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FLEXIBILITY OF SURFACE GROUPS IN CLASSICAL

SIMPLE LIE GROUPS

INKANG KIM AND PIERRE PANSU

Abstract. We show that a surface group of high genus contained in
a classical simple Lie group can be deformed to become Zariski dense,
unless the Lie group is SU(p, q) (resp. SO∗(2n), n odd) and the sur-
face group is maximal in some S(U(p, p)× U(q − p)) ⊂ SU(p, q) (resp.
SO∗(2n−2)×SO(2) ⊂ SO∗(2n)). This is a converse, for classical groups,
to a rigidity result of S. Bradlow, O. Garćıa-Prada and P. Gothen.

Dedicated to Lionel Bérard-Bergery, for his 65th birthday

1. Introduction

Free groups are obviously flexible. In particular, a generic free subgroup
in a real algebraic group is Zariski dense. This already fails for surface
groups, although they are very flexible from other points of view. The first
evidence came from the following result by D. Toledo.

Theorem 1.1. (D. Toledo, 1979, 1989, [15]). Let Γ be a discrete cocompact
subgroup of SU(1, 1). Map SU(1, 1) as a 2 × 2 block in SU(1, n), n ≥ 2.
Then every neighboring homomorphism Γ → SU(1, n) is contained in a
conjugate of S(U(1, 1) × U(n− 1)).

In fact, Toledo obtained a stronger, global result: a characterization of
surface subgroups of S(U(1, 1) × U(n − 1)) among surface subgroups of
SU(1, n) by the value of a characteristic class known as Toledo’s invariant,
which we now define.

Let X be a Hermitian symmetric space, with Kähler form Ω (the met-
ric is normalized so that the minimal sectional curvature equals −1). Let
Σ be a closed surface of negative Euler characteristic, let Γ = π1(Σ) act

isometrically on X. Pick a smooth equivariant map f̃ : Σ̃ → X.

Definition 1.2. Define the Toledo invariant of the action ρ : Γ → Isom(X)
by

Tρ =
1

2π

∫

Σ
f̃∗Ω.

Then

(1) Tρ depends continuously on ρ.

1I. Kim gratefully acknowledges the partial support of NRF grant ((R01-2008-000-
10052-0) and a warm support of IHES during his stay.
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(2) There exists ℓX ∈ Q such that Tρ ∈ ℓXZ.
(3) |Tρ| ≤ |χ(Σ)|rank(X).

Inequality (3), known as the Milnor-Wood inequality for actions on Hermit-
ian symmetric spaces, is due to J. Milnor, [13], V. Turaev, [16], A. Domic
and D. Toledo, [6], J.-L. Clerc and B. Ørsted, [5].

Definition 1.3. Actions ρ such that |Tρ| = |χ(Σ)|rank(X) are called maxi-
mal representations.

The following result generalizes Theorem 1.1.

Theorem 1.4. (L. Hernàndez Lamoneda, [11], S. Bradlow, O. Garćıa-
Prada, P. Gothen, [1], [2]). Maximal reductive representations of Γ to
SU(p, q), p ≤ q, can be conjugated into S(U(p, p) × U(q − p)). Maximal
reductive representations of Γ to SO∗(2n), n odd, can be conjugated into
SO∗(2n− 2)× SO(2).

In turn, Theorem 1.4 is a special case of a more general result.

Definition 1.5. Say a Hermitian symmetric space is of tube type if it can
be realized as a domain in Cn of the form Rn+ iC where C ⊂ Rn is a proper
open cone.

Example 1.6. Siegel’s upper half spaces and Grassmannians with isometry
groups PO(2, q) are of tube type.

The Grassmannian Dp,q, p ≤ q, with isometry group PU(p, q) is of tube
type iff p = q.

The Grassmannian Gn with isometry group SO∗(2n) is of tube type iff n
is even.

The exceptional Hermitian symmetric space of dimension 27 is of tube
type, the other one (of dimension 16) is not.

Products of tube type spaces are of tube type, so polydisks are of tube type.

Remark 1.7. All maximal tube type subsymmetric spaces in a Hermitian
symmetric space are conjugate. For instance, the maximal tube type sub-
symmetric space in Dp,q is Dp,p. The maximal tube type subsymmetric space
in G2n+1 is G2n.

Theorem 1.8. (Burger, Iozzi, Wienhard, [3]). Let Γ be a closed surface
group and X a Hermitian symmetric space. Every maximal representation
Γ → Isom(X) stabilizes a maximal tube type subsymmetric space Y . Con-
versely, for every tube type Hermitian symmetric space X, Isom(X) admits
Zariski dense maximal surface subgroups.

1.1. Results. Our main result is a converse of Theorem 1.4 (i.e. Theorem
1.8 for classical simple Lie groups).

Theorem 1. Let G be a classical real Lie group, i.e. a real form of SL(n,C),
O(n,C) or Sp(n,C). Let Γ be the fundamental group of a closed surface of
genus ≥ 2dim(G)2. A homomorphism φ : Γ → G can be approximated by
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Zariski dense representations, unless the symmetric space X of G is Her-
mitian and not of tube type, and φ is maximal.

In other words, the exceptions are G = SU(p, q), q > p and φ(Γ) is con-
tained in a conjugate of S(U(p, p)×U(q−p)) ⊂ SU(p, q), or G = SO∗(2n), n
odd, and φ(Γ) is contained in a conjugate of SO∗(2n−2)×SO(2) ⊂ SO∗(2n).

The genus assumption is probably unnecessary, but we are unable to
remove it.

Question 1.9. Does Theorem 1 extend to exceptional simple Lie groups ?

Since flexibility easily holds in compact and complex groups (see Propo-
sition 4.3), and the rank one example F−20

4 is treated in [12], there remains

10 cases (E6
6 , E

−14
6 , E−26

6 , E7
7 , E

−5
7 , E−25

7 , E8
8 , E

−24
8 , F 4

4 , G
2
2) with at least

one rigidity case (E−14
6 ).

1.2. Scheme of proof. The proof relies on

• a necessary and sufficient condition for flexibility from [12], see The-
orem 2.2 below;

• tools from Burger, Iozzi and Wienhard’s theory of tight maps be-
tween Hermitian symmetric spaces, [4];

• a detailed analysis of centers of centralizers of reductive subgroups
of classical simple Lie groups.

This last analysis is performed in a rather bare handed manner, based on bi-
linear and sesquilinear algebra. This is where exceptional simple Lie groups
elude us.

1.3. Plan of the paper. Section 2 recalls the needed result from [12].
Section 3 proves relevant consequences of the theory of tight maps. Section
4 provides a description of classical real simple Lie groups as fixed points
of involutions which helps in computing root space decompositions in the
complexified Lie algebra. This is done in section 5 for sl(n,C) and in section
6 for so(n,C) and sp(n,C). The method consists in first computing the
root space decomposition in the standard representation of the complexified
Lie algebra, and deducing the decomposition in the adjoint representation.
The theory of tight homomorphisms allows to exclude balancedness (with
exceptions), first for real forms of SL(n,C) in section 7, then for real forms
of SO(n,C) and Sp(n,C) in section 8. Theorem 1 is proven in section 9.

1.4. Acknowledgements. Many thanks to Marc Burger and Jean-Louis
Clerc, who explained us tight maps and bounded symmetric domains.

2. Flexibility criterion

As far as the flexibility of a homomorphism φ is concerned, a key role
is played by the center of the centralizer of the image of φ. It splits the
complexified Lie algebra of G into root spaces gλ. When the root λ is pure
imaginary, gλ carries a natural nondegenerate sesquilinear form defined as
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follows. Let (X,X ′) 7→ X ·X ′ denote the Killing form on g ⊗ C. Then the
sesquilinear form

sλ(X,X
′) = X̄ ·X ′

is nondegenerate on gλ. Let Ωλ denote the imaginary part of sλ. It is a
symplectic form on gλ viewed as a real vectorspace. The representation of
Γ on gλ gives rise to a homomorphism Γ → Sp(gλ,Ωλ), an isometric action
on the Siegel domain, and thus a Toledo invariant Tλ.

Definition 2.1. Let t ⊂ g be a torus, centralized by a homomorphism φ :
Γ → G. Among the roots of the adjoint action of t on g, let P be the subset of
pure imaginary roots λ such that 2Tλ = −χ(Γ)dimC(gλ), i.e. the symplectic
Γ action on gλ is maximal with positive Toledo invariant. Say t is balanced
with respect to φ if 0 belongs to the interior of the sum of the convex hull
of the imaginary parts of elements of P and the linear span of the real and
imaginary parts of roots not in ±P .

Here is a necessary and sufficient condition for flexibility, for surface
groups of sufficiently large genus.

Theorem 2.2. ([12], Theorem 3). Let G be a semisimple real algebraic
group. Let Γ be the fundamental group of a closed surface of genus ≥
2dim(G)2. Let φ : Γ → G be a homomorphism with reductive Zariski clo-
sure. Then φ is flexible if and only if c, the center of the centralizer of φ(Γ),
is balanced with respect to φ.

The proof of Theorem 1 will rely on this criterion: we shall describe
centers of centralizers of reductive subgroups and their roots and pile up
restrictions on the set P that make non balancedness exceptional. The
reduction from nonreductive to reductive homomorphisms will be explained
in section 9.

3. Tightness

We collect in this section properties related to maximality of represen-
tations. We start with elementary facts. Deeper results will follow from
tightness theory.

3.1. Preservation of maximality. We shall need that certain embeddings
of Lie groups preserve maximality.

Definition 3.1. Let ρ : H → G be a homomorphism between reductive
Hermitian groups and F : Y → X denote an equivariant totally geodesic map
between the corresponding Hermitian symmetric spaces. Let ωX (resp. ωY )
denote the Kähler form, normalized so that the minimum sectional curvature
equals −1. Say ρ (or F ) is positively maximality preserving if

1

rank(X)
F ∗ωX =

1

rank(Y )
ωY .
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Say ρ (or F ) is merely maximality preserving if above equality holds up to
sign.

Clearly, if this is the case, a homomorphism φ : Γ → H is maximal if and
only if ρ ◦ φ is. Furthermore, positively maximality preserving maps do not
change the signs of Toledo invariants.

Lemma 3.2. Isometric and holomorphic embeddings between equal rank
Hermitian symmetric spaces are positively maximality preserving.

Example 3.3. The embedding Dp,p →֒ Dp,q between Grassmannians, corre-
sponding to the embedding SU(p, p) →֒ SU(p, q), is isometric and holomor-
phic, and thus positively maximality preserving.

Example 3.4. The embedding of symmetric spaces Gn →֒ Gn+1, correspond-
ing to the embedding SO∗(2n) →֒ SO∗(2n+2), is isometric and holomorphic,
and thus, if n is even, positively maximality preserving.

Example 3.5. The embedding of symmetric spaces Sn →֒ Sn+1, correspond-
ing to the embedding Sp(2n,R) →֒ Sp(2n+2,R), is isometric and holomor-
phic, and thus never maximality preserving.

We also need to understand when maximality is preserved under linear
algebraic operations. Let us start with an easy case.

Lemma 3.6. Let Γ be a surface group. Let I0 be a unitary 1-dimensional
representation of Γ andW a sesquilinear representation of Γ. Then Hom(I0,W )
is a maximal representation if and only if W is.

Proof: Hom(I0,W ) and W are isomorphic as projective representations.
Since U(W ) acts on the symmetric space of SU(W ) via its quotient PU(W ),
maximality is a projectively invariant property.

But we shall need a more general case in subsection 7.2. The following
Lemma is a preparation for Lemma 3.8.

Lemma 3.7. Let Γ be a surface group. Let W , W ′ be sesquilinear repre-
sentations of Γ. Then

(1) T (W̄ ) = −T (W ).
(2) T (W ⊕W ′) = T (W ) + T (W ′).

Proof: 1. Passing from W to W̄ changes the sign of the complex structure
on the symmetric space X of SU(W ). This changes the sign of the Kähler
form, and thus the sign of Toledo invariants.

2. Let Y, Y ′ be the symmetric spaces of SU(W ) and SU(W ′) respectively.
When Y × Y ′ is mapped to the symmetric space X of SU(W ⊕W ′), the
Kähler form ωX of X restricts on the complex totally geodesic manifold
Y × Y ′ to ωY + ωY ′ , so Toledo invariants add up.

Lemma 3.8. Let Γ be a surface group. Let V be a unitary representation of
Γ and W a sesquilinear representation of Γ. Then Hom(V,W ) is a maximal
representation of Γ if and only if W is.
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Proof: Let φ : Γ → U(Hom(V,W )) denote the Hom of the two given rep-
resentations. Changing the given action on V into the trivial representation
gives rise to a representation ψ : Γ → U(Hom(V,W )). Let us show that
φ and ψ have equal Toledo invariants. Split W = W+ ⊕W− into positive
definite and negative definite subspaces. Then Hom(V,W+) is a maximal
positive definite subspace of Hom(V,W ), i.e. a point in the Hermitian sym-
metric space X associated to SU(Hom(V,W )). Its U(V ) × U(W )-orbit Y
is totally geodesic in X, and thus contractible. Therefore, one can choose
an equivariant map f̃ : Σ̃ → X whose image is contained in Y . Since
U(V ) fixes Y pointwise, f̃ is equivariant with respect to both φ and ψ.
Therefore the corresponding Toledo invariants are the same. Since ψ is a
direct sum of dim(V ) copies of the action on W , Lemma 3.7 applies, so
T (Hom(V,W )) = dim(V )T (W ). Since rank(X) equals dim(V ) times the
rank of the symmetric space associated to SU(W ), ψ, and thus φ, is maxi-
mal if and only if the original Γ action on W is.

3.2. Tightness. Tightness theory is a way to draw strong consequences
from the existence of maximal representations.

Definition 3.9. (Burger, Iozzi, Wienhard, [4]). Let G be a reductive Her-
mitian group, i.e. a connected reductive Lie group in which the center is
compact and such that the symmetric spaces Xi associated to all simple
noncompact factors is Hermitian. Normalize the metric on Xi so that the
minimum holomorphic sectional curvature equals −1. Let κbG denote the
bounded continuous cohomology class on G defined by integrating the Kähler
form of X =

∏

Xi on triangles with geodesic sides. Let Γ be locally compact
group. Say a continuous homomorphism φ : Γ → G is tight if

‖ φ∗κbG ‖=‖ κbG ‖ .

Example 3.10. Maximal homomorphisms of surface groups to reductive
Hermitian groups are tight.

3.3. Maximality preserving versus tight. Here is the basic mechanism
which makes tightness enter our arguments: if φ : Γ → G is maximal and
factors through ρ : H → G, then ρ is tight. There is a converse statement.

Proposition 3.11. Let H, G be reductive Hermitian groups. Assume that
the symmetric space associated to H is irreducible. Let ρ : H → G be a
continuous homomorphism. Then ρ is maximality preserving if and only if
ρ is tight.

Proof: This follows from Proposition 2.12 of [4].

Example 3.12. (Example 8.7 of [4]). The obvious embeddings SU(n, n) →
Sp(4n,R) and SO∗(4n) → Sp(8n,R) are tight. It follows that SO∗(4n) →
SU(2n, 2n) is tight. All three embeddings are thus maximality preserving.

Direct proofs of these facts will be given in an appendix, Lemmas 10.2
and 10.3.
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3.4. Consequences of tightness.

Lemma 3.13. (1) Let H ⊂ G be connected real algebraic groups. If G
is reductive Hermitian and the embedding H →֒ G is tight, then H
is reductive Hermitian too.

(2) Let ρ : G→ G′ be a tight homomorphism between reductive Hermit-
ian groups. If the kernel of ρ is compact and G′ is of tube type, so
is G.

Proof: This is a combination of Theorems 7.1 and 6.2 of [4].

Lemma 3.14. Let V , V ′ be vectorspaces equipped with nondegenerate sesqui-
linear forms. Assume that Hom(V, V ′), equipped with the natural sesquilin-
ear form

(f, f ′) 7→ Trace(f∗ ◦ f ′),

(here, f∗ denotes the adjoint with respect to the sesquilinear forms on V
and V ′), has vanishing signature. Assume that the induced homomorphism
U(V )× U(V ′) → U(Hom(V, V ′)) is tight (see Definition 3.9). Then one of
V and V ′ is definite and the other has vanishing signature.

Proof: Since U(Hom(V, V ′)) is Hermitian of tube type, Lemma 3.13 im-
plies that U(V )×U(V ′) is of tube type, up to compact groups. This implies
that each of the sesquilinear vectorspaces V and V ′ is either of vanishing
signature or definite. Clearly, if both are definite, U(V )×U(V ′) is compact
and tightness is out of sight.

Let us show that V ′ and V ′ cannot both have vanishing signature, i.e.
one of them must be definite. For this, we use the tightness criterion of
[4], Corollary 8.2. Let Jℓ denote the generator of the center of the maximal
compact subgroup of U(V ) which defines the complex structure on the sym-
metric space of U(V ). In a splitting of V = V + ⊕ V − in a sum of positive
(resp. negative) definite subspaces,

JV =

( i
2I dV

2

0

0 − i
2I dV

2

)

Use a similar splitting V ′ = V ′+ ⊕ V ′− and split accordingly Hom(V, V ′),

whose elements become block matrices N =

(

A B
C D

)

. The action of

UV × UV ′ is (U,U ′, N) 7→ U ′−1NU . The linearized action is (U,U ′, N) 7→
−U ′N + NU . The image of (JV , JV ′) under the linearized action is N 7→

(

0 −iB
iC 0

)

, a map whose matrix is









0 0 0 0
0 0 0 0
0 0 −i 0
0 0 0 i









in a splitting ofHom(V, V ′)

into a positive subspaceHom(V +, V ′+)⊕Hom(V −, V ′−) and a negative sub-
space Hom(V +, V ′−) ⊕ Hom(V −, V ′+). Therefore the inner product with
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the element

JHom(V,V ′) =















i
2I dV

2

0 0 0

0 i
2I dV

2

0 0

0 0 − i
2I dV

2

0

0 0 0 − i
2I dV

2















vanishes. According to [4], Corollary 8.2, the homomorphism U(V )×U(V ′) →
U(Hom(V, V ′)) is not tight. We conclude that one of V and V ′ has vanishing
signature and the other one is definite.

The following example of non tight embedding will be useful in the proof
of Corollary 8.7.

Lemma 3.15. The injection ι : O(2, 2) →֒ U(2, 2) is not tight.

Proof: O(2, 2) ⊂ U(2, 2) is the fixed point set of conjugation σ, i.e. σ ◦ ι =
σ. σ induces an orientation reversing isometry of the symmetric space X
of U(2, 2), which changes the sign of the Kähler form, σ∗ωX = −ωX . ι
induces a totally geodesic embedding of symmetric spaces, still denoted by
ι : Y → X. Since ι∗ωX = ι∗σ∗ωX = −ι∗ωX , ι∗ωX = 0, ι∗ is not isometric in
bounded continuous cohomology, so ι is not tight.

3.5. Alternative definition of balancedness. One may replace symplec-
tic structures by sesquilinear structures in the definition of balancedness.

Proposition 3.16. Let G be a semisimple real algebraic group. Let Γ be a
surface group. Let φ : Γ → G be a homomorphism. Let c denote the center
of the centralizer of φ(Γ). Let ZG(c) denote its centralizer in G. Let λ be
a pure imaginary root of the adjoint action of c on g ⊗ C. Let gλ denote
the corresponding root space, equipped with a sesquilinear form sλ and its
imaginary part, the symplectic form Ωλ. Then the symplectic representation
Γ → Sp(gλ,Ωλ) is maximal with positive Toledo invariant if and only if

(1) sλ has vanishing signature;
(2) the sesquilinear representation Γ → U(gλ, sλ) is maximal with posi-

tive Toledo invariant.

If this is the case, then the homomorphism ZG(c) → U(gλ, sλ) is tight.

Proof: 1. Assume that Γ → Sp(gλ,Ωλ) is maximal. It factors through
U(gλ, sλ). Thus the inclusion U(gλ, sλ) →֒ Sp(gλ,Ωλ) is tight. Lemma 3.13
implies that U(gλ, sλ) has tube type, i.e. the signature of sλ vanishes.

2. According to Example 3.12, the embedding U(gλ, sλ) →֒ Sp(gλ,Ωλ)
is positively maximality preserving, so maximality and positivity of Toledo
invariant do not change when passing from symplectic to unitary groups.

3. The maximal representation Γ → U(gλ, sλ) factors via the homomor-
phism ZG(c) → U(gλ, sλ), which must be tight itself.
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Now we can explain how balancedness will be analyzed in the sequel.
For classical simple Lie groups, root spaces gλ turn out to be expressible
as mapping spaces Hom(V, V ′), centralizers ZG(c) are products of classical
simple Lie groups. Proposition 3.16, combined with Lemmas 3.13 and 3.14,
restricts the possible groups involved, as will be seen in sections 7 and 8.

4. Classical simple Lie groups

4.1. Definition. Classical simple real Lie groups are special linear groups of
division rings D with center R and special unitary groups of nondegenerate
binary forms over D, see the appendix in [14].

There are only 3 such division rings: R, C and H, leading to 3 special
linear groups, SL(n,R), SL(n,C), and SL(n,H).

Let ι be a continuous (anti)-automorphism of D: ι can be identity, com-
plex conjugation or quaternionic conjugation. Let ǫ = ±1. By a (ι, ǫ)-
symmetric binary1 form on a right D-vectorspace V , we mean a D-valued
R-bilinear map h : V × V → D such that

(1) for all v, v′ ∈ V and all q ∈ D, h(v, v′q) = h(v, v′)q;
(2) for all v, v′ ∈ V , h(v′, v) = ǫι(h(v, v′)).

Note that from (2), it follows that H(vq, v′) = q̄H(v, v′). Say h is nonde-
generate if the only v ∈ V such that h(v, v′) = 0 for all v′ ∈ V is 0.

The group U(V, h) consists of right D-linear self maps of V which preserve
h. We are interested in the special unitary group SU(V, h) = U(V, h) ∩
SL(V,D).

When D = R, the only choice for ι is identity, leading to

• if ǫ = 1, real special orthogonal groups, indexed by dimension and
signature and denoted by SO(p, q), where p+ q = dimR(V );

• if ǫ = −1, real symplectic groups, indexed by dimension only and
denoted by Sp(n,R), where n = dimR(V ) is even.

When D = C there are two choice for ι. If ι is identity, this leads to
complex special orthogonal (if ǫ = 1) and symplectic (if ǫ = −1) groups,
indexed by dimension and denoted respectively by SO(n,C) and Sp(n,C).
If ι is complex conjugation, ǫ = ±1 lead to groups called special unitary
groups, indexed by dimension and signature and denoted by SU(p, q), where
p+ q = dimC(V ).

When D = H there are two choices for ι. If ι is identity, no nonzero
(ι, ǫ)-symmetric forms exist. If ι is quaternionic conjugation, this leads to

• if ǫ = 1, quaternionic unitary groups, indexed by dimension and
signature and denoted by Sp(p, q), p+ q = dimH(V );

• if ǫ = −1, quaternionic skew-unitary groups, indexed by dimension
only and denoted by SO∗(2n), where n = dimH(V ) is even.

1To avoid confusion, we keep the words Hermitian for positive definite forms, and
sesquilinear for the complex case.
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4.2. Real forms of complex groups. We shall be mainly concerned with
the 7 families of non complex groups, 3 attached to binary forms on real
vectorspaces, 1 on complex vectorspaces and 3 on quaternionic vectorspaces.
Each of these groups is obtained as the fixed point set of an anti-C-linear
involutive automorphism σ of a complex Lie group, as we now explain.

Consider first the complex unitary family U(p, q). Here, the data is a
nondegenerate sesquilinear form s on a complex vectorspace V . For f ∈
GL(V ), let f∗ denote the s-adjoint of f , defined by

∀v, v′ ∈ V, s(f(v), v′) = s(v, f∗(v′)).

Then σ(f) = (f∗)−1 is an anti-C-linear involutive automorphism of GL(V )
and of SL(V ). The fixed point set of σ in SL(V ) is SU(V, s).

The 6 remaining families admit a common construction.
Given a real vectorspace VR, let V = VR⊗C and let τ =conjugation. Note

that τ−1 = τ . If b is a nondegenerate quadratic or symplectic form on VR,
let B = b⊗ C.

Given a right quaternionic vectorspace VH, pick a basis (1, i, j, k) of H, use
right multiplication by i to turn VH into a complex vectorspace denoted by V .
Let τ be right multiplication by j. Note that τ−1 = −τ . For q = a+ jb ∈ H,
a, b ∈ C, denote by C(q) = a. If h is a nondegenerate ( ¯ , ǫ)-symmetric
binary form on VH, let, for v, v

′ ∈ V ,

B(v, v′) = C(h(vj, v′)).

Then B is a nondegenerate (-ǫ)-symmetric C-bilinear form on V .
In both cases, τ is anti-C-linear, τ−1 = ητ for some η ∈ ±1, and

B(τ(v), τ(v′)) = B(v, v′).

For f ∈ EndC(V ), set

σ(f) = τ ◦ f ◦ τ−1.

Then σ is an anti-C-linear involutive automorphism of the algebra gl(V ) =
EndC(V ) and of its subgroups SL(V ) and O(V,B). The fixed point set of
σ in SL(V ) is SL(VR) (resp. SL(VH)). The fixed point set of σ in O(V,B),
i.e., τ ◦ f = f ◦ τ , is U(VR, b) (resp. U(VH, h)). This construction yields 6 of
the 7 families of non complex classical groups.

4.3. Consequences for roots. The special form of the involution σ for 6
of the 7 families of noncomplex groups has the following consequence.

Lemma 4.1. Let G belong to one of the above 6 families of classical simple
Lie groups. Let H ⊂ G be a reductive subgroup. Let c ⊂ g be the center of
its centralizer. Let ℓ be a root of c on Cn. Let Iℓ denote the corresponding
root space. Then ℓ̄ is a root and Iℓ̄ = τ(Iℓ). Furthermore,

(1) if G = SL(n,R), O(p, q) or Sp(n,R), Iℓ̄ = Iℓ;
(2) if G = SL(n,H), SO∗(2n) or Sp(p, q), Iℓ + Iℓ̄ is a quaternionic

subspace;
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(3) If ℓ′ /∈ {ℓ, ℓ̄}, Iℓ + Iℓ̄ and Iℓ′ + Iℓ̄′ are orthogonal with respect to the
(ι, ǫ)-symmetric binary form h, and therefore nondegenerate.

Proof: Let Z ∈ c and v ∈ Iℓ. Then

Z(τ(v)) = τ(Z(v)) = τ(ℓ(Z)v) = ℓ(Z)τ(v),

showing that Iℓ̄ = τ(Iℓ). For the 3 real families, τ is conjugation, thus
Iℓ̄ = Iℓ. For the 3 quaternionic families, τ is right multiplication by j,
so Iℓ + Iℓ̄ is stable by right multiplication by i and j, i.e. a quaternionic
subspace.

Since h isG-invariant, for all v, v′ ∈ V and Z ∈ c, h(Z(v), v′)+h(v, Z(v′)) =
0. If v ∈ Iℓ and v

′ ∈ Iℓ′ ,

0 = h(Z(v), v′) + h(v, Z(v′))

= h(vℓ(Z), v′) + h(v, v′ℓ′(Z))

= h(v, v′)ℓ(Z) + h(v, v′)ℓ′(Z)

= h(v, v′)(ℓ̄+ ℓ′)(Z).

This implies that h(v, v′) = 0 if ℓ′ /∈ {ℓ, ℓ̄}.

4.4. Killing form. Here is a formula for the sesquilinear structure appear-
ing in Theorem 2.2, valid in all cases.

Lemma 4.2. Let gC ⊂ sl(n,C) be a complex Lie subalgebra of sl(n,C). Let
σ be an anti-C-linear involutive automorphism of gC, with fixed point set g.
The natural sesquilinear form s on g⊗C arising from the Killing form of g
(see section 2) is proportional to

s(X,X ′) = Trace(σ(X) ◦X ′).

Proof: Since σ is anti-C-linear, for f ∈ g, σ(if) = −iσ(f) = −if . It
follows that the −1-eigenspace of σ in gC is ig. The map

gC → g⊗ C, X 7→ (
X + σ(X)

2
,
X − σ(X)

2i
)

is an isomorphism. It pulls back conjugation on g ⊗ C to σ on gC, thus
it pulls back the sesquilinear form X̄ ·X of g ⊗ C to σ(X) ·X on gC. The
Killing form on gC is proportional to the restriction to gC of the Killing form
of sl(n,C), whence the formula Trace(σ(X) ◦X).

4.5. Flexibility of compact and complex Lie groups. For complete-
ness’ sake, we recall here the treatment of compact and complex Lie groups
from [12].

Proposition 4.3. Let G be a compact or complex semisimple Lie group.
Let c ⊂ g be the center of the centralizer of a reductive subgroup. Then c is
balanced.
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Proof: Let X ∈ g⊗C, X = f + ig. Then s(X,X) = X̄ ·X = f · f + g · g.
If G is compact, the Killing form is negative definite, so is s. For all roots
λ of c in the adjoint representation, the sesquilinear form sλ on the root
space gλ is negative definite. No root has vanishing signature. According to
Proposition 3.16, P is empty so c is balanced.

If G is complex, centralizers are complex Lie subgroups, c is a complex
vectorsubspace, and roots λ are C-linear maps. None of them is pure imag-
inary (i.e. takes pure imaginary values on c). Thus P is empty so c is
balanced.

5. Complexified centers of centralizers in SL(n,C)

The first step is to list the possible complexified centers c⊗C and describe
the root structure. This depends only on the complexified Lie algebra.

Lemma 5.1. Let g be a real Lie algebra. Let H ⊂ g be a subset. Let ZZg(H)
denote the center of its centralizer. Then

ZZg(H)⊗ C = ZZg⊗C(H).

Our approach consists in using the standard complex representation V
of g ⊗ C. The root space decomposition of V under c ⊗ C = ZZg⊗C(H)
is obtained from the isotypical decomposition of V under H. This easily
provides us with the decomposition of End(V ) under c⊗C, and then of the
invariant subspace g⊗ C ⊂ End(V ).

In this section, we treat the model case of SL(n,C), and in the next
section, the more elaborate cases O(n,C) and Sp(n,C).

5.1. H-modules.

Definition 5.2. Let H be a group. The data of a finite dimensional com-
plex vectorspace and a homomorphism of H onto a reductive real algebraic
subgroup of Gl(V ) is called an H-module.

Note that H-invariant subspaces of H-modules are again H-modules. A
H-module is irreducible if it has no proper H-submodules.

Definition 5.3. Let E(H) denote the set of equivalence classes of H-modules.
Given an H-module V and π ∈ E(H), let Iπ, the π-isotypical component of
V , denote the sum of all submodules of V belonging to the equivalence class
π.

The following Lemma is well known, but we give a full proof since it serves
as a model for orthogonal, symplectic and unitary versions of it given in the
next section.

Lemma 5.4. Any H-module V splits as a direct sum of its isotypical com-
ponents

V =
⊕

π∈E(H)

Iπ.
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Proof: Let W ⊂ Iπ be an irreducible invariant subspace. Since H is
reductive, for each invariant subspace Z of Iπ belonging to the class π,
there exists an H-invariant complement to Z, thus an H-invariant projector
pZ : Iπ → Z. Since such submodules Z generate Iπ, for at least one such Z,
pZ(W ) 6= 0, thus pZ(W ) = Z and W belongs to π.

More generally, if F ⊂ E(H) is a subset, and W ⊂
∑

π∈F Iπ is an ir-
reducible invariant subspace, then W belongs to one of the classes in F .
Indeed, otherwise pZ(W ) = 0 for all invariant subspaces Z whose class be-
longs to F , and these generate

∑

π∈F Iπ. In particular, for every π ∈ E(H),
Iπ ∩

∑

π′ 6=π Iπ′ = {0}, which shows that the sum
∑

π∈E(H) Iπ is direct.

Since H is reductive, the invariant subspace
⊕

π∈E(H) Iπ admits an in-

variant complement, which contains an irreducible subspace. This is a con-
tradiction unless

⊕

π∈E(H) Iπ = V .

5.2. Centers of centralizers in SL(n,C).

Lemma 5.5. Let H ⊂ SL(n,C) be a reductive subgroup. Let c ⊂ sl(n,C)
be the center of its centralizer. Let L denote the set of nonzero roots of
c in the standard representation of sl(n,C), and dℓ the dimensions of the
corresponding eigenspaces. Then L has dim(c) + 1 elements, which satisfy
exactly one linear relation,

∑

ℓ∈L

dℓℓ = 0.

Furthermore, the map

L× L \ diagonal → Λ, (ℓ, ℓ′) 7→ ℓ− ℓ′

is one to one onto the set Λ of nonzero roots of c in the adjoint representation
of sl(n,C).

Proof: Since H is reductive, the standard action of H on Cn splits into
irreducibles. Let us group them into isotypical components Iℓ: Iℓ is the direct
sum of kℓ isomorphic irreducible summands. According to Schur’s Lemma,
the group of H-automorphisms of the representation Iℓ is isomorphic to
GL(kℓ,C). Then

ZGL(n,C)(H) =
∏

ℓ∈L

ZGL(Iℓ)(H|Iℓ)

≃
∏

ℓ∈L

GL(kℓ,C),

whose center is (C∗)L, acting on Cn by multiplication by a different constant
on each Iℓ. Pick a basis of Cn adapted to the splitting Cn =

⊕

ℓ Iℓ. Then
the center c of ZSL(n,C)(H) consists of diagonal matrices diag(a1, . . . , an)
whose entries corresponding to basis vectors from the same Iℓ are equal,
and which sum up to 0. It follows that the elements of L generate c∗ and
satisfy only one linear relation,

∑

ℓ∈L dℓℓ = 0. In particular, if (ℓ, ℓ′), (m,m′)
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are distinct ordered pairs of distinct elements of L, ℓ− ℓ′ −m+m′ does not
vanish identically on c. This shows that the map

L× L \ diagonal → Λ, (ℓ, ℓ′) 7→ ℓ− ℓ′,

which is clearly surjective onto the set of nonzero roots of the adjoint action
on sl(n,C), is injective as well. Furthermore, the root space for ℓ − ℓ′ is
Hom(Iℓ, Iℓ′).

6. Centralizers in orthogonal, symplectic or unitary groups

In this section, the rootspace decomposition of g under the center of the
centralizer of a reductive subgroup is given, when g = so(n,C) or sp(n,C).
This is a first step in handling real forms of these Lie algebras. With little
extra effort, one can treat simultaneously the case of g = su(p, q). This will
help treating this particular real form of sl(n,C).

Let (V,B) be a complex vectorspace equipped with a nondegenerate bi-
nary form B of one of the following three types,

(1) symmetric bilinear,
(2) skew-symmetric bilinear,
(3) symmetric sesquilinear,

which we denote by (ι, ǫ)-symmetric, ǫ = ±1, ι = 1 or ¯ (identity or con-
jugation). Note that the combination (ι, ǫ) = ( ¯ ,−1) makes perfect sense
but does not bring anything new, since if B is a skew-symmetric sesquilin-
ear form, then iB is symmetric sesquilinear. Let O = Oι,ǫ(V,B) denote
its automorphism group (note that if B is skew-symmetric bilinear (resp.
sesquilinear), this is a symplectic (resp. unitary) rather than an orthogonal
group, whence the notation Oι,ǫ). Let H ⊂ O be a reductive real algebraic
subgroup. In this section, we describe the center of the centralizer of H in
O.

6.1. Bilinear and sesquilinear forms.

Notation 6.1. Let ι be a continuous automorphism of C, i.e. either con-
jugation or identity. Let ǫ ∈ {−1, 1}. Let V be a complex vectorspace. A
(ι, ǫ)-symmetric form on V is a real bilinear form B : V × V → C such that

• for λ, λ′ ∈ C, v, v′ ∈ V , B(λv, λ′v′) = ι(λ)λ′B(v, v′);
• B(v′, v) = ǫιB(v, v′).

In other words, if ι = 1 and ǫ = 1, B is symmetric bilinear. If ι = 1 and
ǫ = −1, B is skew-symmetric bilinear. If ι = ¯ and ǫ = 1, B is symmetric
sesquilinear. If ι = ¯ and ǫ = −1, B is skew-symmetric sesquilinear. We
shall ignore the fourth case, since if B is a skew-symmetric sesquilinear form,
then iB is symmetric sesquilinear.

Notation 6.2. 1. Let ι be a continuous automorphism of C, i.e. either
conjugation or identity. Let V be a complex vectorspace. Then V ι means V
if ι = 1, V̄ if ι = ¯ . Also, V ι,∗ means the dual vectorspace V ∗ if ι = 1, V̄ ∗

(i.e. the space of anti-C-linear forms on V ) if ι = ¯ .
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2. Let B be a (ι, ǫ)-symmetric form on V . Let ♯B : V → V ι,∗ denote the
C-linear map which maps v ∈ V to the anti-C-linear functional

♯B(v) : v
′ 7→ B(v′, v).

Say that B is nondegenerate if ♯B is an isomorphism. If not, its kernel is
called the nullspace of B.

Notation 6.3. Given a linear map L : V → V ι,∗, there is an adjoint map
Lι,⊤ : V → V ι,∗ defined by

〈Lι,⊤(v′), v〉 = 〈L(v), v′〉,

where 〈v∗, v〉 denotes the evaluation of a linear or anti-linear form v∗ on a
vector v ∈ V .

If L is ǫ-symmetric, i.e. if Lι,⊤ = ǫιL, the formula

B(v, v′) = 〈L(v′), v〉

defines a (ι, ǫ)-symmetric form such that ♯B = L. Therefore B and ♯B are
equivalent data.

Example 6.4. Let W be a complex vectorspace. Then the tautological
isomorphism of V = W × W ι,∗ to V ι,∗ gives rise to a tautological (ι, ǫ)-
symmetric form on V ,

(v, v∗) · (w,w∗) = ǫι(〈v∗, w〉) + 〈w∗, v〉.

Every two nondegenerate (1, ǫ)-symmetric forms are isomorphic. On the
other hand, (ι, 1)-symmetric forms, i.e. symmetric sesquilinear forms, take
real values on the diagonal, so sign and signature issues arise: two nondegen-
erate (ι, 1)-symmetric forms are isomorphic if and only if they have the same
signature. For instance, the tautological form of Example 6.4 has vanishing
signature.

6.2. Bilinear and sesquilinear H-modules.

Definition 6.5. Let H be a group. The data of a finite dimensional complex
vectorspace equipped with a bilinear (either symmetric or skew-symmetric) or
sesquilinear form and a homomorphism of H onto a reductive real algebraic
subgroup of its automorphism group will be called a (ι, ǫ)-linear H-module.

Lemma 6.6. Let W be an irreducible H-module. The space of H-invariant
bilinear (resp. sesquilinear) forms on W has dimension at most 1. A
non-zero H-invariant bilinear (resp. sesquilinear) form is automatically
non-degenerate, and in the bilinear case, it is either symmetric or skew-
symmetric.

Proof: Let b be an H-invariant bilinear form on W . Its nullspace is
H-invariant. Therefore b is either zero or non-degenerate. Assume b is
nonzero and denote by ♯b : W → W ι,∗ the corresponding isomorphism (in
the sesquilinear case, ι = conjugation, W ι,∗ = W̄ ∗). Let b′ be an other
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H-invariant bilinear form on W . Then L = (♯b)
−1 ◦ ♯b′ is an H-equivariant

endomorphism of W , thus L is a multiple of identity (Schur’s Lemma). This
shows that b′ is a multiple of b. b has a symmetric and a skew-symmetric
component. They have to be linearly dependant, in the bilinear case (ι = 1),
this implies that one of them vanishes. Therefore b is either symmetric or
skew-symmetric.

Definition 6.7. Say an H-module is (ι, ǫ)-orthogonal if it admits an in-
variant non-degenerate (ι, ǫ)-symmetric form.

Corollary 6.8. The classification of irreducible (ι, ǫ)-linear H-modules can
be deduced from the classification of irreducible H-modules: the forgetful map
E(ι,ǫ)(H) → E(H) is onto, the fiber of an equivalence class of irreducible H-
modules contains 1 or 2 elements depending wether it is (ι, ǫ)-orthogonal or
not.

Lemma 6.9. Let (V,B) be a (ι, ǫ)-linear H-module. Let W and W ′ be
distinct irreducible H-invariant subspaces. Assume thatW ′ is not orthogonal
toW . ThenW ′ is isomorphic, as an H-module, to the (conjugate-)dual W ι,∗

of W (in the sesquilinear case, W ι,∗ = W̄ ∗).

Proof: The map v 7→ (♯B(v))|W , W ′ →W ι,∗, is H-equivariant. According
to Schur’s Lemma, such a map is either zero or an isomorphism, and all
such maps are proportional. By assumption, it does not vanish, thus W ′

and W ι,∗ are isomorphic H-modules.

Definition 6.10. Let H be a group, V an H-module. Say V is bi-isotypical
if their exists an irreducible H-module Z such that every irreducible invariant
subspace W ⊂ V is isomorphic either to Z or to Zι,∗.

Corollary 6.11. Let (V,B) be a non-degenerate (ι, ǫ)-linear H-module.
Then V canonically splits as an orthogonal direct sum of its bi-isotypical
components,

V =
⊕

π

Iπ,πι,∗ ,

where, given an equivalence class π of irreducible H-modules, Iπ,πι,∗ =
Iπ + Iπι,∗ is the sum of all irreducible invariant subspaces of V isomor-
phic either to π or to πι,∗. Furthermore, Iπ,πι,∗ is non-degenerate, and the
centralizer ZO(V,B)(H) of H in the automorphism group is isomorphic to a
direct product,

ZO(V,B)(H) =
∏

π

ZO(Iπ,πι,∗)(H).

6.3. Examples of bi-isotypical bilinear/sesquilinear H-modules. From
now on, we analyze non-degenerate bi-isotypical (ι, ǫ)-linear H-modules.
Here are two examples.
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Example 6.12. Let Z = π⊕r be an isotypical H-module. Set V = Z×Zι,∗,
equip it with the canonical (ι, ǫ)-symmetric form

(v, v∗) · (w,w∗) = ǫι(〈v∗, w〉) + 〈w∗, v〉.

Then the centralizer of H in O(ι,ǫ)(V, ·) is isomorphic to an orthogonal,
symplectic or unitary group, if π and πι,∗ are equivalent

ZO(ι,ǫ)(V,·)(H) ∼= O(ι,ǫ)(2r,C)

:=











O(2r,C) if ι = 1, ǫ = 1,

Sp(2r,C) if ι = 1, ǫ = −1,

U(r, r) if ι = ¯ , ǫ = 1,

otherwise to a general linear group,

ZO(ι,ǫ)(V,·)(H) ∼= Gl(r,C).

Proof: Pick a basis ei of W and take r copies of it to form a basis of
Z. Take the image of this basis under ♯B to get a basis of Zι,∗, i.e. for
ǫ = 1, choose B(ei, ei) = 1 and e∗i = ♯B(ei), and then take {e1, · · · ; e

∗
1, · · · }

as a basis for V . For ǫ = −1, choose e1, · · · , e2k so that B(ei, ei+k) = 1 =
−B(ei+k, ei) and B(ei, ej) = 0 otherwise. Choose a basis for V in this case
as {e1, · · · , ek, ek+1, · · · , e2k, e

∗
k+1, · · · , e

∗
2k, e

∗
1, · · · , e

∗
k}. This gives a basis of

V in which the matrix of the bilinear/sesquilinear form B equals

(

0 1
ǫ 0

)

(blocks have size rd where d = dimπ). In this basis, the matrix of an
element g of H splits into blocks of size d, with the first r diagonal blocks
equal to π(g) and the last r equal to π(g−1)ι,⊤, all other blocks vanish.

If π and πι,∗ are equivalent, endomorphisms of V which commute with H
have matrices whose blocks of size d are scalar, i.e. proportional to the unit
d×d matrix. In other words, they can be written A⊗1 where A ∈ Gl(2r,C).
Such a matrix preserves B if and only if

(A⊗ 1)ι,⊤(

(

0 1
ǫ 0

)

⊗ 1)(A ⊗ 1) =

(

0 1
ǫ 0

)

⊗ 1,

i.e. iff A belongs to O(2r,C) if ǫ = 1, to Sp(2r,C) if ǫ = −1 and to U(r, r)
if ι =conjugation. In other words,

ZO(ι,ǫ)(V,·)(H) ∼= O(ι,ǫ)(2r,C).

If π and πι,∗ are not equivalent, endomorphisms of V which commute with
H preserve the splitting V = Iπ ⊕ Iπι,∗ and have matrices whose blocks of
size d are scalar, i.e. proportional to the unit d× d matrix. In other words,
they can be written (A ⊕ A′) ⊗ 1 where A, A′ ∈ Gl(r,C). Such a matrix
preserves B if and only if A′ = (Aι,⊤)−1. In other words,

ZO(ι,ǫ)(V,·)(H) ∼= Gl(r,C).
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Example 6.13. Let V = π⊕r be an isotypical H-module such that π is (ι, ǫ)-
orthogonal, i.e. preserves a non-degenerate (ι, ǫ)-symmetric form b. Let D
be a real diagonal invertible r × r matrix. Set B = b⊗D, i.e. (V,B) is an
orthogonal direct sum of r real multiples of the same non-degenerate (ι, ǫ)-
linear H-module. Then the centralizer of H in Oǫ(V, b ⊗ D) is isomorphic
to an orthogonal/unitary group,

ZOι,ǫ(V,b⊗D)(H) ∼= Oι(Cr,D).

Note that in the bilinear case, O(Cr,D) = O(r,C) is a genuine orthogonal
group, even when ǫ = −1, i.e. when we deal with skew-symmetric forms. In
the sesquilinear case, Oι(Cr,D) = U(p, q) where p− q = sign(D).

Proof: Repeat the same basis of π to get a basis of V . The matrix of
B = b ⊗ D is diagonal in blocks of size d = dimπ, with diagonal blocks
equal to real multiples of b. Element g ∈ H acts by a diagonal matrix in
d × d-blocks, with diagonal blocks equal to π(g). The centralizer of H in
Gl(V ) consists of matrices with scalar d × d-blocks, i.e. of the form A ⊗ 1
for A ∈ Gl(r,C). (ι, ǫ)-orthogonal matrices satisfy

(A⊗ 1)ι,⊤(b⊗D)(A⊗ 1) = b⊗ (Aι,⊤DA) = b⊗D,

i.e. Aι,⊤DA = D. Thus

ZOǫ(V,B)(H) ∼= Oι(Cr,D).

6.4. Classification of bi-isotypical bi/sesquilinear H-modules. There
are 3 cases, depending wether π is (ι, ǫ)-orthogonal, (ι,−ǫ)-orthogonal, or
neither. In each case, we will need the following lemma.

Lemma 6.14. Let V = W ⊕W ′ be a (ι, ǫ)-linear H-module where W , W ′

are isotropic, isotypic, and the map L : W ′ → W ι,∗, L(v′) = (♯B(v
′))|W is

an isomorphism. Then V is isomorphic to Example 6.12.

Proof: The H-map (w + w′) 7→ (w,L(w′)) is an isometry W ⊕ W ′ →
W ×W ι,∗, since

(v, L(v′)) · (w,L(w′)) = ǫι(〈L(v′), w〉) + 〈L(w′), v〉

= ǫι(〈♯B(v
′), w〉) + 〈♯B(w

′), v〉

= ǫι(B(w, v′)) +B(v,w′)

= B(v′, w) +B(v,w′)

= B(v + v′, w + w′).

Proposition 6.15. Let (V,B) be a non-degenerate bi-isotypical bilinear H-
module. Assume π and πι,∗ are not isomorphic. Then (V,B) is isomorphic
to Example 6.12.
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Proof: Irreducible invariant subspaces of V belong either to π or πι,∗, which
do not admit non-degenerate invariant bilinear/sesquilinear forms, thus all
are isotropic. Lemma 6.9 implies that every two distinct irreducible invariant
subspaces of Iπ are orthogonal. Thus Iπ is isotropic, and so is Iπι,∗ . Since
V is non-degenerate, ♯B : V → V ι,∗ induces isomorphisms L : Iπ → (Iπι,∗)ι,∗

and L′ : Iπι,∗ → (Iπ)
ι,∗ related by L⊥ = ǫL′. According to Lemma 6.14, this

shows that V is isomorphic, as a (ι, ǫ)-linear H-module, to Example 6.12.

Proposition 6.16. Let V = Iπ be an isotypical H-module equipped with a
nondegenerate ǫ-symmetric bilinear form B. Assume π is (−ǫ)-orthogonal.
Then (V,B) is isomorphic to Example 6.12.

Proof: Since π is not ǫ-orthogonal, all irreducible H-submodules of V are
isotropic. LetW be one of them. AH-invariant complement toW⊥ contains
an irreducible H-submoduleW ′, which is not orthogonal toW . The H-map
L : W ′ → W ∗, v′ 7→ (♯B(v

′))|W is non-zero, thus an isomorphism, and
Lemma 6.14 implies that W ⊕W ′ is isomorphic to Example 6.12, in partic-
ular, it is non-degenerate. Its orthogonal is again non-degenerate, isotypic,
modelled on a (−ǫ)-orthogonal H-module. By induction on dimension, V
is an orthogonal direct sum of copies of Example 6.12, thus isomorphic to
Example 6.12.

Proposition 6.17. Let V = Iπ be an isotypical H-module equipped with a
nondegenerate (ι, ǫ)-symmetric bilinear form B. Assume π is (ι, ǫ)-orthogonal.
Then (V,B) is isomorphic to Example 6.13.

Proof: Let us show that V contains at least one non-degenerate irreducible
invariant subspace. Pick an irreducible H-submodule W of V . If it is
non-degenerate, we are done. Otherwise, W is isotropic. An H-invariant
complement to W⊥ contains an irreducible H-submodule W ′, which is not
orthogonal to W . If W ′ is non-degenerate, we are done. Otherwise, W ′

is isotropic too. Then W ⊕W ′ is isomorphic to W ×W ι,∗ equipped with
the canonical (ι, ǫ)-symmetric form. Indeed, the H-map L : W ′ → W ι,∗,
v′ 7→ (♯B(v

′))|W is non-zero, thus an isomorphism, and Lemma 6.14 applies.
By assumption, there exists an ǫ-symmetric H-isomorphismM : W → W ι,∗.
Then the graph Z = {(w,M(w)) |w ∈W} of M is non-degenerate. Indeed,
for v, w ∈W ,

(v,M(v)) · (w,M(w)) = ǫι(〈M(v), w〉) + 〈M(w), v〉

= 2ǫ(〈M(v), w〉)

cannot vanish for all w, unless v = 0. Z is a non-degenerate irreducible
(ι, ǫ)-linear H-submodule of W ×W ι,∗, which embeds isometrically into V ,
this is the required subspace.

The proof of the proposition is concluded by induction on dimension.
If V is irreducible, we are done. Otherwise, we just showed that V has at
least one non-degenerate irreducible submodule, say W . Then the induction
hypothesis applies to its orthogonal W⊥.
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Corollary 6.18. Let (V,B) be a nondegenerate bi-isotypical (ι, ǫ)-linear H-
module. Then (V,B) is isomorphic either to Example 6.12 or to Example
6.13. The centralizer of H in the automorphism group of (V,B) is isomor-
phic to a general linear group in the former case, an orthogonal group in the
latter.

6.5. Centers of centralizers in unitary groups. In this case, we directly
get information on a real form.

Proposition 6.19. Let (V,B) be a non-degenerate symmetric sesquilinear
H-module. Let c denote the center of the centralizer of H in U(V,B). Then
root spaces of V under c correspond to isotypical components Iπ under H.
They fall into bi-isotypical components BIπ which are pairwise orthogonal.
If Iπ = BIπ, then the corresponding root of c is pure imaginary. If Iπ 6= BIπ,
then BIπ = Iπ ⊕ Iπ̄∗, the corresponding roots ℓπ and ℓπ∗ are opposite. The
linear relations between roots are generated by ℓπ + ℓπ̄∗ = 0, π 6= π̄∗.

Let N be a set which contains exactly one element of each pair {π, π̄∗)}
of equivalence classes of irreducible sesquilinear H-modules occurring in V ,
such that π 6= π̄∗. Then the map (ℓπ)π∈LN

: c → CLN is onto.

Proof: If Iπ = BIπ, then, as a sesquilinear H-module, BIπ is isomorphic
to Example 6.13 and contributes a unitary factor to the centralizer of H,
whose center is a pure imaginary subgroup of SL(n,C). It acts on BIπ by
multiplication by a pure imaginary number. Thus BIπ is a root space for
a pure imaginary root. Otherwise, BIπ is isomorphic to Example 6.12 and
contributes a general linear group factor to the centralizer. Its center is a
complex subgroup of SL(n,C), it acts on Iπ (resp. Iπ̄∗) by multiplication by
an unrestricted complex number (resp. the opposite number). This produces
a subspace c′ of c which admits a complex structure, the corresponding roots
are C-linear and half of them (to avoid the relations ℓπ + ℓπ̄∗ = 0) provide
complex coordinates on c′.

Corollary 6.20. Let L̃ be the set of roots, LI the subset of roots which take
only pure imaginary values. Then for every ℓ ∈ L \ LI , −ℓ is again a root.
Let LN be a set which contains exactly one element of each pair {ℓ,−ℓ},
ℓ ∈ L \ LI . Then

• Iℓ and Iℓ′ are orthogonal unless ℓ′ = −ℓ;
• if ℓ ∈ LI , Iℓ is nondegenerate;
• the map (ℓ)ℓ∈LN

: c → CLN is onto.

6.6. Centers of centralizers in ǫ-orthogonal groups. We continue our
convention that

Oǫ(n,C) =

{

O(n,C) if ǫ = 1,

Sp(n,C) if ǫ = −1.

Note that in the latter case, n has to be even.
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Proposition 6.21. Let (V,B) be a non-degenerate bilinear H-module. Let
c denote the center of the centralizer of H in Oǫ(V,B). Under c, V splits
into root spaces as follows. Each isotypical component Iπ where π is an
irreducible H-module which is not equivalent to its contragredient π∗ is a root
space for a non-zero root ℓπ. It is isotropic. The sum of all other isotypical
components constitutes the 0 root space. Bi-isotypical components Iπ + Iπ∗

are pairwise orthogonal. Relations among non-zero roots are generated by
the following

ℓπ + ℓπ∗ = 0.

Thus the number of non zero roots is 2dim c. Let L be a set containing
exactly one element of each pair (π, π∗). Then (ℓπ)π∈L : c → CL is a linear
bijection.

Proof: Let L′ be the set of equivalence classes of irreducible H-modules
which are isomorphic to their contragredient. Then

ZOǫ(V,B)(H) =
∏

π∈L

GL(rπ,C)×
∏

π∈L′

Oǫ(2rπ,C),

thus

ZZOǫ(V,B)(H) =
⊕

π∈L

C(idIπ − idIπ∗ ),

i.e. (ℓπ)π∈L : c → CL is a linear bijection. Furthermore, if π ∈ L, the
bi-isotypical component Iπ ⊕ Iπ∗ splits into two root spaces relative to roots
ℓπ and ℓπ∗ = −ℓπ.

Corollary 6.22. Let L̃ denote the set of roots of c on Cn. The roots of c in
its adjoint action on soǫ(V,B) are exactly all differences ℓ− ℓ′, for ℓ, ℓ′ ∈ L̃,
including 2ℓ if ǫ = −1 or dim(Iℓ) > 1, excluding 2ℓ if Iℓ is 1-dimensional
and ǫ = 1.

In other words, if L is a set of representatives of pairs {−ℓ, ℓ} of nonzero
roots, one finds 0, all sums ±ℓ ± ℓ′ for distinct ℓ, ℓ′ ∈ L, sometimes ±2ℓ
(depending on ǫ and dim(Iℓ)), and, if 0 is also a root of c on Cn, all ±ℓ,
ℓ ∈ L.

Proof: The Lie algebra so(V,B) is the space of B-skew-symmetric endo-
morphisms of V , i.e. C-linear maps f : V → V satisfying, for all v, v′ ∈ V ,

B(f(v), v′) +B(v, f(v′)) = 0.

The roots of c in the adjoint representation are differences λ = ℓ − ℓ′

of roots of c in Cn. If ℓ′ 6= ±ℓ, the root space relative to ℓ − ℓ′ is the
subspace of B-skew-symmetric elements of Hom(Iℓ, Iℓ′) ⊕ Hom(I−ℓ′ , I−ℓ).
It does never vanish. Indeed, for every f ∈ Hom(Iℓ, Iℓ′), there is a unique
g ∈ Hom(I−ℓ′ , I−ℓ) such that (f, g) is B-skew-symmetric. The formula for
g is

g = −♯−1
B ◦ f⊤ ◦ ♯B .
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Here is an alternative description of so(V,B): mapping f ∈ End(V ) to
the bilinear form b(v, v′) = B(f(v), v′) identifies End(V ) with the space
V ∗ ⊗ V ∗ of C-bilinear forms on V and so(V,B) with the subspace ΛǫV ∗ of
(-ǫ)-symmetric C-bilinear forms on V . The adjoint action of Z ∈ so(V ) is

Zb(v, v′) = B([Z, f ](v), v′) = −b(v, Zv′)− b(Zv, v′).

If v ∈ Iℓ, v
′ ∈ Iℓ′ and Z ∈ c, then

Zb(v, v′) = −(ℓ+ ℓ′)(Z)b(v, v′).

Therefore the root space relative to 2ℓ identifies with ΛǫI∗ℓ . It vanishes if
and only if ǫ = 1 and dim(Iℓ) = 1.

7. Real forms of SL(n,C)

7.1. Flexibility in SL(n,R) and SL(n,H).

Proposition 7.1. Let c ⊂ sl(n,R) (resp. sl(n/2,H)) be the center of the
centralizer of a reductive subgroup of SL(n,R) (resp. SL(n/2,H)). Let λ
be a pure imaginary root of c in its adjoint action on sl(n,R). Then the
signature of the Killing form restricted to gλ,R does not vanish. It follows
that c is balanced.

Proof: Let Cn denote the standard representation of sl(n,C). As in subsec-
tion 4.2, let τ(v) = v̄ in the complex case, and τ(v) = vj in the quaternionic
case (here, Cn = Hn/2 is viewed as a right quaternionic vectorspace). Let,
for f ∈ sl(n,C), σ(f) = τ ◦ f ◦ τ−1. Then Fix(σ) = g = sl(n,R) (resp.
sl(n/2,H)).

Under c, Cn splits into root spaces Cn =
⊕

ℓ Iℓ, dim(Iℓ) = dℓ. Roots are
either real or come in pairs {ℓ, ℓ̄} (Lemma 4.1). According to Lemma 5.5,
every nonzero root λ of c in its adjoint action on sl(n,C) can be uniquely
written in the form ℓ− ℓ′. Such a root is pure imaginary if and only if ℓ′ = ℓ̄,
i.e. λ = ℓ− ℓ̄. The corresponding root space is

gλ = Hom(Iℓ, Iℓ̄).

Let f ∈ Hom(Iℓ, Iℓ̄), σ(f) = f̄ ∈ Hom(Iℓ̄, Iℓ). Pick a basis of Iℓ and take its
image by τ as a basis of Iℓ̄. LetM denote the matrix of f in the chosen basis
of Cn. Then the matrix of σ(f) is σ(M), and Trace(σ(f)◦f) = Trace(M̄M).
Write M = S +A where S is symmetric and A is skew-symmetric. Then

Trace(M̄M) = Trace(S̄S) + Trace(ĀA) = Trace(S∗S)− Trace(A∗A)

has signature dim({S}) − dim({A}) = dℓ(dℓ+1)
2 − dℓ(dℓ−1)

2 = dℓ, which is
nonzero.

7.2. Flexibility in SU(p, q).

Proposition 7.2. Let Γ be a surface group, let φ : Γ → SU(p, q) a reductive
homorphism, let c be the center of the centralizer of φ(Γ). Assume that c is
not balanced with respect to φ. Then, up to conjugacy, φ(Γ) is contained in
S(U(p, p)× U(q − p)), and φ is maximal.
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Proof: Under c, the standard representation of sl(n,C) splits into root
spaces, Cn =

⊕

ℓ Iℓ. The roots of c in the adjoint representation are differ-
ences ℓ − ℓ′, and all of them indeed occur. Following Corollary 6.20, split
the set of roots as L̃ = LI ∪ LN ∪ −LN , where LI is the subset of pure
imaginary roots. If ℓ ∈ LN , 2ℓ is a root in the adjoint representation, and
it is not pure imaginary. If ℓ ∈ LI and ℓ′ ∈ LN , ℓ− ℓ′ is not pure imaginary.
If ℓ and ℓ′ ∈ LN , ℓ− ℓ′ is not pure imaginary either, since it factors through
a surjective map c → CLN and a C-linear form CLN → C. So if LN is non
empty, non pure imaginary roots span c∗, and c is balanced, contradiction.
So LN is empty, all roots on Cn are pure imaginary, and the corresponding
root spaces Iℓ are nondegenerate and pairwise orthogonal. In the sequel,
we shall replace roots by there imaginary parts without expressing it in the
notation.

Each root λ in the adjoint representation can be expressed in a unique
way as λ = ℓ− ℓ′, and

gλ = Hom(Iℓ, Iℓ′).

A calculation shows that the signature of the natural Hermitian form on
Hom(Iℓ, Iℓ′) equals −sign(Iℓ)sign(Iℓ′). This time, the signature is not auto-
matically nonzero. So different arguments, based on [4], are needed.

Assume that the sesquilinear action of Γ on gλ is maximal. The situation
we are considering is as follows: since H = φ(Γ) preserves Iℓ and preserves
a sesquilinear form on it, φ(Γ) ⊂ U(Iℓ), and similarly for Iℓ′ , hence φ(Γ) →
U(Iℓ)× U(Iℓ′) and we obtain

φ(Γ) ⊂ ZG(c)
�

�

//
�

x

f
++V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

U(Iℓ)× U(Iℓ′)

��

U(gλ) = U(Hom(Iℓ, Iℓ′)) = U(Iℓ ⊗ I∗ℓ′)

,

where f is tight. According to Proposition 3.16, the sesquilinear space
Hom(Iℓ, Iℓ′) must have vanishing signature. Also, the homomorphism ZG(c) →
U(Hom(Iℓ, Iℓ′)) must be tight. Lemma 3.14 implies that one of Iℓ and Iℓ′
has vanishing signature and the other one is definite. Say Iℓ is definite,
for instance. According to Lemma 3.8, maximality of Hom(Iℓ, Iℓ′) implies
maximality of the Γ action on Iℓ′ , with Tλ = dim(Iℓ)T (Iℓ′). If instead Iℓ′ is
definite, Tλ = −T (Iℓ)dim(Iℓ′).

Let D (resp. E, resp. O) denote the set of roots ℓ such that Iℓ is definite
(resp. has vanishing signature, resp. has non vanishing signature). As
in definition 2.1, let P denote the set of roots λ such that ρλ is maximal
with positive Toledo invariant. Equivalently, of differences ℓ − ℓ′, ℓ ∈ D,
ℓ′ ∈ E, such that Iℓ′ is maximal with positive Toledo invariant. Let N be
the complement of ±P .

Let us show that if O is non empty, c is balanced with respect to φ.
Indeed, let ℓ0 ∈ O. Then for all ℓ′ 6= ℓ0, for λ = ℓ0 − ℓ′, ρλ is not maximal,
thus ℓ0−ℓ

′ ∈ N . Since the roots ℓ span c∗⊗C and satisfy the extra equation
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∑

ℓ dℓℓ = 0, spanC({ℓ0 − ℓ′ | ℓ′ 6= ℓ0}) = c∗ ⊗ C. Since spanC(N) = c∗ ⊗ C, c
is balanced with respect to φ.

From now on, we assume that O is empty. If D or E is empty, there
is no room for pairs (ℓ, ℓ′) for ℓ ∈ D and ℓ′ ∈ E, so P is empty, hence
balanced. Therefore we assume that both D and E are non empty. Let LD

(resp. LE) denote the span of all differences ℓ − ℓ′ for ℓ ∈ D and ℓ′ ∈ D
(resp. for ℓ ∈ E and ℓ′ ∈ E). Then dim(LD) = card(D) − 1, dim(LE) =
card(E) − 1 by Lemma 5.5. Since LD ⊂ spanC(D), LE ⊂ spanC(E) and
spanC(D) ∩ spanC(E) is the line generated by

∑

ℓ∈D dℓℓ, LD ∩ LE = {0},
thus dim(LD +LE) = card(D) + card(E)− 2 = dim(c)− 1. In the quotient
space c∗ ⊗ C/LD + LE , all elements of D (resp. of E) are mapped to the
same vector ℓD (resp. ℓE), and ℓD 6= ℓE . Again, if one of the ℓ− ℓ′, ℓ ∈ D,
ℓ′ ∈ E belongs to N , c∗ ⊗ C/N vanishes, so c is balanced with respect to φ,
contradiction.

Therefore, all ℓ − ℓ′, ℓ ∈ D, ℓ′ ∈ E, belong to ±P . If there exists two
pairs (ℓ, ℓ′), ℓ ∈ D, ℓ′ ∈ E, such that ℑm(ℓ − ℓ′) have opposite signs in
c∗/ℑm(LD + LE), then c is balanced with respect to φ, contradiction.

Otherwise, all ℓ − ℓ′, ℓ ∈ D, ℓ′ ∈ E, belong to ±P and those which
belong to +P project to c∗/ℑm(LD + LE) with equal signs. This implies
that the direct sum representation

⊕

ℓ∈E Iℓ is maximal. In other words,
φ(Γ) ⊂ U(p, p) × U(q − p) is maximal. The symmetric spaces Dp,p and
Dp,q corresponding to SU(p, p) and G = SU(p, q) have equal ranks and the
embedding Dp,p →֒ Dp,q is isometric and holomorphic. Therefore Example
3.3 implies that, viewed as a homomorphism Γ → G, φ is maximal as well.

7.3. Rigidity in SU(p, q). The centralizer of SU(p, p) in SU(p, q), q > p

is U(q − p) with center c = u(1) generated by Z =

(

− 2pi
p+qIq−p 0

0 (q−p)i
p+q I2p

)

.

There is only one nonzero pair of roots ±i, giving rise to the root space
HomC(C

q−p,C2p). The sesquilinear form si on HomC(C
q−p,C2p) is, in an

SU(p, p)-invariant manner, the direct sum of q − p copies of the U(p, p)-
invariant Hermitian form on C2p. Therefore the corresponding Toledo in-
variant is equal to q − p times the Toledo invariant obtained for q = p + 1.
In this case, the centralizer of c is U(1) × SU(p, p), acting on the real root
space via the standard complex representation of its second factor. The
representation ρi induced on a surface subgroup Γ ⊂ U(1) × SU(p, p) is
maximal if and only if the projection of Γ to SU(p, p) is maximal. Thus a
maximal surface subgroup of SU(p, p) is not flexible in SU(p, q), q > p, as
is well known. Such subgroups exist (Theorem 1.8) and are known to be
automatically discrete, [1], [3].

8. Real forms of O(n,C) and Sp(n,C)

8.1. Non pure imaginary roots.
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Lemma 8.1. Let G be a real form of Oǫ(n,C). Let H ⊂ G be a reductive
subgroup. Let c ⊂ g be the center of its centralizer. If one of the roots of c
on Cn is not pure imaginary, then c is balanced.

Proof: By contradiction. Assume that c is not balanced and at least
one of the roots of c on Cn is not pure imaginary. Consider the torus
c⊗C ⊂ soǫ(n,C) and the set L∪−L of its nonzero roots on Cn (Proposition
6.21). Write L = LI ∪ LN where LI ⊂ L denotes the set of roots whose
restriction to c takes only pure imaginary values and LN its complement.
By assumption, LN is nonempty.

Assume first that LI is nonempty too. None of the roots λ = ±ℓ ± ℓ′,
ℓ ∈ LI , ℓ

′ ∈ LN , is pure imaginary, so none of them belongs to ±P . They
generate span(L) = c∗, thus c is balanced, contradiction. Therefore, L = LN .

If every root of adjoint action is non pure imaginary, it is balanced. Hence
they do not span c∗, which implies that there exists v ∈ c such that λ(v) = 0
for all roots λ of c in the adjoint representation which are not pure imaginary.
For every distinct ℓ and ℓ′ ∈ L, one of ℓ− ℓ′ and ℓ+ ℓ′ is not pure imaginary,
thus ℓ′(v) = ±ℓ(v).

Assume that there exists ℓ ∈ L such that ℓ or 2ℓ is a root of an adjoint
action, then ℓ(v) = 0 as well, which implies that ℓ′(v) = 0 for all ℓ′ ∈ L, and
v = 0. In other words, in that case, non pure imaginary roots span c∗, and
c is balanced, contradiction. Therefore,

• 0 is not a root of c on Cn (i.e., all root spaces correspond to elements
of ±L);

• for every root ℓ ∈ L, 2ℓ is not a root of c in the adjoint representation.

This implies that ǫ = 1 and all root spaces Iℓ have dimension 1, i.e. c ⊗ C

is a maximal torus of so(n,C). Its centralizer in so(n,C) is abelian, so are
ZG(c) and H, up to finite index. A homomorphism from an abelian group
cannot be tight, so no symplectic action on root spaces can be maximal, P
is empty, and c is balanced again, contradiction.

8.2. The sesquilinear structure.

Proposition 8.2. Let G be a real form of Oǫ(n,C). Let H ⊂ G be a
reductive subgroup. Let c ⊂ g be the center of its centralizer.

(1) Let ℓ be a pure imaginary root of c on Cn. Let Iℓ denote the corre-
sponding root space. Then Iℓ inherits a ZG(c)-invariant nondegen-
erate sesquilinear form sℓ.

(2) Assume that all roots of c on Cn are pure imaginary. Then the
centralizer ZG(c) of c in G is a product of the fixator of the orthogonal
of the 0 root space I0 and of unitary groups,

ZG(c) ∼= GI⊥0
×
∏

ℓ∈L

U(Iℓ, sℓ).

Proof: 1. Let sℓ(v, v
′) = B(τ(v), v′). This is an ηǫ-symmetric sesquilinear

form. It is nondegenerate on Iℓ because B is and all root spaces but I−ℓ =
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τ(Iℓ) are B-orthogonal to Iℓ. If g ∈ ZG(c), i.e g belongs to G and commutes
with c, then g leaves all root spaces I±ℓ invariant, it commutes with τ , and
is isometric for B, thus it is isometric for sℓ.

2. Let g ∈ G commute with c. Let g0 ∈ GL(n,C) be the element which
coincides with g on I0 and fixes the sum of all Iℓ, ℓ ∈ ±L, i.e. I⊥0 . Then
g0 ∈ G. Indeed, g0 commutes with τ and preserves B. Also, restrict g to
each Iℓ, ℓ ∈ L. This yields an injective homomorphism ZG(c) → GI⊥0

×
∏

ℓ∈L U(Iℓ, sℓ).
Conversely, let g0 ∈ G be an element which fixes all Iℓ. For each ℓ ∈ L,

pick an element gℓ ∈ U(Iℓ, sℓ), extend it to I−ℓ so that gℓ = τ ◦ gℓ ◦ τ
−1,

extend this map trivially to other Iℓ′ and to I0. The obtained linear map
belongs to ZG(c). Indeed, it preserves B, commutes with τ and preserves
each Iℓ. Multiplying g0 with the gℓ’s yields the inverse isomorphism GI⊥0

×
∏

ℓ∈L U(Iℓ, sℓ) → ZG(c).

Lemma 8.3. Let G be a real form of Oǫ(n,C). Let H ⊂ G be a reductive
subgroup. Let c ⊂ g be the center of its centralizer. Let ℓ, ℓ′ be distinct
pure imaginary roots of c on Cn, and λ = ℓ − ℓ′ the corresponding pure
imaginary root of c in its adjoint action on g. Let Iℓ, Iℓ′ and gλ denote the
corresponding root spaces.

1. If ℓ′ 6= −ℓ, then, as a sesquilinear ZG(c)-module, gλ is isomorphic to
Hom(Iℓ, Iℓ′) equipped with the natural sesquilinear form

(f, f ′) 7→ Trace(f∗ ◦ f ′),

where f∗ ∈ Hom(Iℓ′ , Iℓ) is the adjoint of f with respect to the sesquilinear
forms sℓ and sℓ′.

2. If ℓ′ = −ℓ, then, as a sesquilinear ZG(c)-module, gλ is isomorphic to
the subspace of −ǫ-symmetric forms in the space I∗ℓ ⊗ I

∗
ℓ of C-bilinear forms

on Iℓ, equipped with its natural sesquilinear form

(b, b′) 7→ Trace((♯sℓ)
−1 ◦ (♯b)

⊤ ◦ (♯sℓ)
−1 ◦ ♯b′).

Proof: 1. Assume first that ℓ and ℓ′ are linearly independant. Accord-
ing to Corollary 6.22, gλ is the space of B-skew-symmetric elements of
Hom(Iℓ, Iℓ′)⊕Hom(I−ℓ′ , I−ℓ). Given f ∈ Hom(Iℓ, Iℓ′) and g ∈ Hom(I−ℓ′ , I−ℓ),
X = (f, g) is B-skew-symmetric means that for all v ∈ Iℓ and w ∈ I−ℓ′ ,

B(f(v), w) +B(v, g(w)) = 0.

Since ♯B identifies I−ℓ with the dual of Iℓ, given f ∈ Hom(Iℓ, Iℓ′), there exists
a unique g ∈ Hom(I−ℓ′ , I−ℓ) such that X = (f, g) is B-skew-symmetric.
This shows that, as a ZG(c)-module, gℓ−ℓ′ is isomorphic to Hom(Iℓ, Iℓ′).

Since σ(X) = (τ ◦ g ◦ τ−1, τ ◦ f ◦ τ−1),

σ(X) ◦X = η(τ ◦ g ◦ τ ◦ f, τ ◦ f ◦ τ ◦ g),

therefore

Trace(σ(X) ◦X) = ηTrace(τ ◦ g ◦ τ ◦ f) + ηTrace(τ ◦ f ◦ τ ◦ g)

= 2ηTrace(τ ◦ g ◦ τ ◦ f).
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If v ∈ Iℓ,

sℓ(v, τ ◦ g ◦ τ ◦ f(v)) = B(τ(v), τ ◦ g ◦ τ ◦ f(v))

= B(v, g ◦ τ ◦ f(v))

= −B(f(v), τ ◦ f(v))

= −ǫB(τ ◦ f(v), f(v))

= −ǫsℓ(f(v), f(v))

= −ǫsℓ(v, f∗ ◦ f(v)).

Summing over an orthogonal basis for sℓ yields

Trace(τ ◦ g ◦ τ ◦ f) = −ǫTrace(f∗ ◦ f),

hence the Killing sesquilinear form on gλ is proportional to Trace(f∗ ◦ f).
2. Let f ∈ Hom(Iℓ, I−ℓ). Then f belongs to so(V,B) (f is B-skew-

symmetric) if and only if f∗ = −σ(f). Indeed,

∀v, w ∈ Iℓ, B(f(v), w) +B(v, f(w)) = 0

⇔ ∀v, w ∈ Iℓ, s−ℓ(f(v), τ(w)) + sℓ(v, τ ◦ f(w)) = 0

⇔ ∀v ∈ Iℓ, ∀v
′ ∈ I−ℓ, s−ℓ(f(v), v

′) + sℓ(v, τ ◦ f ◦ τ−1(v′)) = 0

⇔ f∗ = −τ ◦ f ◦ τ−1.

Thus, for B-skew-symmetric f ,

Trace(σ(f) ◦ f) = Trace(τ ◦ f ◦ τ−1 ◦ f) = −Trace(f∗ ◦ f).

Now f is B-skew-symmetric if and only if the bilinear form b(v, v′) =
B(f(v), v′) on Iℓ is (-ǫ)-symmetric. Since ♯B = f⊤ ◦ ♯B = ηf⊤ ◦ τ⊤ ◦ ♯sℓ
and f∗ = (♯sℓ)

−1 ◦ (f)⊤ ◦ ♯sℓ ,

f∗ ◦ f ′ = η(♯sℓ)
−1 ◦ (♯b)

⊤ ◦ (♯sℓ)
−1 ◦ ♯b′ .

Lemma 8.4. Let V be an n-dimensional complex vectorspace equipped with
a nondegenerate sesquilinear form of signature s. Then the signatures of
the induced sesquilinear forms on V ∗⊗V ∗, S2V ∗ and Λ2V ∗ are equal to s2,
(s2 + n)/2 and (s2 − n)/2 respectively.

Proof: Fix a basis of V . If D denotes the matrix of the sesquilinear form S
in this basis, and b, b′ the matrices of two bilinear forms on V , the induced
sesquilinear form on V ∗ ⊗ V ∗ is

Trace(b̄⊤D−1b′D−1).

One can assume that S is diagonal with entries dm = 1 (p times) and −1 (q
times), n = p+ q, s = p− q. Then

Trace(b̄⊤D−1b′D−1) =
∑

m,m′

dmdm′ |bmm′ |2
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is diagonal again. The signature of the whole space V ∗⊗V ∗ is
∑

m,m′ dmdm′ =

s2. The signature of the subspace Λ2V ∗ of skew-symmetric forms is

∑

m<m′

dmdm′ =
p(p− 1)

2
+
q(q − 1)

2
− pq =

s2 − n

2
.

The signature of the subspace S2V ∗ of symmetric forms is

∑

m≤m′

dmdm′ = n+
∑

m<m′

dmdm′ =
s2 + n

2
.

8.3. Unbalanced centers of centralizers. Recall that, when c ⊂ g is
the center of the centralizer of a homomorphism of a surface group to G,
P denotes the set of roots λ in the adjoint representation such that the
sesquilinear action on the root space gλ is maximal with positive Toledo
invariant.

Lemma 8.5. Let G be a real form of Oǫ(n,C). Let φ : Γ → G be a reductive
homomorphism. Let c ⊂ g be the center of its centralizer. Assume all the
roots are pure imaginary. Let ℓ, ℓ′ be distinct nonzero pure imaginary roots
of c on Cn, and λ = ℓ− ℓ′ the corresponding pure imaginary root of c in its
adjoint action on g.

(1) If ℓ′ 6= −ℓ, and λ ∈ ±P , then one of sℓ and sℓ′ has vanishing signa-
ture and the other is definite.

(2) If ℓ′ = −ℓ, then λ = 2ℓ either is not a root or does not belong to ±P .

Proof: If λ ∈ P , gλ has vanishing signature. So does U(Hom(Iℓ, Iℓ′))
(resp. U(Λǫ(Iℓ))) with its natural sesquilinear form, according to Lemma
8.3. In particular, these groups are of tube Hermitian type. Furthermore,
the ZG(c) action on gλ is tight. According to Proposition 8.2, ZG(c) is a
product of groups.

1. If ℓ′ 6= −ℓ, among the factors, only U(Iℓ, sℓ) and U(Iℓ′ , sℓ′) act non
trivially on gλ, thus the morphism

U(Iℓ)× U(Iℓ′) → U(Hom(Iℓ, Iℓ′))

must be tight. Lemma 3.14 applies and one of the left hand groups is
compact and the other has vanishing signature.

2. If ℓ′ = −ℓ, among the factors, only U(Iℓ, sℓ) acts non trivially on gλ,
thus the morphism

U(Iℓ) → U(Λǫ(Iℓ))

must be tight. Lemma 3.13 implies that U(Iℓ) is of tube type, so sℓ has van-
ishing signature. Lemma 8.4 shows that the signature of Λǫ(Iℓ) is±dim(Iℓ)/2,
which does not vanish, contradiction. We conclude that if 2ℓ is a root, it
does not belong to ±P .
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Proposition 8.6. Let G be a real form of Oǫ(n,C). Let φ : Γ → G be a
reductive homomorphism. Let c ⊂ g be the center of its centralizer. Then
c is balanced with respect to φ unless ǫ = 1, dim(c) = 1, c∗ is generated
by a root ℓ with a 1-dimensional root space Iℓ, the sesquilinear form on I0
has vanishing signature, GI⊥0

is reductive Hermitian of tube type and tightly

embedded in U(I0), and the homomorphism Γ → U(I0) is maximal.

Proof: Assume that c is not balanced. From Lemma 8.1, we know that
roots have to be pure imaginary. We take their imaginary parts without
mentioning it explicitely.

If ǫ = −1 or if all Iℓ, ℓ ∈ L, have dimension > 1, then all 2ℓ are roots and
do not belong to ±P , so they all belong to the complement N of P (Lemma
8.5). Since they generate c∗, c is balanced, contradiction. So ǫ = 1 and the
set D of roots ℓ ∈ L such that dim(Iℓ) = 1 is nonempty.

Assume that D has at least 2 elements. According to Lemma 8.5, com-
binations ±ℓ ± ℓ′, for ℓ, ℓ′ ∈ D, belong to N . Since they span span(D),
and multiples 2ℓ′′, ℓ′′ /∈ D span span(L \D), N spans c∗ and c is balanced,
contradiction. So D has exactly one element, denoted by ℓ0.

Assume that L 6= D. For ℓ /∈ D, 2ℓ /∈ ±P , hence 2ℓ ∈ N . Since
ℓ0 ∪ {ℓ /∈ D} are all roots, dim(c∗/span(N)) = 1, and for all ℓ ∈ L \D, all
combinations ±ℓ0 ± ℓ belong to ±P . Since 0 does not belong to the convex
hull of the image of P in c∗/span(N), this convex hull contains exactly
one of ℓ0 and −ℓ0, say ℓ0. Then ℓ0 − ℓ and ℓ0 + ℓ belong to P . Thus the
sesquilinear representation of Γ inHom(Iℓ0 , Iℓ⊕I−ℓ) is maximal. Lemma 3.6
allows to replace Hom(Iℓ0 , Iℓ⊕I−ℓ) with Iℓ⊕I−ℓ. However, as a sesquilinear
vectorspace, I−ℓ is isomorphic to I−ℓ, so, with Lemma 3.7,

T (Iℓ ⊕ I−ℓ) = T (Iℓ) + T (I−ℓ) = T (Iℓ)− T (Iℓ) = 0,

contradicting maximality. So L = D and dim(c) = 1.
Assume that 0 is not a root of c on Cn. Then dim(V = Iℓ0 ⊕ I−ℓ0) = 2

and ZG(c) = U(Iℓ0)
∼= U(1), which cannot have any maximality property.

So 0 is a root on Cn, ±ℓ0 are roots of c in the adjoint representation. Since 0
does not belong to the convex hull of P in c∗, exactly one of ±ℓ0 belongs to
P , say ℓ0 ∈ P . Then Hom(Iℓ0 , I0) is a maximal sesquilinear representation
of Γ, so does I0, by Lemma 3.6. In particular, the signature of (I0, s0)
vanishes, i.e. U(I0) has tube type. Also, the morphism ZG(c) → PU(I0) is
tight. ZG(c) = GI⊥0

× U(Iℓ0) acts on I0 via the group GI⊥0
, so the injection

GI⊥0
→ PU(I0) is tight. This implies that GI⊥0

is reductive Hermitian and

has tube type (Lemma 3.13).

Corollary 8.7. Let G be a real form of Oǫ(n,C). Let φ : Γ → G be a
reductive homomorphism. Let c ⊂ g be the center of its centralizer. Then c

is balanced with respect to φ unless G = SO∗(2n), n odd, φ(Γ) ⊂ SO∗(2n−
2)× SO∗(2) and φ is maximal.
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Proof: In view of Proposition 8.6, there merely remains to determine which
pairs (G,GI⊥0

) can lead to unbalanced centralizers, when G is a real form of

O(N,C), i.e. G = O(p, q) or G = SO∗(2n).
In the real case, I0 is real, GI⊥0

is a real orthogonal group O(p, q), which

tightly injects into U(I0, s0) = U(p, q). We also know that the signature
p − q of s0 vanishes. O(p, p) is reductive Hermitian only if p = 2. But
Lemma 3.15 states that the inclusion O(2, 2) →֒ U(2, 2) is not tight. So c is
always balanced if G = O(p, q) is a real orthogonal group.

In the quaternionic case, I0 is quaternionic and carries a nondegenerate
( ¯ ,−1)-binary form (Lemma 4.1) (see subsection 4.2 also). Therefore GI⊥0
is a quaternionic skew-unitary group SO∗(2p), p = dimH(I0). Let ℓ denote
the unique nonzero root of c on C2n. I⊥0 = Iℓ ⊕ I−ℓ is a 2-dimensional com-
plex vectorspace, thus a 1-dimensional quaternionic vectorspace, therefore
n = p + 1. Since GI⊥0

has tube type, p is even and n is odd. The homo-

morphism Γ → U(I0) ∼= U(p, p) is maximal. According to Lemma 10.3, the
homomorphism Γ → GI⊥0

∼= SO∗(2p) is maximal as well. The symmetric

spaces Gp and Gp+1 corresponding to GI⊥0
and G have equal ranks and the

embedding Gp →֒ Gp+1 is isometric and holomorphic. Therefore Example
3.4 implies that, viewed as a homomorphism Γ → G, φ is maximal as well.

9. Proof of Theorem 1

For homomorphisms Γ → G with reductive Zariski closure, the proof of
Theorem 1 follows from Theorem 2.2, the classification of classical simple
Lie groups and the case by case analysis of balancedness in sections 7 and
8.

Here is how the problem is reduced to the case of reductive homomor-
phisms. Theorem 2 of [12] asserts that if genus(Γ) ≥ 2dim(G)2 and G is
semisimple, the space Hom(Γ, G) falls into two types of connected compo-
nents: in some of them, Zariski dense homomorphisms are dense; others
do not contain any Zariski dense homomorphism (call them rigid). Let
φ : Γ → G be an arbitrary homomorphism. If φ cannot be approximated
by Zariski dense homomorphisms, then φ belongs to a rigid component C.
Proposition 8.3 of [12] asserts that C contains a reductive homomorphism ψ.
The reductive case of Theorem 1 implies that G is Hermitian of non tube
type and ψ is maximal. Since Toledo invariants are constant on connected
components of Hom(Γ, G), φ is maximal as well.

10. Appendix

For the reader’s convenience, we give barehanded proofs of the maximality
preserving property of two embeddings between reductive Hermitian groups.

We start with a preliminary observation.
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Lemma 10.1. Let F : Y → X be an equivariant totally geodesic map
between Hermitian symmetric spaces. Assume Y is irreducible. Let P ⊂ X
and Q ⊂ Y be maximal polydisks such that F (Q) ⊂ P . Then F is positively
maximality preserving if and only F|Q : Q → P is.

Proof: Since Y is irreducible, F is homothetic, i.e. there exists a constant
c such that F ∗ωX = c ωY . Sectional curvature achieves its minimum along
maximal polydiscs, so

(ωX)|P = ωP , (ωY )|Q = ωQ.

Since rank(P ) = rank(X) and rank(Q) = rank(Y ), F is positively maximal-
ity preserving if and only if

c =
rank(X)

rank(Y )
⇔ c =

rank(P )

rank(Q)

⇔ (F|Q)
∗ωP =

rank(P )

rank(Q)
ωQ

if and only if F|Q is positively maximality preserving.

Lemma 10.2. The embedding SU(n, n) →֒ Sp(4n,R), is positively maxi-
mality preserving.

Proof: Let Y = Dn,n (resp. X = S2n) denote the symmetric space asso-
ciated to H = SU(n, n) (resp. G = Sp(4n,R)). Let ι : Y → X denote the
corresponding embedding of symmetric spaces. We must show that

ι∗ωX = 2ωY .

Let us first study the case when n = 1. Let VC = C2 be equipped with

the standard symmetric sesquilinear form v · v′ = v̄⊤v′. Let S =

(

0 i
−i 0

)

.

The symmetric sesquilinear form s(v, v′) = v · (Sv′) on VC has vanishing
signature. It is easy to show that s(Av,Av′) = s(v, v′) for v, v′ ∈ C2, and
A ∈ SL(2,R) by a direct calculation. Hence the group H = SU(VC, s)
coincides with SL(2,R) acting on VC = R2 ⊗ C. Its maximal compact

subgroup L is generated by J =

(

0 1
−1 0

)

.

Let VR denote VC viewed as a real vectorspace equipped with the sym-
plectic form Ω(v, v′) = ℑm(s(v, v′)). Then H = SU(VC, s) is a subgroup of
the larger symplectic group G = Sp(VR,Ω). Let ρ : SU(VC, s) →֒ Sp(VR,Ω)
denote the inclusion homomorphism. J ′ = ρ(J) is the 4 × 4 matrix which

reads

(

0 1
−1 0

)

in 2 × 2 blocks. J ′ is a complex structure compatible with

Ω and tamed by Ω, thus its centralizer in Sp(VR,Ω) is a maximal compact
subgroup K of Sp(VR,Ω). The adjoint actions of J on h/l and of J ′ on g/k
define the complex structures of the symmetric spaces Y and X associated
to H and G, so the ρ-equivariant embedding ι : Y →֒ X mapping L into K
is holomorphic.
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Let us view VC as R2 ⊗ C. Then VR = R2 ⊕ iR2. In this coordinates,
SL(2,R) acts diagonally. The stabilizer of this decomposition in G is the
standard SL(2,R) × SL(2,R) of Sp(4,R). By Example 3.5, the embedding
of symmetric spaces Y = S1 →֒ S2 corresponding to each SL(2,R) →֒ G
is isometric and holomorphic, so SL(2,R) × SL(2,R) →֒ G gives rise to
an isometric and holomorphic map of Y × Y onto a maximal polydisk P of
X = S2. The image ρ(H) sits diagonally in the product SL(2,R)×SL(2,R),
so ι : Y → P factors through the diagonal ∆ : Y → Y ×Y . This shows that
Kähler forms fit up to a factor of 2, i.e.

ι∗ωP = ∆∗(pr∗1ωP + pr∗2ωP ) = 2ωY .

In general, let (VC, s) be the orthogonal direct sum of n copies of the n = 1
example just studied. Then s has vanishing signature. Each factor gives rise
to a homomorphism SU(1, 1) →֒ H = SU(VC, s) and a map D1,1 = S1 →֒
Y = Dn,n which, according to Example 3.3, is isometric and holomorphic.
The product map Dn

1,1 →֒ Y is isometric and holomorphic onto a maximal
polydisk Q of Y .

Let VR be VC viewed as a real vectorspace equipped with the symplec-
tic structure Ω = ℑm(s). Each factor of VC is the complexification of a
real 2-dimensional vectorspace. This gives rise to commuting embeddings
SL(2,R) →֒ Sp(4n,R) and the corresponding map S2n

1 →֒ X = S2n is an
holomorphic isometry onto a maximal polydisk P of X. The restriction of
ι : Y → X to Q is the direct product of n copies of the n = 1 case, so again

ι∗ωP = 2ωQ.

With Lemma 10.1, since rank(X) = 2rank(Y ), this shows that ι is positively
maximality preserving.

Lemma 10.3. Let h be a nondegenerate ( ¯ ,skew)-symmetric binary form
on a 2n-dimensional quaternionic vectorspace VH (see subsection 4.1). Use
right multiplication by i to turn VH into a complex 4n-dimensional vec-
torspace VC. Let C(q) = a denote the complex part of a quaternion q = a+jb.
Then

s(v, v′) = C(h(v, v′))

is a nondegenerate sesquilinear form of vanishing signature on VC. Then the
corresponding embedding of groups ρ : SO∗(4n) := SU(VH, h) →֒ SU(2n, 2n)
:= SU(VC) is positively maximality preserving.

Proof: Let ι : Y = G2n → X = D2n,2n be the corresponding embedding of
Hermitian symmetric spaces. Since rank(G2n) = n and rank(D2n,2n) = 2n,
we shall show that Kähler forms match up to a factor of 2, i.e. ι∗ωX =
2ωY . Following Lemma 10.1, it suffices to understand the restriction of ι to
maximal polydisks.

Let v · v′ = v̄⊤v′ denote the standard positive definite ¯ -symmetric bi-
nary form on H2n. Let h(v, v′) = v · iv′. Then h is ( ¯ ,skew)-symmetric
and nondegenerate, so we can take VH = (H2n, h). The embedding ρ :
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SO∗(4n) →֒ SU(2n, 2n) consists in taking a quaternionic matrix X, split-
ting it as X = M + jM ′ where M and M ′ have complex entries, letting X
act on the quaternionic vector v = a+ jb, (a, b) ∈ (C2n)2 = C4n. Thus

Xv = (M + jM ′)(a+ jb) =Ma−M ′b+ j(M ′a+ M̄b),

i.e.

ρ(X) =

(

M −M ′

M ′ M̄

)

.(1)

Let J ∈ Gl(2n,H) denote left multiplication by i. Elements of Sp(2n)
which commute with J (i.e. matrices with entries in C ⊂ H) form a group
L isomorphic to U(2n). It is a maximal compact subgroup in SO∗(4n).
Under ρ, this subgroup is mapped to the maximal compact subgroup K =
S(U(2n) × U(2n)) by M 7→ (M,M̄ ). J belongs to the Lie algebra h =
so∗(4n), it generates the center of the Lie algebra l of L. Therefore the
complex structure on G2n arises from the adjoint action of J on h/l. For the
same reason, the complex structure on D2n,2n arises from the adjoint action
of J ′ = diag(i, . . . , i,−i, . . . ,−i) on g/k. Note that at the Lie algebra level
ρ(J) = J ′, thus ι is holomorphic.

Let us first study the case when n = 1. The Lie algebra

so∗(4) = {A|A∗

(

i 0
0 i

)

+

(

i 0
0 i

)

A = 0}

is isomorphic to su(1, 1) ⊕ su(2), it consists of matrices of the form
(

iα jx
−jx iα

)

+

(

iβ y
−ȳ −iβ

)

where α, β ∈ R, x, y ∈ C. The first matrix belongs to a subalgebra q

isomorphic to su(1, 1). A computation based on formula (1) gives

ρ

(

iα jx
−jx iα

)

=









iα 0 0 −x̄
0 iα x̄ 0
0 x −iα 0
−x 0 0 −iα









.

We see that ρ(q) is contained in the subalgebra

p = {









iα 0 0 −x̄

0 iα′ −x′ 0
0 −x′ −iα′ 0
−x 0 0 −iα









; α, α′ ∈ R, x, x′ ∈ C}

which is isomorphic to su(1, 1) ⊕ su(1, 1) and embedded in the standard
(block diagonal) manner in su(2, 2). The map ρ|q : q → p is the graph of
an inner automorphism of su(1, 1). Geometrically, this means that ι maps
Q = G2 (a complex line of constant curvature −1) holomorphically into a
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maximal polydisk P of D2,2. P is holomorphically isometric to Q× Q and
ι|Q : Q→ P is the graph of an isometry I of Q. It follows that

ι∗ωP = (id, I)∗(pr∗1ωQ + pr∗2ωQ) = 2ωQ.

Let us map SO∗(4) as a diagonal 2 × 2 block in SO∗(4n). This yields
an embedding G2 →֒ G2n = Y which, according to Example 3.4, is isometric
and holomorphic. Splitting VH = H2n as an orthogonal direct sum of 2-
dimensional quaternionic vectorspaces yields an isometric and holomorphic
embedding of Gn

2 onto a maximal polydisk Q ⊂ G2n. Then ι(Q) is contained
in the standard maximal polydisk P ⊂ D2n,2n = X, and ι|Q : Q → P is a
product of n copies of the map of the previous paragraph. Therefore

ι∗ωP =
n
∑

i=1

ι∗ωPi
=

n
∑

i=1

ωQi
= 2ωQ.

Since rank(X) = 2rank(Y ), this shows that ι (and thus ρ) is positively
maximality preserving.
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