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ON THE INSTABILITY OF EIGENVALUES

SYLVAIN GOLÉNIA

Abstract. This is the proceeding of a talk given in Workshop on Differential Geometry
and its applications at Alexandru Ioan Cuza University Iaşi, Romania, September 2–4,
2009. I explain how positive commutator estimates help in the analysis of embedded
eigenvalues in a geometrical setting. Then, I will discuss the disappearance of eigenvalues
in the perturbation theory and its relation with the Fermi golden rule.

1. Introduction

Let H := {(x, y) ∈ R2, y > 0} be the Poincaré half-plane and we endow it with the
metric g := y−2(dx2 + dy2). Consider the group Γ := PSL2(Z). It acts faithfully on H by
homographies, from the left. The interior of a fundamental domain of the quotient H\Γ
is given by X := {(x, y) ∈ H, |x| < 1, x2 + y2 > 1}. Let H := L2(X, g) be the set of L2

integrable function acting on X , with respect to the volume element dx dy/y2. Let C∞
b (X)

be the restriction to X of the smooth bounded functions acting on H which are C-valued
and invariant under Γ. The (non-negative) Laplace operator is defined as the closure of

∆ := −y2(∂2
x + ∂2

y), on C∞
b (X).

It is a (unbounded) self-adjoint operator on L2(X). Using Eisenstein series, for instance,
one sees that its essential spectrum is given by [1/4,∞) and that it has no singularly
continuous spectrum, with respect to the Lebesgue measure. It is well-known that ∆ has
infinitely many eigenvalues accumulating at +∞ and that every eigenspace is of finite
dimension. We refer to [5] for an introduction to the subject.

We consider the Schrödinger operator Hλ := ∆ + λV , where V is the multiplication by
a bounded, real-valued function and k ∈ R. We focus on an eigenvalue k > 1/4 of ∆ and
assume that the following hypothesis of Fermi golden rule holds true. Namely, there is
c0 > 0 so that:

lim
ε→0+

PV P Im(H0 − k + iε)−1PV P ≥ c0P,(1.1)

in the form sense and where P := Pk, the projection on the eigenspace of k, and P := 1−P .
As P is of finite dimension, the limit can be taken in the weak or in the strong sense. At
least formally, P Im(H0 − k + iε)−1P tends to the Dirac mass πδk(PH0). Therefore, the
potential V couples the eigenspace of k and PH0 over k in a non-trivial way. This is a key
assumption in the second-order perturbation theory of embedded eigenvalues, e.g., [13],
and all the art is to prove that it implies there is λ0 > 0 that Hλ has no eigenvalue in a
neighborhood of k for λ ∈ (0, |λ0|).
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In [4], one shows that generically the eigenvalues disappear under the perturbation of a
potential (or of the metric) on a compact set. In this note, we are interested about the
optimal decay at infinity of the perturbation given by a potential. Using the general result
obtained in [3] and under a hypothesis of Fermi golden rule, one is only able to cover the
assumption V L3 = o(1), as y → +∞, where L denotes the operator of multiplication by
L := (x, y) 7→ 1 + ln(y). We give the main result:

Theorem 1.1. Let k > 1/4 be an L2−eigenvalue of ∆. Suppose that V L = o(1), as

y → +∞ and that the Fermi golden rule (1.1) holds true, then there is λ0 > 0, so that Hλ

has no eigenvalue in a neighborhood of k, for all λ ∈ (0, |λ0|). Moreover, if V L1+ε = o(1),
as y → +∞ for some ε > 0, then Hλ has no singularly continuous spectrum.

We believe that the hypothesis V L = o(1) is optimal in the scale of L. In our approach,
we use the Mourre theory, see [1, 12] and establish a positive commutator estimate.

2. Idea of the proof

Standardly, for y large enough and up to some isometry U , see for instance [6, 9, 10] the
Laplace operator can be written as

∆̃ = (−∂2
r + 1/4)⊗ P0 + ∆̃(1⊗ P⊥

0 )(2.2)

on C∞
c

(
(c,∞), dr

)
⊗ C∞(S1), for some c > 0 and where P0 is the projection on constant

functions and P⊥
0 := 1 − P0. The Friedrichs extension of the operator ∆̃(1 ⊗ P⊥

0 ) has
compact resolvent.

Then, as in [9, 10], we construct a conjugate operator. One chooses Φ ∈ C∞
c (R) with

Φ(x) = x on [−1, 1], and sets ΦΥ(x) := ΥΦ(x/Υ), for Υ ≥ 1. Let χ̃ be a smooth cut-off
function being 1 for r big enough and 0 for r being close to c. We define on C∞

c

(
(c,∞)×S1

)

a micro-localized version of the generator of dilations:

(2.3) SΥ,0 := χ̃
((
ΦΥ(−i∂r)r + rΦΥ(−i∂r)

)
⊗ P0

)
χ̃.

The operator ΦΥ(−i∂r) is defined on the real line by F−1ΦΥ(·)F , where F is the unitary
Fourier transform. We also denote its closure by SΥ,0 and it is self-adjoint. In [6] for
instance, one does not use a micro-localization and one is not able to deal with really
singular perturbation of the metric as in [9, 10].

Now, one obtains

[∂2
r , χ̃(ΦΥr + rΦΥ)χ̃] = 4χ̃∂rΦΥ

χ̃+ remainder.

Using a cut-off function µ̃ being 1 on the cusp and 0 for y ≤ 2, we set

SΥ := U−1SΥ,0 U µ̃(2.4)

This is self-adjoint in L2(X). Now by taking Υ big enough, one can show, as in [9, 10] that
given an interval J around k, there exist εΥ > 0 and a compact operator KΥ such that
the inequality

(2.5) EJ (∆)[∆, iSΥ]EJ (∆) ≥ (4 inf(J )− εΥ)EJ (∆) + EJ (∆)KΥEJ (∆)
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holds in the sense of forms, and such that εΥ tends to 0 as Υ goes to infinity. Here, EJ (·)
denotes the spectral measure above the interval J .

Now, we apply P to the left and right of (2.5). Easily one has PEJ (∆) = PEJ

(
∆P

)
.

We get:

PEJ (P∆)
[
P∆, iPSΥP

]
EJ (P∆)P ≥ (4 inf(J )− εΥ)PEJ (∆P )P

+ PEJ (P∆)KΥEJ (P∆)P

One can show that PSΥP is self-adjoint in PL2(X) and that
[
P∆, PSΥP

]
extends to a

bounded operator.
We now shrink the size of the interval J . As P∆ has no eigenvalue in J , then the

operator PEJ (P∆)KΥEJ (P∆)P tends to 0 in norm. Therefore, by shrinking enough, one
obtains a smaller interval J containing k and a constant c > 0 so that

PEJ (P∆)
[
P∆, iPSΥP

]
EJ (P∆)P ≥ cPEJ (∆P )P(2.6)

holds true in the form sense on PL2(X). At least formally, the positivity on PL2(X) of
the commutator

[
Hλ, iPSΥP

]
, up to some spectral measure and to some small λ, should

be a general fact and should not rely on the Fermi golden rule hypothesis.
We now try to extract some positivity on PL2(X). First, we set

Rε :=
(
(H0 − k)2 + ε2

)−1/2
, Rε := PRε and Fε := Rε

2
.(2.7)

Note that εR2
ε = Im(H0 − k + iε)−1 and that Rε commutes with P . Using (1.1), we get:

(c1/ε)P ≥ PV P Fε PV P ≥ (c2/ε)P,(2.8)

for ε0 > ε > 0.
We follow an idea of [2], which was successfully used in [8, 11] and set

Bε := Im(Rε
2
V P ).

It is a finite rank operator. Observe now that we gain some positivity as soon as λ 6= 0:

P [Hλ, iλBε]P = λ2PV FεV P ≥ (c2λ
2/ε)P.(2.9)

It is therefore natural to modify the conjugate operator SΥ to obtain some positivity on
PL2(X). We set

ŜΥ := PSΥP + λθBε.(2.10)

It is self-adjoint on D(SΥ) and is diagonal with respect to the decomposition PL2(X) ⊕
PL2(X).

Here θ > 0 is a technical parameter. We choose ε and θ, depending on λ, so that
λ = o(ε), ε = o(θ) and θ = o(1) as λ tends to 0. We summarize this into:

|λ| ≪ ε ≪ θ ≪ 1, as λ tends to 0.(2.11)
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With respect to the decomposition PEJ (∆)⊕ PEJ (∆), as λ goes to 0, we have

EJ (∆)
[
λV, iPSΥP

]
EJ (∆) =

(
O(λ) O(λ)
O(λ) 0

)
,

EJ (∆)[∆, iλθBε]EJ (∆) =

(
0 O(λθε−1/2)

O(λθε−1/2) 0

)
,

and EJ (∆)[λV, iλθBε]EJ (∆) =

(
O(λ2θε−3/2) O(λ2θε−3/2)
O(λ2θε−3/2) λ2θFε

)
.

Now comes the delicate point. Under the condition (2.11) and by choosing I, slightly
smaller than J , we use the previous estimates and a Schur Lemma to deduce:

(2.12) EI(Hλ)[Hλ, iŜΥ]EI(Hλ) ≥
cλ2θ

ε
EI(Hλ),

for some positive c and as λ tends to 0.
We mention that only the decay of V L is used to establish the last estimate. In fact,

one uses that [V, iŜΥ](∆ + 1)−1 is a compact operator.
Now it is a standard use of the Mourre theory to deduce Theorem 1.1 and refer to [1],

see [9, 10] for some similar application of the theory. For the absence of eigenvalue, one
relies on the fact that given an eigenfunction f of Hλ w.r.t. an eigenvalue κ ∈ I, one has:

〈f, [Hλ, iŜΥ]f〉 = 〈f, [Hλ − κ, iŜΥ]f〉 = 0.(2.13)

Then, one applies f on the right and on the left of (2.12) and infers that f = 0 thanks to
the fact that the constant cλ2θ is non-zero.

In [9, 10], we prove that the C0-group (eiSΥt)t∈R stabilizes the domain D(Hλ) = D(∆).

By perturbation, we prove that this is also the case for (eiŜΥt)t∈R. Thanks to this property,
we can expand the commutator of (2.13) in a legal way. This is known as the Virial theorem
in the Mourre Theory, see [1, 12].
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