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Uniting two Control Lyapunov Functions for

affine systems
Vincent Andrieu and Christophe Prieur

Abstract

The problem of piecing together two Control Lyapunov Functions (CLFs) is addressed. The first

CLF characterizes a local asymptotic controllability property toward the origin, whereas the second

CLF is related to a global asymptotic controllability property with respect to a compact set. A sufficient

condition is expressed to obtain an explicit solution. This sufficient condition is shown to be always

satisfied for a linear second order controllable system. In a second part, it is shown how this uniting

CLF problem can be used to solve the problem of piecing together two stabilizing control laws. Finally,

this framework is applied on a numerical example to improve local performance of a globally stabilizing

state feedback.

I. INTRODUCTION

Smooth Control Lyapunov Functions (CLFs) are instrumental in many feedback control de-

signs and can be traced back to Artstein who introduced this Lyapunov characterization of

asymptotic controllability in [4]. For instance, one of the useful characteristic of smooth CLFs

is the existence of universal formulas for stabilization of nonlinear affine (in the control) systems

(see [5], [7]). Numerous tools for the design of global CLF are now available (for instance by

backstepping [6], or by forwarding [9], [14]). On another hand, via linearization (or other local

approaches), one may design local CLF yielding locally stabilizing controllers. This leads to

the idea of uniting a local CLF with a global CLF. In Section II a sufficient condition to piece

together a pair of CLFs is given.

This issue is closely related to the ability to piece together a local controller and a global one.

This problem of unification of control laws was introduced in [16]. It has been subsequently
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developed in [11] where this problem has been solved by considering controllers with continuous

and discrete dynamics (namely hybrid controller). As shown in Section III below, solving the

uniting CLF problem provides a simple solution to the uniting control problem without employing

discrete dynamics. Some related results concerning the unification of different controllers can

be found in [13], [17] where hybrid controllers are used, or in [1] where the patchy feedbacks

design has been studied.
A numerical example is given in Section IV showing how this framework can be used to

modify the local behavior of the trajectories of a nonlinear system in order to minimize a cost

function. In contrast to the solution by means of hybrid controllers (see e.g. [12]), this approach

allows the design of a continuous global control and locally optimal.

II. PROBLEM STATEMENT AND MAIN RESULT

A. Problem formulation

The nonlinear systems under consideration in this paper have the following form:

ẋ = f (x) + g(x)u , (1)

where x in Rn is the state, u in Rp is the control input, and f : Rn → Rn and g : Rn → Rp are

locally Lipschitz functions such that f (0) = 0.
For system (1), two CLFs V0 and V satisfying the Artstein condition (see [4]) on specific

sets are given. More precisely, the following assumption holds.
Assumption 1: There exist a positive definite and continuously differentiable function V0 :

Rn→R+, a positive semi-definite, proper and continuously differentiable function V :Rn→R+,

and positive values R0 and r such that :

• Local CLF: {x : 0 < V0(x) ≤ R0,LgV0(x) = 0} ⊆ {x : LfV0(x) < 0} ; (2)

• Non-local CLF: {x : V (x) ≥ r , LgV (x) = 0} ⊆ {x : LfV (x) < 0} ; (3)

• Covering assumption: {x : V (x) > r } ∪ {x : V0(x) < R0} = Rn .

The function V characterizes the global asymptotic controllability toward the set {x :V ≤R0}
for system (1). Hence, this function is proper but not necessarily positive definite.
Roughly speaking the Covering assumption means that the two sets, in which the asymptotic

controllability property holds (the two sets in which each CLF satisfies Artstein condition),

overlap and cover the entire domain.
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The problem addressed in this paper can be formalized as follows:

Uniting CLF problem: The uniting CLF problem is to find a proper, positive definite and

continuously differentiable function V : Rn → R+ such that:

• Global CLF: {x : x &= 0, LgV (x) = 0} ⊆ {x : LfV (x) < 0} ; (4)

• Local property: {x :V (x) ≤ r } ⊆ {x :V (x) = r V0(x)} ; (5)

• Non-local property: {x :V0(x) ≥ R0} ⊆ {x :V (x) = R0V (x)} . (6)

As shown in Section III, one of the main interest of solving the uniting CLF problem is that

it provides a way to piece together (continuously) some specific stabilizing controllers.

B. A sufficient condition and a constructive theorem

The first result establishes that, with the following additional assumption, the existence of a

solution to the uniting CLF problem is obtained.
Assumption 2: Given two positive values r and R0 and two functions V0 : Rn → R+ and

V : Rn → R+, for all x in {x : V (x) > r , V0(x) < R0}, the following implication holds:

∃ x > 0 : LgV0(x) = − x LgV (x) ⇒ LfV0(x)|LgV (x)|+LfV (x)|LgV0(x)| < 0 . (7)

The first result can now be stated.
Theorem 2.1: Under Assumptions 1 and 2, there exists a solution to the uniting CLF problem.

More precisely, the function V : Rn → R+ defined, for all x in Rn, by

V (x) = R0
[
0(V0(x))+ (V (x))

]
V (x) + r

[
1 − 0(V0(x)) − (V (x))

]
V0(x) , (8)

where 0 : R+ → [0,1] and :R+ → [0,1] are two continuously differentiable non-decreasing

functions satisfying1:

0(s)






= 0 ∀s≤ r0
> 0 ∀r0 < s< R0
= 1

2 ∀s≥ R0

, (s)






= 0 ∀s≤ r

> 0 ∀r < s< R

= 1
2 ∀s≥ R

, (11)

1For instance, 0 and can be defined as:

0(s) =
3
2

(
s− r0
R0− r0

)2
−

(
s− r0
R0− r0

)3
, s ∈ [r0,R0] , (9)

(s) =
3
2

(
s− r
R − r

)2
−

(
s− r
R − r

)3
, s ∈ [r ,R ] . (10)
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and where r0 = max{x:V (x)≤r }V0(x) and2 R = min{x:V0(x)≥R0}V (x), is a proper, positive

definite continuously differentiable function satisfying (4), (5), and (6).

The structure of the function V is inspired by the construction given in [2].

Proof: The first part of the proof is devoted to show that the positive real numbers r0 and

R are properly defined. Indeed, the function V being positive semi-definite and proper, the set

{x : V (x) ≤ r } is a non empty compact subset and r0 can be properly defined. For R , two

cases need to be considered:

• If {x : V0(x) ≥ R0} &= /0, pick any element x∗ in {x : V0(x) ≥ R0}. Since the function V
is proper, it yields that {x : V (x) ≤ V (x∗)} is a compact set and min{x :V0(x)≥R0}V (x) =

min{x :V0(x)≥R0,V (x)≤V (x∗)}V (x). Therefore in this case, R can be defined.

• In the case where {x : V0(x) ≥ R0} = /0, let R be any positive real number such that

R > r .

Note that with the Covering assumption, it yields that:

r0 < R0 , r < R . (12)

Indeed if one of the two inequalities in (12) is not satisfied then this implies the existence of x∗

in Rn such that V (x∗) ≤ r and V0(x∗)≥ R0 and consequently x∗ is not in the set {x : V (x) >

r } ∪ {x : V0(x) < R0} which contradicts the Covering assumption.
The function V0 being positive definite and the function V being proper, it can be checked

that V is positive definite and proper. Moreover it satisfies the local and asymptotic properties

given in Equations (5) and (6).

It remains to show that V satisfies the Artstein condition for all x in Rn \{0}. Note that the
functions V0 and V satisfying the implications (2) and (3), it yields that the function V satisfies

the Artstein condition on the set {x : V0(x) ≥ R0}∪{x &= 0 : V (x) ≤ r }.
Note that in the set {x : V0(x) < R0 , V (x) > r }, the following inequality holds:

R0V (x)− r V0(x) > 0 . (13)

Furthermore,
LfV (x) = A(x)LfV0(x)+B(x)LfV (x) ,

LgV (x) = A(x)LgV0(x)+B(x)LgV (x) ,

2In the case where {x : V0(x) ≥ R0} = /0 let R be such that R > r .
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where the continuous functions A : Rn → R+ and B :Rn → R+ are defined as, for all x in Rn,

A(x) = [R0V (x)− r V0(x)] ′
0(V0(x)) + r [1 − 0(V0(x)) − (V (x))] ,

B(x) = [R0V (x)− r V0(x)] ′ (V (x))+R0 [ 0(V0(x)) + (V (x))] .

In the set {x : V0(x) < R0 , V (x) > r } it holds that A(x) > 0 and B(x) > 0. Suppose there

exists x∗ in this set such that LgV (x∗) = 0. Two cases have to be considered:

• If LgV0(x∗) = 0, then LgV (x∗) = 0, and since V0 and V satisfy the Artstein condition,

this implies that L fV (x∗) < 0;

• If LgV0(x∗) &= 0, this implies:

LgV0(x∗) = −B(x∗)
A(x∗)

LgV (x∗) , (14)

and

A(x∗) =
B(x∗) |LgV (x∗)|

|LgV0(x∗)|
.

Consequently,

LfV (x∗) =
B(x∗)

|LgV0(x∗)|

[
LfV0(x∗) |LgV (x∗)| + LfV (x) |LgV0(x∗)|

]
,

and with (14) and Assumption 2, it yields L fV (x∗) < 0.

Hence, the function V satisfies the Artstein condition for all x in Rn \ {0}. This concludes the
proof of Theorem 2.1.

C. About Assumption 2

Another formulation of Assumption 2 can be given as stated in the following proposition the

proof of which can be found in [3].

Proposition 2.2: Given two continuously differentiable functions V0 :Rn→R+ and V :Rn→
R+, and a state x in Rn \ {0} such that Artstein condition is satisfied for both functions, the

implication (7) is equivalent to the existence of a control ux in Rp such that:

L fV0(x) + LgV0(x)ux < 0 , LfV (x) + LgV (x)ux < 0 . (15)
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III. APPLICATION TO THE DESIGN OF A UNITING CONTROLLER

Theorem 2.1 can be used to design stabilizing controllers with a prescribed behavior around

the equilibrium, and another behavior for large values of the state. In other words Theorem 2.1

gives a solution to the uniting control problem. This problem has been introduced in [16] and

further developed in [11]. In the present context, the following theorem is obtained.

Theorem 3.1: Consider two functions V0 :Rn → R+ and V :Rn→ R+ and two positive real

numbers R0 and r satisfying Assumptions 1 and 2. Assume that V0 is proper. For any continuous

function 0 : Rn → Rp satisfying, for all x in {x : 0 < V0(x) ≤ R0},

L fV0(x) + LgV0(x) 0(x) < 0 , (16)

and any continuous function : Rn → Rp satisfying for all x in {x : V (x) ≥ r }

LfV (x) + LgV (x) (x) < 0 , (17)

there exists a continuous function : Rn → Rp which solves the uniting controller problem, i.e.

such that

1) (x) = 0(x) for all x such that V (x) ≤ r ;

2) (x) = (x) for all x such that V0(x) ≥ R0 ;

3) the origin of the system ẋ = f (x) + g(x) (x) is a globally asymptotically stable equilib-

rium.

The idea of the proof is to design a controller which is a continuous path going from 0(x) for

x small to (x) for larger values of the state. The good behavior of the trajectories in between

is ensured by adding a sufficiently large term which depends on the uniting control Lyapunov

function. More precisely, the function : Rn → Rm obtained from Theorem 3.1 and which is a

solution to the uniting controller problem is defined as

(x) = H (x) − kc(x)LgV (x)T ,∀x ∈ Rn , (18)

where V : Rn → R+ is the Control Lyapunov Function obtained from Theorem 2.1, and with

H (x) = (x) 0(x) + [1− (x)] (x) where is any continuous function3 such that

(x) =





1 if V (x) ≤ r ,

0 if V0(x) ≥ R0 ,

3For instance, giving 0 and defined in (11), a possible choice is: (x) = 1− 0(V0(x))− (V (x)) . (19)
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and the function c is any continuous function such that4

c(x)





= 0 if V0(x) ≥ R0 or V (x) ≤ r ,

> 0 if V0(x) < R0 and V (x) > r ,
(21)

and k is a positive real number sufficiently large to ensure that V is a Lyapunov function of

the closed-loop system. The existence of k is obtained employing compactness arguments (see

analogous arguments in [2, Lemma 2.13]).

Proof: Note that the function satisfies item 1) and 2) of Theorem 3.1. It remains to show

item 3). Taking the function V as a candidate Lyapunov function obtained in (8), the continuous

function V̊ :Rn×N → R can be introduced as, for all (x,k) in Rn×N,

V̊ (x,k) =
V
x

(x) f (x) +
V
x

(x)g(x)H (x) − kc(x)
∣∣∣∣
V
x

(x)g(x)
∣∣∣∣
2

. (22)

With the local and non-local properties of the function V (as stated in (5) and (6) respectively),

for all x in {x &= 0 : V (x) ≤ r or V0(x) ≥ R0} and all k in N,

V̊ (x,k) < 0 . (23)

It is now shown that if k is selected sufficiently large then we have the negativeness of V̊ (x,k)

for all x &= 0. To prove that, suppose the assertion is wrong and suppose for each k in N, there
exists xk in Rn \{0} such that

V̊ (xk,k) ≥ 0 , ∀ k ∈ N . (24)

First note that with (23), for all k, xk is in the set {x : V (x) ≥ r }∩{x : V0(x) ≤ R0} which is
compact since V0 is proper and V is continuous. With (22) and (24), it yields that,

0≤ c(xk)
∣∣LgV (xk)

∣∣2 ≤ M
k

, (25)

withM=max{x :V (x)≥r }∩{x :V0(x)≤R0}
{
LfV (x)+LgV (x)H (x)

}
. Moreover, (xk)k∈N is a sequence

living in a compact set, thus there exists a subsequence (xk!)!∈N which converges to a point

denoted x∗ &= 0. With (25), it implies that c(x∗)
∣∣LgV (x∗)

∣∣2 = 0 and consequently,

V̊ (x∗,k) = w(x∗)

where w(x∗) = V
x (x

∗) f (x∗) + V
x (x

∗)g(x∗)H (x∗). From the fact that c(x∗)
∣∣LgV (x∗)

∣∣2 = 0, two

cases may be distinguished,

4For instance, a possible choice is c(x) =max{0,(R0−V0(x))(V (x)− r )} (20)
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• if LgV (x∗) = 0, by the Artstein condition, then L fV (x∗) < 0 and thus w(x∗) < 0;

• if c(x∗) = 0, then by (21), x∗ is in the set {x &= 0 : V (x) ≤ r or V0(x) ≥ R0}. With (23),
this implies w(x∗) < 0.

Since the function w is continuous at x∗, w(x∗) < 0, and the sequence (xk!)!∈N converges to x∗,

there exists ! such that, for all ! > ! , V̊ (xk!,k!)≤w(xk!) < 0 . This contradicts (24). Therefore

there exists k > 0 such that (23) is satisfied for all x &= 0. Hence, item 3) is also satisfied.

This theorem shows that as soon as the uniting CLF problem is solved, a continuous solution

to the uniting controller problem is obtained. Note also, that if discontinuous controllers with

discrete dynamics (not only continuous static controllers) are allowed, the existence of a hybrid

controller solving the problem is obtained under Assumption 1 only (see [11], [13]).

IV. ILLUSTRATION ON AN EXAMPLE

To illustrate the interest of the uniting controller solution developed in this paper, a numerical

example is provided in this section. Consider the nonlinear system (1) when n= 3, p= 1, and

the vector fields f and g defined by, for all x= (x1,x2,x3) in R3,

f (x) =





−x1+ x3
x21− x2−2x1x3+ x3
−x2



 , g(x) = Gx , G=





0

0

1



 . (26)

Let V be the continuously differentiable positive definite and proper function defined by

V (x1,x2,x3) = x21+
(
x21+ x2

)2+ x23 , ∀x ∈ R3 .

Along the vector fields f and g defined in (26), the Lie derivatives of the function V is

LfV (x) = −2x21−2
(
x21+ x2

)2+2x3
(
x21+ x1

)
, LgV (x) = 2x3 , ∀x ∈ R3 .

Note that, for all x in R3 \{0}, the Artstein condition is satisfied (i.e. LgV (x) = 0⇒ LfV < 0).

Consequently, V is a global CLF and the control law u= (x) with

(x) = −x21− x1− x3 , ∀x ∈ R3 , (27)

is such that, along the trajectories of the system (1) in closed loop with , for all x in

R3,
˙︷ ︷

V (x) ≤ −2x21−2
(
x21+ x2

)2−2x23. Hence the function defined in (27) ensures global

asymptotic stability of the origin of the system defined in (1) and (26).
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Note however that despite the global asymptotic stability of the origin is obtained with this

control law, there is no guarantee that the performance obtained is satisfactory. For instance, it

may be interesting that the controller locally minimizes a criterium defined as the limit, when

t → , of the operator J : L2
(
R+;R3

)
×L2 (R+;R)×R+ → R+ defined by, for all (x,u, t) in

L2
(
R+;R3

)
×L2 (R+;R)×R+,

J(x,u, t) =
Z t

0
x(s)TQx(s)+Ru(s)2ds , (28)

where Q is a symmetric positive definite matrix in R3 and R is a positive real number.

The techniques developed in this paper may be instrumental to modify the stabilizing con-

troller u= such that the criterium J is minimized around the origin. A similar problem has

been addressed in [10] where a general cost function depending on exogenous disturbances is

considered. In [10], using a backstepping approach for upper triangular systems, a controller,

which matches the optimal control law up to a desired order, is extended to a global stabilizer.

In the uniting CLF approach, the global controller is computed independently from the optimal

problem and an upper triangular structure is not required. However an assumption (namely

Assumption 2) is needed. Using the first order approximation, this assumption can be rewritten

in terms of an LMI (see Proposition 4.1 below).

The first order approximation around the origin of system (1) with f and g defined in (26) is

ẋ = F x + Gu , F =





−1 0 1

0 −1 1

0 −1 0



 . (29)

The system (29) being linear, an LQ controller minimizing the criterium defined in (28), is

given by 0(x) =−R−1GTP0 x, where P0 is the symmetric positive definite solution of the Riccati
equation:

P0F + FTP0 − P0GR−1GTP0 + Q = 0 . (30)

The tools developed in this paper provides a sufficient condition guaranteeing the existence of

a continuous state feedback u= (x) which unites the optimal local controller 0 and the global

one while ensuring global asymptotic stability of the origin. Indeed, this proposition can be

obtained (its proof is given in [3]).
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Proposition 4.1: Assume there exists a matrix K in R1×3 satisfying the following LMI:




(F + GK)TP0 + P0(F + GK) < 0 ,

(F + GK)TP + P (F + GK) < 0 ,
(31)

where P = diag(1,1,1). Then there exists a continuous function :R3→R such that the control

law u= (x) makes the origin of the system (1) a globally asymptotically stable equilibrium and

such that (x) = 0(x) in a neighborhood of the origin.

For the numerical illustration, the matrix Q is randomly selected as :

Q =





0.8 0.6 0.3

" 0.6 0.5

" " 1



 , (32)

and R = 1. The matrix P0 and the optimal local controller 0 = K0 x obtained solving the

associated Riccati equation can be computed employing the care routine in Matlab :

P0 =





0.3389 0.1412 0.3496

" 0.3870 −0.0912
" " 1.2316



 , K0 =
[
0.3496 −0.0912 1.2316

]
. (33)

Employing the Matlab package Yalmip ([8]) in combination with the solver Sedumi ([15]), it

can be checked5 that the LMI condition (31) is satisfied for a particular K in R1×3. Consequently,

Proposition 4.1 applies and a controller which unites the optimal local one 0 and the global

one can be constructed.

The uniting controller is given in (18) where the uniting CLF V is obtained from Theorem

2.1, and the functions 0, , , and c are respectively defined by (9), (10), (19) and (20), with

the following tuning parameters R0 = 0.88, r = 0.35, r0 = 0.4739, R = 0.65 and k = 1.

Figure 1 compares the time-evolution of the cost J defined in (28) when considering the

nominal control law u= and the uniting one u= , with the initial condition x(0) = [1 1 1]T .

Figure 2 shows the time-evolution of the control values u= . With this approach, there is no

guarantee that, for all initial conditions, the cost obtained employing the uniting controller will

be lower than the one obtained using the global one. More precisely, there exist initial conditions

for which the use of the interpolation between both controllers affects too strongly the cost.

5The Matlab files can be downloaded from http://homepages.laas.fr/∼vandrieu/Publication.htm
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Fig. 1. Time-evolution of the cost function J with the controls

(in plain line) and (in dashed line).
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Fig. 2. Time-evolution of the uniting controller .
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Fig. 3. Percentage of initial conditions for which the cost with the uniting controller is better than the global controller .

The left part of the dashed line is included in the set {x,V (x) ≤ r }.

To check if the uniting controller is statistically better than the global one, a set of initial

conditions is considered. This set is uniformly distributed on spheres with different radius. Figure

3 plots the percentage of initial conditions for which the cost has been improved when using

the uniting controller. For more than 75% of initial conditions the cost is lower with the uniting

controller than with the global controller. Note that for small radius, the corresponding initial

conditions are inside the set {x,V (x) ≤ r } and consequently the uniting controller is exactly
the optimal one. Hence, it is not surprising that the percentage of improvement is 100%.

V. CONCLUSION

In this paper, the problem of piecing together two Control Lyapunov Functions is considered.

Solving this one provides a simple solution to the uniting controllers problem. Two characteriza-

tions of a sufficient condition guaranteeing the solvability of the united CLF problem are given.

As shown on a numerical illustration, it allows to exhibit a sufficient condition to improve the
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qualitative behavior of the trajectories of nonlinear systems around the equilibrium.

ACKNOWLEDGEMENT

The authors are deeply grateful to Laurent Praly and Alessandro Astolfi for helpful suggestions.

REFERENCES

[1] F. Ancona and A. Bressan. Flow stability of patchy vector fields and robust feedback stabilization. SIAM Journal on

Control and Optimization, 41(5):1455–1476, 2003.

[2] V. Andrieu, L. Praly, and A. Astolfi. Homogeneous approximation, recursive observer design and output feedback. SIAM

Journal on Control and Optimization, 47(4):1814–1850, 2008.

[3] V. Andrieu and C. Prieur. Uniting two control Lyapunov functions for affine Systems (full version). HAL document, 2009.

http://hal.archives-ouvertes.fr/hal-00432607/fr.

[4] Z. Arststein. Stabilization with relaxed controls. Nonlinear analysis, 7(11):1163–1173, 1983.

[5] R. A. Freeman and P. V. Kokotovic. Inverse optimality in robust stabilization. SIAM Journal on Control Optimization,

34(4):1365–1391, 1996.

[6] M. Krstic, I. Kanellakopoulos, and P.V. Kokotovic. Nonlinear and Adaptive Control Design. John Wiley & Sons, Inc.

New York, NY, USA, 1995.

[7] Y. Lin and E.D. Sontag. A universal formula for stabilization with bounded controls. Systems & Control Letters, 16(6):393–

397, 1991.
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