representative of what actually takes place in the after-burner region of 

the generator. 

A final consideration has to be made for some internal combustion of H2 and CO inside the stack, 

which introduces the concept of fuel consumption (FC). Inside a stack, some air leaks into the 

anode chamber due to imperfect sealing between the anode and cathode compartments. This 

phenomenon is due to the alumina structure holding the tubes in place, which is not completely gas-

tight. The FC is defined as the overall fraction of H2 and CO consumed inside the stack, either by 

electrochemical or combustion processes, while the FU just takes into account the electrochemical 

consumption. For the 5 kW Generator, the FC is estimated to be around 3% higher than the FU. 

Once the leak is fixed, the fuel flow and the operating FU automatically determine the overall 

amount of H2 and CO burning inside the stack. This kind of direct internal combustion inside the 

stack has a detrimental effect not just in terms of wasted fuel, but also in terms of thermal 

management of the stack itself. The combusted H2 and CO generate more heat that if they were 
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converted electrochemically. We accounted for this phenomenon in our model, and its effect on the 

air excess is not negligible. Actually taking into account this aspect, the calculated air excess ratio 

was in a better agreement with the value experienced by the generator during its real operation.  

 

4.4 Model validation 

The complete system model has been validated against experimental data available from the 5 kW 

Siemens generator. The output stack voltage provided by the model matches that of the real system 

at an operation point within the nominal range of the generator (120 A of stack current and an FU of 

85%), as well as in a wide interval of off-design points, with a stack current ranging from 100 to 

170 A. The voltages predicted by the model reproduce the experimental ones with a maximum 

relative error of 2%.  

The model has been validated for the reference case (NG feeding) also verifying a close match 

between the modelled and the real generator in terms of other significant operating, such as λair, Wth, 

frecirc and STCR, which were either available from the BoP design or directly measured during the 

generator operational life. 

In particular, the excess air ratio requested by the stack to keep its temperature constant at 970 °C 

was calculated by the model with value very close to the real measured one (3.47 against an 

experimental value of 3.34, at 120 A).  

5 System simulation results 

The model described in the previous section was solved iteratively as to compute the ejector 

module, an initial guess over the anode recirculated molar fraction was necessary. At each iteration 

step, the exhaust molar composition is corrected and updated until convergence is reached. A 

schematic diagram of the iteration step within the system model is shown in Figure 7. 

Figure 7 - Schematic sheet describing the iteration step for determining the molar 

composition of the anodic exhaust 
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The results of the system model numerical simulations that illustrate the main energy fluxes 

exchanged within the SOFC generator with two different fuels feeding, methane and ethanol, are 

respectively reported in Figures 8-9. The simulations are evaluated both at a stack current of 120 A.  

5.1 System modelling of the 5kW generator fuelled by natural gas (reference case) 

 

The system simulation results of the generator running on natural gas are reported in Figure 8.  It 

can be observed how the generator is working with a safe STCR, over 2.5, and an air excess ratio 

that is relatively low due the highly endothermic reaction of the methane reforming. The power 

ratio of the plant (defined as net AC electrical power output over thermal one) is ~ 1.15.  

Figure 8 - Detailed flow-sheet with natural gas reference case 

 
The net electrical AC efficiency is over 48%, which is close to the value observed in the real plant. 

Actually, a value around  44-45% is measured in the real configuration, essentially because of bad 

inverter efficiency, while in the model a value as high as 95% was used. 

The temperature of the anodic exhaust reaching the ejector has was taken at 925 °C rather than the 

970 °C of the stack. This correction has been used to match the real operation of the generator, 

where the anodic exhaust cools down slightly before reaching the ejector. The temperature of the 

mixed flow at the outside of the ejector is calculated using this corrected temperature. An identical 

assumption has been made for the ethanol case, where again the secondary ejector flow was set at 

925 °C.  

Regarding the fuel temperature at the ejector inlet, again a temperature of 700 °C was 

experimentally derived. The fuel pipe reaching the ejector passes before through the combustion 

zone of the stack (the after-burner), where is heated near the temperature indicated above.  

A correct determination of the ejector inlet flows’ temperatures is fundamental  when solving the 

ejector model to correctly evaluate the thermodynamic state of the inlet flows.   
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As a concluding remark on thi section, each flow cooling or heating inside the generator ‘hot-box’ 

has always been accounted for in such a way as to preserve the consistency of the energy 

conservation principle. 

 
  

5.2 System modelling of the 5kW generator fuelled by ethanol 

 

The simulation results for the ethanol feeding are reported in Figure 9. Ethanol is provided to the 

stack through a pump that extracts the liquid fuel from a reservoir tank and conveys it to a vaporiser 

(steamer of the actual BoP). The power absorbed by this component is a negligible fraction of the 

electric output of the plant. A favourable feature of dealing with liquid fuels is the possibility of 

having a pump instead of a compressor to flow the fuel into the ejector, with an associated enthalpy 

change much lower than that  required when compressing a gas. 

Figure 9 - Detailed flow-sheet with ethanol feeding 

By comparing the two flow sheets in Figures 8 and 9, it can be concluded that the ethanol feeding 

produces overall system performances comparable with those achieved with the reference natural 

gas fuel. The net AC efficiency drops of about 3 points when the fuel is switched from natural gas 

to pure ethanol. An higher LHV to produce the same overall quantity of stack current is required by 

the ethanol fuel. This accounts for ~1.5% of efficiency loss. The remaining loss arises from the 

higher power consumption of the blower due to the increased air excess of the ethanol-fuelled stack.  

The local Nernst voltage curves for NG and EtOH under a stack current of 120 A are reported in 

Figure 10. The curves have of course a similar trend, where the voltage drop observed is related to 

the gradual consumption along the tube of the reactive moles due to the electrochemical reactions 

occuring in the cell. Apart from the terminal region of the tube, the Nernst cell voltage is always 

higher for ethanol than for methane. The lower STCR achieved with ethanol means a less-diluted 

anode fuel which consequently brings a slower descent of the open circuit voltage as the fuel 

reactive moles (H2 and CO) are depleted along the tubular cell channel. Nevertheless, at the tube 
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end the lower local FU obtained with the ethanol feeding is responsible for the more pronounced 

local Nernst voltage drop (see section 5.3 for a detailed explanation of the local FU).    

Figure 10 - Comparison of the calculated Nernst voltage along the fuel channel (cell tube 

length) for both natural gas and ethanol feeding 

 
With reference to the ethanol feeding case, the ejector recirculation system is able in principle to 

provide enough water for the reforming reaction, thus avoiding the need for an external water 

source; as explained with further detail later in this section, the lower STCR achieved by the ethanol 

fuel is essentially due to a different exhaust molar composition (richer in CO) established in the 

anodic exhaust. 

The lowered STCR achieved is enough to avoid carbon deposition from equilibrium 

thermodynamic considerations, but its value is just located on the lower bound of a safety range, 

which generally lies between 2 and 2.5. A possible way to compensate for a too low STCR, without 

changing the ejector design, could be directly mixing some water with the ethanol feeding stream. 

Since water and ethanol have very similar vaporisation points, they could be easily mixed together 

when in the liquid phase, and subsequently vaporised and conveyed together to the ejector nozzle 

(this will be actually the solution adopted by the Authors in the experimental part of this work).  

From the simulations results obtained, a mass entrainment ratio of ~8 is obtained with NG, while a 

much lower value of ~3 is obtained with EtOH. The main reason is that when EtOH is used as a 

fuel, the primary flow in the ejector nozzle is almost doubled on a mass basis, consequently the 

available flow area for the secondary stream is significantly decreased, and eventually a reduced 

entrained secondary flow is obtained (values of 11.0e-4 kg s-1 and 7.7e-4 kg s-1 are respectively 

obtained for NG and EtOH). 

The following considerations explain with some more detail why the primary flow increases while 

chainging the inlet fuel. Ethanol and natural gas have a molecular weight ratio of 46:16, while 2:3 is 

the ratio established to produce the same amount of electricity regardless of the fuel used (for a 
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better clarification on this peculiar feature see Section 6.1 as well). These two ratios should be 

multiplied together to get the NG:EtOH mass flow inlet ratio. A value close to 2 is obtained,  

exactly meaning  that an almost doubled mass flow passing through the ejector nozzle is established 

when the fuel is changed from NG to EtOH.  

We have now clarified the reasons behind a different mass entrainment ratio between the NG and 

the EtOH fuels. Nevertheless, the ejector entrainment ratio would be more meaningful if expressed 

on a molar basis, being the STCR defined on the very same basis. Under the assumption (quite 

realistic according to our calculations) that the average molecular weight of the anodic exhaust is 

identical between NG and EtOH, the mass entrainment ratio achieved for each fuel can be related to 

the molar one by simply multiplying the former ratio for the molar ratio of the two fuels (which is 

2:3, according to the strategy of keeping constant the electricity produced by the generator and thus 

the H2-equivalents number entering the stack). If the value obtained is multiplied over the ratio of 

secondary mass flows established by each fuel (which is 7.65:11, as reported before), a value close 

to 1 is now found, meaning that eventually almost the same molar entrainment ratio is obtained for 

both the fuel feeding cases, consistently also to what reported in Figure 8 and 9.  

In Table 2 the molar entrainment ratios and the molar compositions of the recirculated flow for both 

NG and EtOH are reported. The water entrained by the ejector normalised to the molar flow of fuel 

entering into the stack is reported as well: from now on this parameter will be defined as the H2O 

stoichiometry of the ejector. Otherwise, the STCR is defined according to the following formula: 

 

     
recircanCOfuel

recircanOH

nyn

ny
STCR

,

,2

⋅+

⋅
=  (33)  

 
The difference between the two parameters lies in that the STCR accounts also for the CO in its 

definition, being this species potentially able to produce carbon deposition as well as CH4. 

As shown in Table 2, and provided that methane and ethanol require the same stoichiometric 

amount of water in the reforming process, the H2O stoichiometry achieved for both fuels is 
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essentially the same. The fact of having a lower STCR for the ethanol is only due to the higher 

amount of CO present in its anode exhaust gas, as already mentioned before. 

 Table 2 - Molar compositions of the recirculated flow entrained by the ejector and total 

steam fraction recirculated normalised to the primary flow entering the ejector itself 

The power ratio is ~ 1 for the ethanol fuel, meaning that almost the same amounts of electrical and 

thermal powers are generated. The air excess λ is almost 40% higher than the NG reference fuel, 

due to an overall less endothermic reaction in the reformer zone. This aspect is further analysed and 

explained in more detail in the next section, where some experimental evidence is brought to show 

how the reformer increases its mean temperature due to the presence of a less endothermic reaction 

when ethanol replaces NG flow. 

5.3 Local FU of the generator 

 

An useful and meaningful parameter to monitor within the stack is the local FU achieved. The 

values caclualted for the NG and EtOH are respectively  78.0% and 82.4%. 

In what following, we briefly derive an expression of local FU in terms of the other significant 

parameters of the generator. 

The local FU is defined as: 

 
recirc

recirc

COH

TOT

local
fFU

fFU

n

F
I

FU
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== + 1

)1(2
,2

 (34)  

 
The expression in Eq. 34 is derived considering that the molar flow reaching the cell ( +

+COHn 2 ) in 

terms of H2 and CO is the sum of two contributions: i) the inlet methane converted in the reformer, 

and ii) the H2 and CO present in the recirculated anodic flow. This term is then written as: 

 )1(,,, 2

4

22 localCOHrecirc

CH

COHCOH FUnfnn −⋅⋅+= ++  (35)  

 
The global FU is defined as: 
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Combining Eqs. 35 and36, yields the expression reported in Eq. 34. 

The local FU is useful to define the fuel utilisation which is effectively experienced by a stack 

where an anodic exhaust ‘recycling’ (or recirculation) is carried out. Since the ethanol-fuelled 

generator brings a lower recirculation fraction of the anodic exhaust, a less diluted fuel enters the 

stack. This has a positive effect on the Nernst voltage (as pointed out before). At the same time, the 

Nernst voltage is sensitive to the FU (the latter increasing, the former decreasing). The local Nernst 

voltage behaviour for the ethanol fuel (as observed in Figure 10).brings with it exactly these two 

contrasting effects (higher local FU, but with a less diluted fuel). 

 

6 The preliminary experiment with ethanol fuel 

 
6.1 Experimental  

 

The SFC 5 kW system has been tested for few hours with a mixture of ethanol and water. During 

the experiment, the ethanol mixture has been progressively replacing the NG nominal flow. The 

latter can be calculated once the stack DC current, operating FU and fuel composition are known. 

The overall fuel flow required by the stack at a specified current load and FU is given by the 

following formula: 

 
( )

 
1

2

2/
min

,2 FUHF

nI
n

grefor

eq

cellsstack

FUEL ⋅⋅

⋅
=  (37)  

 
In the above expression, the stack current is related to the molar flow of inlet fuel. The H2-

equivalents is a value characteristic of each fuel or fuel mixture. By definition, the number of H2-

equivalents expresses how many reactive moles are obtained by an un-reformed fuel mol 

undertaking a complete steam reforming reaction: 

 ( ) 22 2 HxyCOxOHxHC yx ⋅++⋅→⋅+   (38)  
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NG is a mixture of various hydrocarbons plus some N2 and CO2 in small amounts. The composition 

varies from site to site, and significant differences in the methane content subsist over the different 

countries. From the data records on the NG composition available in Turbocare Spa (IT – Torino), 

the gas from the grid contained on average a methane fraction of ~ 91-92%.  

For simplicity, we always considered the NG as composed of just methane in all our simulations. 

This of course leads to some inaccuracy in the results obtained. Nevertheless the error was 

estimated to be less than 1% in the evaluation of the system efficiencies.   

The basic idea under which part of the nominal NG flow has been replaced with EtOH was to 

provide the generator always with the same amount of H2-equivalents. The reforming reactions of 

methane and ethanol are respectively the following: 

 
-10

298224 mol kJ 33.206          ,3 −=∆+→+ KHCOHOHCH  (39)  

 
-10

298252 mol kJ 79.256          ,32 −=∆+→+ KHCOHOHOHHC            (40)  

It is trivial to see how 1 mole of fully steam-reformed ethanol gives 6 H2-equivalent reactive moles 

(H2+CO) compared to the 4 provided by the methane undertaking the same kind of reforming 

reaction.  The 6:4 ratio obtained is also the one driving the switch from NG to ethanol fuel. 

Looking at the reactions listed above, the enthalpy reaction for EtOH reforming is higher than for 

CH4; but, since for each CH4 mole just 4:6 EtOH moles are needed, the heat absorbed by the fuel 

reforming changes with this ratio as well. Considering that the H2-equivalent moles are kept the 

same in both feeding cases, the heat of the reforming reactions for NG is is 1.2 higher than that 

required to reformate EtOH. Therefore, fuelling the stack with ethanol reduces the heat sink of the 

reforming reaction. As a direct consequence, a higher air mass flow is necessary to keep the 

temperature constant inside the various cell bundles (this aspect is also clear from the system 

simulation results reported in Figures 8 and 9, where the EtOH feeding case requires a λair of 5 

against a 3.5 value attained by NG).  

The ethanol was not flowed pure to the stack, rather an EtOH/H2O mixture was used. The 

water/ethanol ratio has been set in order to operate the system in safe conditions towards the carbon 

Formatted

Formatted: English (U.K.), Lowered
by  6 pt

Formatted: Subscript

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Deleted: , upon…stack fuel …removed 
and …an … mixture,…always …an 
overall fuel mixture that was able to 
provide the stack with the same amount 
of equivalent reactive moles of H2 of the 
nominal NG flow, while undertaking a 
full steam-reforming

Deleted: Taking …a closer observation 
at the…, we hav…e

Deleted: ¶

Deleted: CH4 + H2O → 3H2 + CO, 
(∆Hreact (298 K) = 206.33 kJ mol-1)                   
(39)¶
C2H5OH + H2O → 4H2 + 2CO, (∆Hreact 
(298 K) = 256.79 kJ mol-1).           (40)¶
that a …, when fully steam-reformed 

Deleted: moles …per mole of steam-
reformed… …is …ratio …es…, thus 
maintaining the number of H2-equivalents 
constant. 

Deleted: /…in-stack 

Deleted: imposed …to be …reforming 
required …for a NG…feeding than for 
an… feeding…aspect …fully evident 
in… …4.7 instead …of …with NG

Deleted: In terms of the ethanol fuel 
mixture…, t…chosen …with respect 
to…carbo

... [24]

... [23]

... [20]

... [21]

... [22]

... [26]

... [19]

... [25]

... [27]

Page 25 of 90

Wiley-VCH

Fuel Cells

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 
 

26 

deposition. In Figure 11, using the CEA chemical equilibrium software [24], the mixture 

equilibrium composition as a function of temperature are plotted for a liquid volumetric EtOH/H2O 

ratio of 60/40 (the ratio shifts to 33.3/66.7 with the species in the gas phase). The graph shows how 

the water content in the mixture is already enough to suppress carbon deposition at temperatures 

above 600 °C. 

Figure 11 - Equilibrium compositions of an ethanol/water mixture in a volumetric ratio 60/40 

at different temperatures 

At the stack’s nominal operating condition (120 Amps), the ethanol supplied was ~ 3.5 SLPM, 

while the total EtOH/H2O mixture was almost 11 SLPM; the NG flow was correspondingly 

decreased to less than 6 SLPM.  

The EtOH/H2O mixture has been supplied through the steam line of the generator; this line was 

already installed from the beginning in the BoP to provide external steam during start-up and shut-

down procedures and at off-load operation. Under these circumstances, either the anodic 

recirculation flow rich in H2O or CO2 is not available or low to guarantee a safe steam reforming of 

the NG. The external water reservoir was with and the liquid EtOH/H2O mixture. The latter was 

vaporised in the steamer, and pumped to the stack ejector inlet with a volumetric pump. A 

schematic view of the experiment set-up is shown in Figure 12. 

Figure 12 - Schematic view of the 5 kW Generator to respect of the fuel and air feeding flows 

The choice of passing the EtOH/H2O mixture into the ejector is worthy of discussion because the 

steam already present in the EtOH mixture is enough to suppress carbon deposition at the reformer 

temperature, as mentioned before. Figure 13 reports the carbon boundary of the ethanol steam 

reforming reaction calculated using again thermodynamic equilibrium considerations. At 700 °C, 2 

mol of H2O are sufficient to suppress carbon deposition, while even less are required as the 

temperature grows. Since this was a preliminary experiment, our choice was motivated by safety, 

meaning that a high amount of H2O to suppress carbon deposition was voluntarily injected along 

with the EtOH fuel. The extra steam provided with the exhaust flow recirculated by the ejector 

Formatted: Subscript

Deleted:  8

Deleted: by means of

Deleted: a

Deleted: s

Deleted: against 

Deleted: , referring to the species in the 
liquid state (

Deleted: in the

Deleted: It can be seen

Deleted:  

Deleted: simultaneously 

Deleted: of the system 

Deleted:  when 

Deleted: , or generally when the load is 
too low to electrochemically provide an 
internal steam production

Deleted:  

Deleted: steamer 

Deleted: has been filled 

Deleted: both water and

Deleted:  

Deleted: either in a liquid state or

Deleted: by electric heating

Deleted: then 

Deleted: It can be seen that a

Deleted: Because 

Page 26 of 90

Wiley-VCH

Fuel Cells

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 
 

27 

satisfied our safe operation requirement. In addition, it has been reported that ethanol steam-

reforming in  H2 and CO is more difficult than methane reforming [32]. 

Obviously this extra-safe operating condition reduced stack performances, since an excessively high 

water dilution of reformed fuel negatively affects the Nernst voltage of the fuel mixture entering the 

stack anode compartment as well as increases the cell overvoltages. This point is discussed with 

more deital in the next section, where the experimental results are reported. 

Figure 13 - Carbon boundary for the ethanol steam reforming 

 

 

6.2 Results 

 
In Figure 14, the NG and EtOH flow are plotted along with the measured ejector primary pressure. 

As already described before, the fuel feeding strategy was to gradually substitute the NG flow with 

EtOH while keeping constant the H2-equivalents produced respectively by the two fuels, and 

assuming a complete steam reforming reaction occurring. Thus the mixture entering the ejector 

(primary flow) consisted partly of NG from the grid and partly vaporised EtOH/H2O.. A complete 

substitution of NG with ethanol maintaining the nominal stack current load was not possible due to 

a limitation on the maximum capacity of the pump extracting the liquid fuel from the tank. A 

maximum EtOH volumetric flow of 15 cc min-1 was achieved. In terms of H2-equivalents, at the 

maximum EtOH feeding, half of the generator current load was provided by ethanol,  while the 

remaining half was covered by NG.  

Figure 14 - Ejector pressure increase during EtOH/H2O mixture feeding 

In Figure 14, the volumetric flows of NG and EtOH (60% vol. of EtOH tank mixture) are plotted 

aganst the volumetric EtOH/H2O mixture pumped from the liquid reservoir tank. The graph reports 

the approximate behaviour of the water finally present in the EtOH/H2O/NG conveyed into the 

stack during the experiment. The initial water content in the primary fuel is due to the water already 

present inside the EtOH/H2O feeding tank. After the ejector, due to the mixing with the recirculated 

fraction of the anodic exhaust, the overall water content further increases. The hypothesis that the 
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normalised molar steam flow entrained by the primary flow is constant was assumed. In Figure 15, 

the H2O stoichiometry behaviour is plotted against an increasing EtOH/H2O feeding. As stated 

before, the H2O stoichiometry represents the actual steam available in the final mixture flowing into  

the ejector over the stoichiometric water needed for the steam reforming reaction of the NG or 

EtOH (it should be noted that both fuels need only 1 mol of H2O for accomplishing the conversion 

reactions).   

The hypothesis made can be only partially justified from what is reported in Table 2, where very 

similiar values for the entrainment ratios and steam-to-fuel ratios are achieved regardless of the 

fuel. In the experiment, the ethanol is already pre-mixed with some water from the liquid reservoir 

tank. With respect to the the pure ethanol feeding modelled before, now we have an even further 

increased mass flow entering the fuel nozzle. Such an increased mass flow could actually prevent a 

proper entrainment of the secondary flow. This is the reason why the assumption of a constant 

molar entrainment ratio of the ejector during the ethanol experiment, can not certainly considered a 

conservative one. The H2O stoichiometry value reported in Figure 15 is probably somewhat higher 

than the value actually experienced by the reformer.  

Figure 15 - Water stoichiometry in the NG/EtOH mixture reaching the stack 

According to Figure 15, and to our recommendations about the not-conservative feature of our 

assumption on the ejector entrainment during the experiment, the steam excess in the fuel flow 

entering the stack could be regarded as only slightly increased to respect of the nominal NG 

feeding. This aspect should produce a negative effect on the stack voltage, as already outlined, 

which is indeed confirmed by the experimental data in terms of a decrease of the stack voltage. In 

Figure 16, it is evident how the stack voltage reaches a minimum when the EtOH/H2O mixture is at 

the maximum level.  The voltage loss is quite limited, though: less than 1 V is lost when partly 

switching the fuel from NG to EtOH as in our experiment. During the experiment, the stack current 

was kept constant managing the generator control system to force the stack to provide a set amount 

of current. The system demonstrated the ability to convert the new fuel into H2 and CO and to 
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provide the requested current. This represents only a preliminary result and longer experiments 

should be carried out to fully demonstrate the fuel flexibility of the generator. The durability of the 

reformer against a new fuel and the possible formation of carbon deposits in a long-term period are 

aspects that should addressed with more detail in the future.  

The 1 V loss could be also partially ascribed to a not proper or full conversion of the EtOH stream 

inside the reformer and the stack. Nevertheless, the increased water dilution of the fuel seems to be 

a much more plausible explanation. If a not proper catalytic conversion of ethanol was occurring, a 

more pronounced stack voltage loss and instable generator behaviour would have been observed. 

Figure 16 - Behaviour of stack voltage during the EtOH/H2O feeding experiment 

In Figure 17, the voltage behaviour for each stack string is reported (each bundle is divided into two 

strings electrically connected in parallel for a total number of 4 bundles inside the stack: the 4 

voltages for the generator that can be read in the system data logger are representative of each 

bundle voltage). The zoom is now on a wider time interval than in Figure 16. Two EtOH testing 

phases can be distinguished. The first one was just a short trail, while the second one is the 

experiment discussed and reported in Figure 16. Referring again to Figure 17, it is interesting to see 

to what extent the string voltages were perturbed each time the ethanol fuel began to flow into the 

stack. 

Figure 17 - Comparison of string voltages during the EtOH/H2O feeding experiment 

 In Figure 18, on the same time interval as Figure 17, the stack current and voltage are reported 

during the experiment. As mentioned before, the current was kept constant during the experiment. 

The increase in the last part of it occurs when the EtOH flow has already reached its maximum and 

the NG nominal flow is restored. Regarding the behaviour of the generator control system, the 

current is generally defined as an external input that the stack is forced to match.  However, when 

the voltage goes down below the set value, the control system automatically reduces the current 

requested to the stack. In Figure 18 is shown how the current  was effectively kept constant during 
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the ethanol feeding to value only slightly lower than that achieved by NG before the EtOH feeding 

perturbations. 

Figure 18 - Stack voltage and current behaviour  

Figure 19 reports the temperature drop across the reformer as measured during the ethanol feeding. 

The temperature decreases across this component due to the endothermic reforming reactions 

occuring in it. Since the steam reforming of EtOH normalised to the H2-equivalents is somewhat 

less endothermic than that of methane (as previously predicted by the system modelling results as 

well as by simple thermodynamic calculations on the enthalpies of reaction), a less pronounced 

temperature drop is indeed observed in the reformer, providing experimental evidence to our 

previous calculations. It is worth to note how the temperature drop is the lowest when the EtOH 

feeding is the highest, as we expected. 

 
 

Figure 19 - Reformer temperature drop during the ethanol experiment 

 
In Figure 20, the temperature behaviour of different regions inside the generator is reported. For the 

reasons already discussed before, the temperature drop across the reformer decreases when ethanol 

replaces methane. Reagarding the absolute temperature of the inlet reformer, it increases. This 

temperature is related to the mixing of the fresh fuel and the recirculated flow occurring in the 

ejector. Such an increase could be explained by a hotter recirculated exhaust coming from the stack.  

Figure 20 – Generator temperatures behaviour during the ethanol experiment 

The air stoichiometry (air excess ratio) is reported in the same graph. The generator control system 

varies this parameter in such a way as to keep the stack temperature constant. Since a less 

endothermic reforming reaction is taking place, the stack temperature would increase if the air 

excess ratio would remain the same when switching the fuel from methane to ethanol. This effect is 

avoided by the control system increasing the air flow into the stack, leading to an augmented 

cooling of the generator. The air flow in the generator (and consequently the air stoichiometry 
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number) is also regulated by the control system to avoid an excessively high temperature increase in 

the after-burner zone. As reported in Figure 20, when ethanol was provided to the stack, the burner 

temperature increased by ~ 30 °C. The increased air flow in the stack could therefore have occurred 

to compensate for this phenomenon. From Figure 20, and according to the temperatures and air 

flow behaviours measured, the second option looks like as the more plausible. In fact, there is some 

evidence on how the after burner temperature compensation brought an extra-cooling of the stack at 

the end of the experiment. 

Figure 21 shows how the measured AC efficiency of the system varies during the ethanol 

experiment. The efficiency reaches its minimum when the ethanol flow is at its maximum, 

following the behaviour of the voltage. The decrease is only around 1%, underlining how ethanol 

could substitute methane without any appreciable system performance modifications. 

Figure 21 - Generator electrical AC efficiency behaviour during the EtOH experiment 

 

Conclusions 

 

An SOFC tubular generator has been studied and modelled in detail. The main system components 

and the stack polarisation behaviour have been accounted for within the model. Among the system 

components, particular consideration was dedicated to the ejector and its role inside the generator as 

a whole.  

The ejector flexibility to a fuel such as ethanol has been theoretically predicted. A safe generator 

operation could be guaranteed in terms of STCR with the new fuel. The thermal management of 

stack and its link to the reforming of the inlet fuel has been clearly established: it has been shown 

how a fuel alternative to NG could be used successfully, without significantly degrading the system 

performance, provided that a high endothermic conversion of the fuel within the reformer occurs. 

According to our analysis, a multi-fuel generator running both on natural gas and ethanol could be 

feasible. Concerning the actual BoP, the only critical aspect identified is represented by  the catalyst 
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reformer, whose stability and reforming activity against fuels different from NG should be proven 

on the long run.  

A preliminary experiment was finally performed to verify what predicted by the system numerical 

simulations and prove the feasibility of ethanol as a fuel for a SOFC generator. A good integration 

of this fuel has been verified with respect to the ejector recirculation system and the stack thermal 

balance. In particular, the reformer behaviour was qualitatively in agreement with what theoretically 

expected. The electrical efficiency achieved by an ethanol-fuelled SOFC system is comparable to 

that of an NG fuelled one. In addition,  a SOFC generator capable of running on multi-fuels shows 

to be a viable option. 
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Nomenclature 

 
At  throat area of fuel nozzle inside the ejector / m2 
BoP  balance-of-plant 
D  mean tubular cell mean diameter / m 
Di  diffusion coefficient of species i / cm2 s-1 

K

iD   Knudsen diffusion coefficient of species i / cm2 s-1 

E  activation energy / J mol-1
 

EtOH  abbreviation for ethanol 
F  Faraday constant / 96485 C s-1 
floss  frictional loss coefficient 
Frecirc  recirculated fraction of the anodic exhaust 
FU  (global) fuel utilisation (referring to the inlet NG flow) 
FUlocal   effective fuel utilisation experienced by the stack 
Gan,exhaust exhaust anodic flow exiting the stack / kg s-1 
Gfuel  fuel flow into the ejector / kg s-1 
Gref  mixed fuel flow entering the reformer / kg s-1 
Gstack,inlet reformed fuel flow entering the stack anode side / kg s-1 
H2,eq  H2-equivalents 
H2O stoichiometry moles of H2O (steam) over stoichiometric moles of H2O for reforming a 
selected fuel  
I  electric current / A 
ICELL  electric current of a single cell / A 

ITOT  total current requested/produced by all the stack cells ( = 
cellcells

In ⋅ ) / A 

j  current density /A cm-2 
j0,an  anodic exchange current density / A cm-2 
j0,cat  cathodic exchange current density / A cm-2 
k  isentropic coefficient of the ideal gas 
l  cell layer thickness / m 

LHV  low heating value / W 

M  molecular weight of species i / g mol-1 
Ma  Mach number 
ncells  total number of tubular cells inside the stack ( = 88) 
N  total number of discretised steps for solving the 1D cell domain  
NG  abbreviation for natural gas 
ni  molar flow of species i / mol s-1 
p  absolute pressure / Pa 

Qcomb  heat generated from the combustion of exhaust H2 and CO in the after-burner / W 
Qevap  heat required to evaporate the liquid fuel in the tank / W 
Qfuel  heat required to heat the fuel at the stack temperature / W 
Qloss  heat generated by irreversibilities of the stack polarisation / W 

Qreact  heat generated by the oxidation of H2 and CO inside the stack / W 
Qref  heat required by the reformer / W 
Qstack  overall internally heat produced by the stack / W 
r  mean pore radius / m 
SLPM  standard litre per minute  
STCR  steam-to-carbon ratio 

Tstack  operating temperature of the stack / °C 
V  voltage / V 
w  interconnector width / m 
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Wth  available thermal power form the stack / W 
yi  molar fraction of species i 
ε  electrode porosity 
η  cell overvoltage / V 
λair  air excess  
ρ  gas density (kg m-3) / electronic resistivity (ohm m) in Eqs. 3-6 
τ  electrode tortuosity 

ω  ejector molar entrainment ratio  
 

Subscripts and superscripts 

 

act  activation 
an  anode 
cat  cathode 
channel gas channel (outside the electrodes diffusion layer) 
diff  diffusion 
ely  electrolyte 
eq  equivalent 
felt  Ni-felt 
int  interface (electrode/electrolyte) 
inter  interconnector 
ohm  ohmic 
ox  oxidant 
pore   electrode pore 
recirc  recirculation
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Figure 10 - Comparison of the calculated Nernst voltage along the fuel channel (cell 
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Two factors can modify Eq. 37: i) the effective fuel consumption (FC), which is greater 

than the FU, since some air leakage occurs inside the stack (the denominator of Eq. 37 

should in fact be FC instead of FU); ii) the stack NG flow is not pure methane, thus the 

effective inlet molar composition of the fuel gas should be taken into account to calculate 

the exact number of H2-equivalents. The modifications due to these two effects are 

relatively low, because the air leaks inside the generator are rather low and the relative 

error committed in considering just methane as the fuel flow is lower than 1% when 

evaluating  H2,eq.  
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In Figure 21, it is also interesting to observe how the inlet reformer temperature behaves 

similarly to that of the after-burner. The reformer temperature is governed by the fuel 

inlet temperature and the anodic exhaust temperature. If we consider the fuel inlet 

temperature to be constant, the anodic exhaust temperature is the one really affecting and 

governing that of the inlet reformer zone. We should also consider that the anodic 

exhaust has basically the same temperature of the stack at the upper region. That is why 

there is a correlation between the stack upper temperature and the after-burner 

temperature. Thus, we can conclude that the latter temperature depends on what comes 

from the stack in terms of anodic exhaust, and the observed matching trend between the 

inlet reformer and after-burner zone temperatures finds its explanation. Of course a gap 

subsists between the two, and it is due to the combustion taking place in the after-burner.  

Figure 21 - After-burner and stack temperature behaviour 
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The local FU has been evaluated for both fuel feeding cases and as related to stack 

performances.  
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One issue to note is that with respect to the current system design, 
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Table 1. Molar compositions of the recirculated flow entrained by the ejector and total steam 

fraction recirculated normalized to the primary flow entering the ejector itself 

Ejector volumetric entrainment ratio 'NG feeding': 5.53 

Anodic molar exhaust composition: 

H2 [%] CO [%] H2O [%] CO2 [%] 

16 4 52 28 

Mol(H2O)/Mol(fuel_in): 2.9  

Ejector volumetric entrainment ratio 'EtOH feeding': 5.39 

Anodic molar exhaust composition: 

H2 [%] CO [%] H2O [%] CO2 [%] 

5 13 56 26 

Mol(H2O)/Mol(fuel_in): 3.0  
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Tubular Cell - Model Parameters   

Cathode inner diameter / mm 21.7 

Mean tube diameter / mm 24 

Cathode thickness / µm 2200 

Electrolyte thickness / µm 40 

Anode thickness / µm 100 

Interconnector thickness / µm 100 

Interconnector width / cm 1.3 

Ni-felt thickness / cm 0.5 

Tubular cell length / cm 75 

Cell active area / cm
2
 400 

ρel,cat / Ωm 0.008114 x exp(500/T) 

ρel,ely / Ωm 0.00294 x exp(10350/T) 

ρel,an / Ωm 0.00298 x exp(-1392/T) 

ρel,inter / Ωm 0.1256 x exp(4690/T) 

ρel,felt / Ωm - 

γan / A m
-2

 7 x 10
8
 

γcat / A m
-2

 5.5 x 10
8
 

Eact,an / kJ mol
-1

 100 

Eact,cat / kJ mol
-1

 120 

εan (anode porosity) 0.3 

τan (anode tortuosity) 5 

εcat (cathode porosity) 0.4 

τcat (cathode tortuosity) 4 

rpore,an (mean cathode pores radius) 3 

rpore,cat (mean cathode pores radius) 15 

 

Table 2 – Parameters for the cell electrochemical model 
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Figure 1. Installation of the 5kW Siemens Generator in Turbocare Spa. 
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Figure 2. Basic BoP design of the SOFC generator analyzed 
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Figure 3 – Ohmic losses in the tubular cell 
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Figure 4 - Fuel and air flows along the tubular cell 
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Figure 5 - Cells arrangement inside a bundle 
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Figure 6. Ejector scheme  
254x190mm (96 x 96 DPI)  
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Figure 7. Schematic sheet describing the iteration step for determining the molar composition of the 
anodic exhaust  

701x533mm (96 x 96 DPI)  
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Figure 8. Detailed flow-sheet with natural gas (reference case) 
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Figure 9. Detailed flow-sheet with ethanol feeding 
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Figure 10. Comparison of the calculated Nernst voltage along the fuel channel (cell tube length) for 

both natural gas and ethanol feeding 
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Figure 11. Equilibrium compositions of an ethanol/water mixture in a volumetric ratio 60/40 at 

different temperatures 

 

Page 80 of 90

Wiley-VCH

Fuel Cells

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Figure 12. Schematic view of the 5 kW Generator to respect of the fuel and air feeding flows 
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Figure 13. Carbon boundary for the ethanol steam-reforming 
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Figure 14. Ejector pressure increase during EtOH/H2O mixture feeding 
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Figure 15. Water stoichiometry in the NG/EtOH mixture reaching the stack 
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Figure 16. Behaviour of stack voltage during the EtOH/H2O feeding experiment 
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Figure 17. Comparison of string voltage during the EtOH/H2O feeding experiment 
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Figure 18. Stack voltage and current behaviour during the EtOH experiment 

 

Page 87 of 90

Wiley-VCH

Fuel Cells

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Figure 19. Reformer temperature drop during the ethanol experiment 
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Figure 20. Generator temperatures behaviour during the ethanol experiment 
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Figure 21. Generator electrical AC efficiency behaviour during the EtOH experiment 
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