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Development of Single Chamber Solid Oxide Fuel Cells (SCFC).
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*Corresponding author: viricelle@emse.fr

Abstract

Single Chamber Solid Oxide Fuel Cells (SCFC) have been prepared using an electrolyte as support (Cepo9Gdy 0 95
named GDC). Anode (Ni-GDC) and different cathodes (SmysSrysCoO; - SSC, BaysSrysCog,Feqs0; - BSCF, and
LagSro,MnO; - LSM) were placed on the same side of the electrolyte. All the electrodes were deposited using screen-

printing technology, A gold collector was also deposited on the cathode to decrease the over-potential. The different - [ Deleted

:, with a thickness of 10 um.

materials and fuel cell devices were tested under propane / air mixture, after a preliminary treatment under hydrogen to
reduce the as-deposited nickel oxide anode. The results show that SSC and BSCF cathodes are not stable in these
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1 Introduction \ [ Deleted: the corresponding SCFC of
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Solid Oxide Fuel cells have been studied intensively over the past two decades. Main efforts deal with the { Deleted: . Polarization measurements

reduction of working temperature from 1000°C to around 600°C in order to reduce the cost due to the | v amedmnal

requirement of robust materials with adequate electrical and electrochemical properties, thermal stability, . [ Deleted: density

and due to the technological problems, especially sealing between anodic and cathodic chambers. More { Deleted: of

recently, a new type of device named “Single Chamber Solid Oxide Fuel Cells” (SCFC) has been proposed. ‘{Deleted: 1

In such device, contrary to conventional SOFC, anode and cathode are exposed to a gas mixture of fuel \{ Deleted: running

(hydrocarbon) and oxidant (air) so that no more sealing with electrolyte is necessary. Their operating

principle is based on the different catalytic activities of anode and cathode: ideally, the anode has to be active

for the oxidation of fuel while the cathode should only present a strong electro-activity for oxygen reduction.

Most significant and initial developments of SCFC devices were performed by T. Hibino and co-workers

who proposed a review on SCFC in [1]. In the first developments of SCFC devices [2-4], materials used in

conventional SOFC were used, namely YSZ for electrolyte, Ni-YSZ cermet anode and LSM

(Lag sSrp,MnQOs) cathode. As for conventional SOFC, such materials are now more and more replaced in

order to significantly reduce the operating temperature while increasing or, at least maintaining

performances. YSZ electrolyte is substituted by doped ceria oxide either with Gadolinium (GDC) or

samarium (SDC). Most of the anodes are constituted by a cermet of previous electrolyte with nickel. For

cathode, the trend is to use doped perovskites with cobalt, either BaysSrysCoqsFe),0;.5 (BSCF, [5]) or /{De'eted: 600mwW

Smy 5SrsCo0; (SSC, [6-8]). or LaysSrsCo0; (LSC, [9]). With such SCFC devices, depending on the cell { Deleted: 550

microstructure, geometry and flow conditions, maximum power densities of 700mW/cm? at 600°C have been /* [ Deleted:

—_— T

were

reached [7]. However, such high values are not so easily obtained: even for fixed materials, all experimental
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details such as flow geometry [8] or the way of the SCFC jnitialization [10] for example, have significant

influence on the performances.
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The aim of this study was to investigate the influence of experimental parameters, especially ﬂow*\\:‘\\{ Formatted: Font color: Auto

composition, in our testing bench conditions. More comprehensive studies on SCFC working principle were | \\\{ Formatted: Font color: Auto

reported by Hibino [1] and Haile [7]. In the present paper, we present our recent results concerning SCFC | { Formatted: Font color: Blue
\

developments, with GDC electrolyte, Ni-GDC anode and LSM or SSC or BSCF as cathode. Materials {
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hydrocarbons, propane was chosen because it can be cracked at lower temperature than methane, and it can \J ~ { Deleted:
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also produce more hydrogen by partial oxidation due to its higher carbon number (Eq. (1)).
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2C;Hg +30, - 6CO +8H, (1)
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2 Experlmental methane, and can also produce more
hydrogen by partial oxidation (Eq. (1)).9
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2.1  Materials, SCFC preparation
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gadolinium doped ceria (Ce, 9Gd, 0, 95 named GDC), having a specific area around 9 m“/g. The particle size
(100MPa, 2min) and sintered at 1350°C for 4 hours with an intermediate step at 1200°C during 6 hours.
Temperature rates were 10°C/min for both heating and cooling. Final pellets have a diameter of 19mm and a
thickness of 0.8 mm. Their relative density is around 92%.

Anode cermet was prepared from a mixture of 60%wt NiO (Sigma Aldrich) and 40%wt GDC. The initial
NiO powder having a specific area around 3-4 m’/g was strongly agglomerated and was ball-milled in
ethanol. The solvent was then evaporated while stirring and the resulting powder was passed through a
100um screen sieve. The NiO powder particles size was then comparable to the one of GDC powder. The
added to obtain an ink for screen-printing. The ink was homogenised with an ®Ultra-Turrax dispersion tool.
The anode layer of 6*6 mm® was then deposited by screen-printing technology on the previously described
GDC pellet. To study the influence of electrode thickness, the number of deposited layer was varied, with an
intermediate drying step at 130°C during 10 minutes between each deposit. The deposited films were fired at

layer) or 40um (4 layers). In order to activate the anode, reduction of nickel oxide was performed by thermal
treatment in hydrogen. This part is detailed in paragraph 3.1.

Cathode was prepared using a similar process as for the anode. The powders were passed though a 100 um
screen sieve, and then mixed with a binder and a solvent to obtain an ink. Cathodes layers were also
deposited using screen-printing. Three materials were used: LagsSro,MnO; (named LSM) and
Smy 5S1psCoO; (named SSC), commercial powders from ®NexTech Materials Ltd, and an in-house powder

thermal stability, these cathodes were fired at 1200°C, 1000°C and 950°C for LSM, BSCF and SSC
respectively.
Anode and cathode were successively deposited and fired as reported previously, on the same side of the

during 20 minutes. A SCFC prototype can be seen in Figure 1.

2.2 Material characterization, fuel cell performance test

)
)
)
)
Prior to fuel cell performances tests, materials were characterized in regards of their electrical conductivity, [ Deleted: and anode ]
catalytic activity and thermal stability. \{ Deleted: These ]
Electrical conductivity of anode and cathode was measured according to Van Der Pauw method [11]. \\\\\{Deleted: and platinum J
Particular samples supporting only the anode or .the c.athode. on the GDC pel.let were prepgred, using the ', ‘\[Deleted: They were ]
same elaboration process and parameters as described in previous part. Four thin platinum wires were stuck . ,
to the border of the studied layer with a platinum paste. These, wires were connected to conventional \\{Deleted: simultaneously )
electrical equipment to monitor current and voltage according to Van Der Pauw methodology. For cathode - . {De'eted: 7 ]
materials, measurements were conducted in air in the range 20-600°C. For anode, to avoid nickel re- {Deleted: s ]

oxidation, air-propane mixture was set in the bench after the reduction process made in hydrogen.

Catalytic activity of cathodes materials was investigated in a fixed bed reactor, towards propane conversion.
The same quantity of cathode material in the form of powder dispersed in alumina was introduced to have
comparative results. Propane conversion was measured thanks to a mass spectrometer coupled with a micro
gas chromatograph (uGC-MS) placed at the bench outlet. Effectively, as the SCFC principle is based on the
difference of catalytic activity of anode and cathode, cathode materials have to be the less active as possible
with the hydrocarbon; they should only present a strong electrochemical activity towards oxygen reduction.
Anode and cathode thermal stability was investigated in the SCFC running conditions, after exposure to air-
propane mixtures, by X-Ray diffraction. For cathodes, same characterizations were performed after the
hydrogen treatment of the anode in order to control if they can withstand it.
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SCFC performances were measured in a simple test bench consisting in a tubular furnace with a quartz tube.

cathode, and directly on the anode. In-situ activation of the anode was performed under a gas flow of 2%
hydrogen balanced with argon. Then, after purging the system with nitrogen, the propane-air mixture was

introduced. Three parameters were mainly investigated: total gas flow, C;Hg/O, ratio and the temperature.

reasons, of an additional nitrogen flow in order to decrease the oxygen content to 12% in the bench. For
example, total gas flow of 451/h was composed of 30l/h of air-propane mixture and 151/h of nitrogen.
Effectively, in air, the explosive domain of air-propane mixtures is in the range 2.2-10% of propane. The
decrease of oxygen content reduces this area which disappears for oxygen content lower than 12%. Another

These temperatures correspond to the regulated value of the Hrﬂe;cé'iacbéﬂdiiﬂg on ,;za;siciolilditions strongm»\
\
'

exothermic effect (overshoot of around 50°C) can occur during propane oxidation. If not specified, the
reported temperatures are the furnace temperatures. A gas chromatograph and an infrared gas analyser
performed gas analysis at the outlet of the test bench. The polarization curves of the SCFC devices were
simultaneously measured in order to correlate performances with experimental conditions.

3 Results

3.1 Anode characterization

3.1.1 Anode reduction

The as-prepared NiO-CGO cermet anode has to be reduced before use in SCFC device. As in-situ reduction
in air-propane mixture could not be easily achieved, a pre-treatment in H, (2% balanced in Ar) was
conducted. In order to define the adequate temperature range, thermogravimetric experiments were
conducted with NiO and GDC powders. These powders were previously fired in air at 1200°C during two
hours, as done for the screen-printed layers. Results reported in Figure 2 show that NiO begins to reduce at
around 400°C, with a total reaction reached around 800°C corresponding to the theoretical weight loss of
21.4%. For GDC, a significant weight loss attributed to partial reduction of cerium IV in cerium III is
observed from 600°C.

Taking into account previous results, various reduction conditions of the anode in the same gas have been
tested in the temperature range 400-600°C, with varying duration from 30 minutes to few hours. Optimum
condition to obtain a total reduction of NiO in our test bench, as shown by X-ray diffraction analysis (Figure
3), was found for a treatment of 600°C during 30 minutes.

3.1.2 Anode conductivity

In order to check if the Ni-GDC anode has a satisfying electronic conductivity, conductivity measurements
were performed as described in part 2.2. Results can be seen in Figure 4. Immediately after reduction at
600°C, the anode is stabilised under a nitrogen flow and the temperature is decreased to 520°C. During this
period (domain (a) in figure 4), the conductivity is quite high around 900 S.cm™. However, as soon as
nitrogen is replaced by the flow of air-propane (C;Hg/O, ratio equal to 0.66), at 520°C, the conductivity
begins to decrease (domain b). The temperature is then raised to 535°C, and step by step up to 570°C. At
535°C, the conductivity comes back to its initial value and keeps a nearly constant and high value in the
range 535-570°C (domain c). Same experiment (not shown in figure 4) was done with decreasing
temperature and a similar behaviour was observed. At temperature lower than 530°C, the conductivity begins
to collapse. After cooling back to room temperature, a green colour of the anode was observed at the surface,
indicating a re-oxidation of nickel. These results validate the preparation process of the anode, but indicate
that, for SCFC operating_in our experimental conditions, temperature must be kept higher than 520°C _to
avoid nickel re-oxidation, A thermodynamic study was performed to check these experimental observations.

A good agreement was obtained: calculations of the free Gibbs energy indicate that, among possible
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reactions of nickel and nickel oxide in the studied system, the predominant reaction at temperature lower
than 535°C is the re-oxidation of nickel (Eq. (2)). At higher temperature, reduction of nickel oxide by
propane is favoured (Eq. (3)).
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3.2 Cathode characterization \ -
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3.2.1 Cathode conductivity _
Electrical conductivity of the three studied cathode material, LSM, SSC and BSCF was measured under air {Formatted: Portuguese (Brazil)
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in the range 20-600°C. Values reported in Figure 5 point out that SSC is the more conducted cathode with
conductivity around 650 S.cm™ at 600°C. The value for LSM and BSCF are respectively around 130 and 10
S.cm™ at 600°C. The difference of electrical conductivity and especially the low value measured for BSCF
cathode may be explained by the morphology of the layers: SEM observations (Figure 6) clearly point out
that BSCF layer is quite more porous than SSC and LSM layers.
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partial oxidation (Eg. (1)).Results show a strong catalytic activity of LSM and SSC material in the range
450-600°C, quite higher than the one of BSCF. For this material, propane conversion increase slowly versus
temperature but remains lower than 20% at 600°C, whereas it reaches respectively around 50% and 80% for
SSC and LSM. Hence, considering catalytic activity criteria, BSCF is the more adequate cathode material for

SCFC device. - [ Formatted: Font: Not Bold

3.2.3 Cathode thermal stability

Although interesting performances have been obtained with the studied cathode materials used in SCFC, the {Delete 4T
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In our actual preparation process of the SCFC device, both anode and cathode are deposited on the GDC
support before the anode reduction treatment. Moreover, long term stability of BSCF and SCC materials is
questionable in air-propane mixtures, at least in our experimental conditions. Hence, for the present study, it
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Figure caption

Fig. 1 SCFC prototype on GDC pellet with screen-printed electrodes.

Fig. 2 Thermogravimetric analysis of NiO and GDC powders under hydrogen (2% in Ar), temperature rising rate
10°C/min.

Fig. 3 XRD pattern of NiO-GDC anode after reduction 600°C-30min under hydrogen (2% in Ar)

Fig. 4 Ni-GDC anode conductivity in air-propane mixture (C;Hg/O, = 0.66), versus temperature

Fig. 5 LSM, SSC and BSCF cathodes conductivity in air, versus temperature

Fig. 6 SEM of BSCF, SSC and LSM cathodes (as prepared layers)

Fig. 7 Catalytic activity measured as propane conversion rate with a uGC-MS.of BSCF, SSC and LSM cathodes

(powders in a fixed bed reactor))
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propane (C;Hg/0,=0.55) o ‘[ Deleted: 8
Fig. 11 Influence of C;Hg/O, yatio on outlet gas composition, during SCFC test. at 620°C with a total gas flow of 45/h.

Fig. 12 Influence of total gas flow on outlet gas composition, during SCFC test, at 620°C with a C;Hg/O, ratio set aly\n\i{ Deleted:
0.53. { Deleted:

Fig. 13 Voltage-current characteristic of a Ni-CGO / CGO / LSM SCFC at 620°C (SCFC temperature) under Air-
propane (C;Hg/0,=0.53). with a total gas flow of 45l/h. Influence of anode thickness: 40pum in main curve, 10um in
insight.

Fig. 14 Photographs of SCFC devices with a 10um (left) and 40um (right) thick anode, after tests shown in figure 13.
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Fig. 1 SCFC prototype on GDC pellet with screen-printed electrodes.
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28 Fig. 2 Thermogravimetric analysis of NiO and GDC powders under hydrogen (2% in Ar),
29 temperature rising rate 10°C/min.
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Fig. 4 Ni-GDC anode conductivity in air-propane mixture (C3H8/02 = 0.66), versus temperature
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18 Fig. 6 SEM of BSCF, SSC and LSM cathodes (as prepared layers)
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29 Fig. 8 XRD patterns of SSC cathode a) as prepared, b)after reduction 600°C-30min under H2 (2% in
30 Ar), c) after C3H8/02 exposure at 630°C during 3 hours
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26 Fig. 10 Voltage-current characteristic of a Ni-CGO / CGO / LSM SCFC at 700°C (SCFC temperature)
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Fig. 11 Influence of C3H8/02 ratio on outlet gas composition, during SCFC test, at 620°C with a
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Fig. 12 Influence of total gas flow on outlet gas composition, during SCFC test, at 620°C with a
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Fig. 13 Voltage-current characteristic of a Ni-CGO / CGO / LSM SCFC at 620°C (SCFC temperature)
under Air-propane (C3H8/02=0.53), with a total gas flow of 45I/h. Influence of anode thickness:
40pm in main curve, 10pum in insight.
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23 Fig. 14 Photographs of SCFC devices with a 10um (left) and 40um (right) thick anode, after tests
24 shown in figure 13.
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