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SIMULATION OF LÉVY PROCESSES AND OPTION PRICING

EL HADJ ALY DIA∗

Abstract. We approximate an infinite activity Lévy process by either truncating its small jumps
or replacing them by a Brownian motion with the same variance. Then we derive the errors resulting
from these approximations for some exotic options (Asian, barrier, lookback and American). We also
propose a simple method to evaluate these options using the approximated Lévy process.
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1. Introduction. General exponential Lévy models (see [2, 5, 11]) are widely
used, nowadays, in option valuation. Many numerical methods based on Fourier anal-
ysis have been subsequently developed to evaluate exotic options (see [4, 12, 13, 16]).
However, in many situations, Monte-Carlo methods have to be used, especially when
the underlying Lévy process has an infinite Lévy measure. Because the simulation of
such a Lévy process is not straightforward, except in some special cases (for example
gamma or inverse Gaussian processes), in practice, the small jumps of the Lévy pro-
cess are either truncated or replaced by a Brownian motion with the same variance.
The latter approach was introduced by Asmussen and Rosinsky, who showed that, un-
der suitable conditions, the normalized cumulated small jumps asymptotically behave
like a Brownian motion (see [1]).

Many others authors were also interested in the issue of small jump approxi-
mations. We can mention Cont and Tankov (2004), Cont and Voltchkova (2005),
Kohatsu-Higa and Tankov (2010), Signahl (2003) and Rydberg (1997). To our best
knowledge, the behaviour of the errors resulting from these approximations for path-
dependent options has not been studied yet.

The purpose of this article is to derive bounds for the errors generated by these two
methods of approximation in the valuation of exotic options (Asian, barrier, lookback,
and American options) in exponential Lévy models, and to propose a new method to
evaluate these options.

The paper is organized as follows. In the next section, we recall some basic facts about
real Lévy processes and give some useful notations. In section 3 we will study the
errors resulting from the small jump approximations for Asian, barrier, lookback, and
American options. The results of this section are the applications of [10]. In Section 4
we will propose a new method to evaluate exotic options when the underlying Lévy
process has an infinite Lévy measure. The main idea is to reduce the valuation of these
options to the simulation of the big jumps. The last section is devoted to numerical
applications. We will give an example of pricing using our method and we will study
the optimality of the bounds derived in Section 3.

2. Preliminaries. Consider a filtered probability space
(
Ω,F , (Ft)t∈[0,T ],P

)
.
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2 E. H. A. DIA

The distribution of a Lévy process X is characterized by its generating triplet
(γ, σ2, ν) where (γ, σ) ∈ R× R+, and ν is a Radon measure on R\{0} satisfying∫

R

(
1 ∧ x2) ν(dx) <∞.

By the Lévy-Itô decomposition, X can be written in the form

Xt = γt+ σBt +
∫
|x|>1,s∈[0,t]

xJX(dx× ds) + lim
δ↓0

∫
δ≤|x|≤1,s∈[0,t]

xJ̃X(dx× ds) (2.1)

Here JX is a Poisson measure on R × [0,∞) with intensity ν(dx)dt, J̃X(dx × ds) =
JX(dx × ds) − ν(dx)ds and B is a standard Brownian motion. The process X has
finite activity if ν(R) <∞. If ν(R) = +∞, the process X is called an infinite activity
Lévy process. Given ε > 0, we define the process Rε by

Rεt =
∫

0≤|x|≤ε,s∈[0,t]
xJ̃X(dx× ds), t ≥ 0. (2.2)

Note that we have

ERεt = 0

Var (Rεt) =
(
σX(ε)

)2
t,

where

σX(ε) =
√∫
|x|≤ε

x2ν(dx).

The process Xε is then defined by

Xε
t = Xt −Rεt , t ≥ 0. (2.3)

We also define the processes X̂ε by

X̂ε
t = Xε

t + σ(ε)Ŵt, t ≥ 0, (2.4)

where Ŵ is a standard Brownian motion independent of X. Set, for any t ≥ 0,

MX
t = sup

0≤s≤t
Xs, M

ε,X
t = sup

0≤s≤t
Xε
s , M̂

ε,X
t = sup

0≤s≤t
X̂ε
s .

The following notations will be used for the results in the next section. We define

σX0 (ε) = max
(
σX(ε), ε

)
.

βX(ε) =

∫
|x|<ε x

4ν(dx)

(σ0(ε))4

βX,t1 (ε) = βX(ε) 1
6

(√
log
(

t

β(ε) 1
3

+ 3
)

+ 1
)

βXp,θ(ε) =
(
βX(ε)

) pθ
p+4θ

(
log
(

1

(βX(ε))
pθ
p+4θ

))p
β̃Xρ,θ(ε) = βX1

ρ−1,θ(ε).
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When there is no ambiguity we can remove the super index X. Recall that Asmussen
and Rosinski proved ([1], Theorem 2.1) that, if X is a Lévy process, then the process
σ(ε)−1Rε converges in distribution to a standard Brownian motion, when ε → 0, if
and only if for any k > 0

lim
ε→0

σ (kσ(ε) ∧ ε)
σ (ε) = 1. (2.5)

This result is implied by the condition

lim
ε→0

σ(ε)
ε

= +∞. (2.6)

The conditions (2.5) and (2.6) are equivalent, if ν does not have atoms in some neigh-
borhood of zero ([1], Proposition 2.1). On the other hand we approximate X by X̂ε

when the condition (2.6) is satisfied. In this case the functions β, β1, βp,θ and β̃ρ,θ
converge to 0 when ε goes to 0.

Remark 2.1. Note that, we always have limε→0 σ(ε) = 0, because all Lévy pro-
cesses satisfy the condition

∫
R
(
1 ∧ |x|2

)
ν(dx) <∞.

3. Error bounds for exotic options. Let (St)t∈[0,T ] be the price of a security.
The σ-algebra Ft will represent here the historical information on the price until time
t. Under the exponential Lévy model, the process S is an exponential of a Lévy
process

St = S0e
Xt , ∀t ≥ 0.

The considered probability will be a risk-neutral probability, under which the process(
e−(r−δ)tSt

)
t∈[0,T ] is a martingale. The parameter r is the risk-free interest rate, and δ

is the dividend rate. The options we will consider in the sequel will have as underlying
the asset with price S. The option price will be denoted by V .

To compute V by Monte Carlo methods, we need to simulate many paths of X.
This is quite difficult, in general, for infinite activity Lévy processes. In practice we
approximate X by a finite activity Lévy process, by truncating its small jumps (and
get Xε) or replacing them by a Brownian motion with the same variance (and get
X̂ε). The simulations of Xε and X̂ε can be quite different in terms of computation
time if the initial Lévy process has no Brownian component. This is why one needs
to know what is the best approximation. If the condition (2.6) is satisfied, it is better
to approximate X by X̂ε, otherwise the errors generated by the two approximations
will be similar.

Set V ε (resp. V̂ ε) as the price of the option obtained by replacing X by Xε

(resp. X̂ε). We will call V ε (resp. V̂ ε) the approximated price by truncation (resp.
the approximated price by Brownian approximation). The resulting errors will be
expressed in terms of σ0(ε) = max (σ(ε), ε).

The behaviour of σ(ε) when ε goes to 0 depends on the Lévy measure. If there
exists a real α such that the Lévy measure behaves like 1

|x|1+α when x goes to 0, then

σ(ε) behaves like ε1−
α
2 when ε goes to 0. This is the case for CGMY, normal inverse

gaussian and varince gamma processes.

Remark 3.1. Notice that for all infinite activity Lévy processes we have ε
σ(ε) is

bounded.
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Call fixed strike floating strike

Arithmetic mean
(

1
T

∫ T
0 S0eXsds − K

)+ (
ST − 1

T

∫ T
0 S0e

Xsds
)+

Geometric mean
(

S0 exp
(

1
T

∫ T
0 Xsds

)
− K

)+ (
ST − S0 exp

(
1
T

∫ T
0 Xsds

))+

Table 3.1
Payoffs of Asian call options.

Put fixed strike floating strike

Arithmetic mean
(

K − 1
T

∫ T
0 S0eXsds

)+ (
1
T

∫ T
0 S0e

Xsds− ST
)+

Geometric mean
(

K − S0 exp
(

1
T

∫ T
0 Xsds

))+ (
S0 exp

(
1
T

∫ T
0 Xsds

)
− ST

)+

Table 3.2
Payoffs of Asian put options.

3.1. Asian options. The payoffs of arithmetic and geometric Asian options are
given in Table 3.1 and Table 3.2. We will only consider the arithmetic case. The
geometric case can be deduced using the same arguments.

Proposition 3.2. Let X be an infinite activity Lévy process with generating
triplet (γ, σ2, ν). We assume there exists p > 1 such that EepMT < ∞. Then, the
price of a continuous arithmetic Asian option with fixed strike and its approximation
by truncation satisfy

V = V ε +O (σ0(ε)) .

Proof. To simplifiy the proof we assume that r = 0 and S0 = 1. We have

|V − V ε| ≤ E
1
T

∫ T

0

∣∣∣eXs − eXεs ∣∣∣ ds
= E

1
T

∫ T

0
|Xs −Xε

s | eX̃
ε
sds,

where X̄ε
s is between Xs and Xε

s . Define p∗ such that 1
p + 1

p∗ = 1. We have

|V − V ε| ≤ E sup
0≤s≤T

|Rεs|max
(
eMT , eM

ε
T

)
≤ E

(
sup

0≤s≤T
|Rεs|

p∗
) 1
p∗ (

Emax
(
epMT , epM

ε
T

)) 1
p

≤ p∗

p∗ − 1E
(
|RεT |

p∗) 1
p∗ (

EepMT + EepM
ε
T

) 1
p

= O (σ0(ε)) , by Proposition 1 and Lemma 1 of [10].

Proposition 3.3. Let X be an infinite activity Lévy process with generating
triplet (γ, σ2, ν). We assume that there exists p > 1 such that EepMT < ∞. Then
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the price of a continuous arithmetic Asian option with fixed strike and its Brownian
approximation satisfy, for any θ ∈ (0, 1)

V = V̂ ε +O

(
σ0(ε)

(
β p
p−1 ,θ

(ε)
)1− 1

p

)
.

Note that, under the condition (2.6), we have limε→0 β p
p−1 ,θ

(ε) = 0.

Proof. To simplifiy the proof we assume that r = 0 and S0 = 1. Define by f the
payoff function of the Asian option, and set

Vn = Ef

(
1
n

n∑
k=1

e
X kT

n

)

V εn = Ef

(
1
n

n∑
k=1

e
XεkT

n

+σ(ε)Ŵ kT
n

)
.

The sequence Vn (resp. V εn) converges to V (resp. V ε). On the other hand, for
k ∈ {1, . . . , n}, we have

Rεkt
n

= 1√
n

k∑
j=1

V nj ,

where

V nj =
√
n
(
RεjT

n

−Rε(j−1)Tn

)
.

The r.v.
(
V nj
)
j∈{1,...,n} are i.i.d. and have the same distribution as

√
nRεt

n
. But

EV1 = 0, and var (V1) = σ(ε)2t, by Theorem 1 of [20] (see pp. 163) there ex-
ists positive i.i.d. r.v., (τj)j∈1,...,n, and a standard Brownian motion, B̂, such that(∑k

j=1 V
n
j , k ∈ {1, . . . , n}

)
and

(
B̂τ1+···+τk , k ∈ {1, . . . , n}

)
have the same joint dis-

tribution. Thus
(
RεkT

n

, k ∈ {1, . . . , n}
)

and
(
B̂ τ1+···+τk

n
, k ∈ {1, . . . , n}

)
have the same

joint distribution. We also have(
σ(ε)Ŵ kT

n
, k ∈ {1, . . . , n}

)
=d
(
B̂σ(ε)2kT

n

, k ∈ {1, . . . , n}
)

Set

Tk = τ1 + · · ·+ τk
n

T εk = σ(ε)2kT

n
.

Thus

n∑
k=1

e
X kT

n =d
n∑
k=1

e
XεkT

n

+B̂Tk

n∑
k=1

e
XεkT

n

+σ(ε)Ŵ kT
n =d

n∑
k=1

e
XεkT

n

+B̂Tε
k .
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So

|Vn − V εn | ≤ E
1
n

n∑
k=1

∣∣∣∣eXεkTn +B̂Tk − e
XεkT

n

+B̂Tε
k

∣∣∣∣
= E

1
n

n∑
k=1

∣∣∣B̂Tk − B̂T εk ∣∣∣ eX̄εk ,
where X̄ε

k is between Xε
kT
n

+ B̂Tk and Xε
kT
n

+ B̂T ε
k
. Define p∗ such that 1

p + 1
p∗ = 1.

We have

|Vn − V εn | ≤

(
E

1
n

n∑
k=1

∣∣∣B̂Tk − B̂T εk ∣∣∣p∗
) 1
p∗ (

E
1
n

n∑
k=1

epX̄
ε
k

) 1
p

≤
(
E sup

1≤k≤n

∣∣∣B̂Tk − B̂T εk ∣∣∣p∗) 1
p∗
(
E

1
n

n∑
k=1

epX̄
ε
k

) 1
p

.

But

E
1
n

n∑
k=1

epX̄
ε
k ≤ E

1
n

n∑
k=1

e
p

(
XεkT

n

+B̂Tk

)
+ E

1
n

n∑
k=1

e
p

(
XεkT

n

+B̂Tε
k

)

= E
1
n

n∑
k=1

e
p

(
XεkT

n

+RεkT
n

)
+ E

1
n

n∑
k=1

e
p

(
XεkT

n

+σ(ε)Ŵ kT
n

)
≤ EepMT + EepM̂

ε
T

≤ E
(
epMt + epσ(ε) sup0≤s≤T ŴsepM

ε
T

)
≤ EepMT + 2e

p2
2 σ(ε)2TEepM

ε
T

≤ 2e
p2
2 σ(ε)2TE

(
epMT + epM

ε
T

)
.

The term in the right hand side of the last inequality is bounded by a constant, say
C, thanks to Lemma 1 of [10]. So

|Vn − V εn | ≤ C
(
E sup

1≤k≤n

∣∣∣B̂Tk − B̂T εk ∣∣∣p∗) 1
p∗

.

Hence by Theorem 3 of [10]

|V − V ε| = O

(
σ0(ε)

(
β p
p−1 ,θ

(ε)
)1− 1

p

)
∀θ ∈ (0, 1).

The above results on fixed strike Asian options are, obviously applicable for float-
ing strike Asian options. If the mean is geometric, we will also get the same results.

Corollary 3.4. The results of Proposition 3.2 and Proposition 3.3 are true for
either arithmetic or geometric Asian options whether the strike is fixed or floating.

The proof is similar to the proofs of the above propositions.
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Barrier call put

Up Out (ST −K)+1{S0eMT<H} (K − ST )+1{S0eMT<H}
Up In (ST −K)+1{S0eMT≥H} (K − ST )+1{S0eMT≥H}

Down Out (ST −K)+1{S0emT>H} (K − ST )+1{S0emT>H}
Down In (ST −K)+1{S0emT≤H} (K − ST )+1{S0emT≤H}

Table 3.3
Payoffs of barrier options.

3.2. Barrier options. The approximation error is bigger in the barrier case
compared to the other types of option. This is due to the fact that the payoff is less
smooth.

Proposition 3.5. Let X be an integrable Lévy process with generating triplet
(γ, σ2, ν). We assume that MT has a locally bounded probability density function.
Then the price of a continuous barrier option and its approximated value by truncation
satisfy, for any q ∈ (0, 1)

V = V ε +O
(
σ0(ε)1−q) .

The real q is used to show that the error in Proposition 3.5 is arbitrarily close to
O (σ0(ε)).

Proposition 3.6. Let X be an integrable Lévy process with generating triplet
(γ, σ2, ν). We assume that MT has a locally bounded probability density function,
then for any ρ, θ ∈ (0, 1), the price of a continuous barrier option and its approximated
value by Brownian approximation satisfy

V = V̂ ε +O
(
σ0(ε)1−ρ (β̃ρ,θ(ε))ρ) .

Here, the presence of ρ and θ is due to the fact that we use Holder inequality in
the proof of the intermediate result. The existence of a probability density function
for MT and its regularity are studied in [6, 9].

If the arbitrary parameter (q) in Proposition 3.5 is fixed, we can get a better rate
in Proposition 3.6 by chosing ρ = q. The reverse is not true.

Lemma 3.7. If EeXt <∞, then

E
∣∣∣eXt − eXεt ∣∣∣ ≤ Cσ0(ε),

where C is a constant independent of ε.

Proof. We have

E
∣∣∣eXt − eXεt ∣∣∣ = E

∣∣∣eXεt+Rεt − eX
ε
t

∣∣∣
= EeX

ε
tE
∣∣∣eRεt − 1

∣∣∣
≤ EeX

ε
tE |Rεt | e(Rεt)

+

≤ EeX
ε
tE |Rεt |

(
eR

ε
t + 1

)
.
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We can prove that for any β ∈ R,
(
eβR

δ
t

)
0≤δ≤1

is uniformly integrable, and if eXs is

integrable for some s > 0, then
(
eX

δ
t

)
0≤δ≤1

is also uniformly integrable. Then, we

use Hölder inequality and Proposition 1 of [10].

Proof of Proposition 3.5. We denote by C any constant independent of ε. We will
only prove the Up and Out put case. The Down case works in the same way. For the
call, the problem can be reduced to a put case by a measure change. And finally the
In case can be deduced from the relation between In and Out options. We have

|V − V ε| ≤
∣∣∣∣Ee−rT (K − S0e

XT
)+
1S0eMT<H − Ee−rT

(
K − S0e

XεT

)+
1
S0e

Mε
T<H

∣∣∣∣
≤
∣∣∣Ee−rT (K − S0e

XT
)+ (

1S0eMT<H − 1S0e
Mε
T<H

)∣∣∣
+
∣∣∣∣Ee−rT ((K − S0e

XT
)+ − (K − S0e

XεT

)+
)
1
S0e

Mε
T<H

∣∣∣∣ .
We define by I1 (resp. I2) the first (resp. the second) term in the right hand side of

the last inequality. Set h = log
(
H
S0

)
, we have

I1 =
∣∣∣Ee−rT (K − S0e

XT
)+ (

1MT<h − 1Mε
T
<h

)∣∣∣
=
∣∣∣Ee−rT (K − S0e

XT
)+ (

1MT<h,Mε
T
≥h − 1MT≥h,Mε

T
<h

)∣∣∣
≤ KP [MT < h,M ε

T ≥ h] +KP [MT ≥ h,M ε
T < h] .

So, using the proof of Proposition 5 of [10], we get for any q ∈ (0, 1)

I1 = O
(
σ0(ε)1−q) .

On the other hand

I2 ≤ S0E
∣∣∣eXT − eXεT ∣∣∣

= O (σ0(ε)) , by Lemma 3.7.

Hence, for any q ∈ (0, 1)

|V − V ε| = O
(
σ0(ε)1−q) .

Proof of Proposition 3.6. We consider only the Up and Out put option for the reasons
mentioned in the beginning of the proof of Proposition 3.5. We set

Mn
T = sup

0≤k≤n
Xk Tn

, M̂ ε,n
T = sup

0≤k≤n
X̂ε
k Tn
.

By the proof of Proposition 3.3, we know that

(XT ,M
n
T ) =d (YT , UnT ) and

(
X̂ε
T , M̂

ε,n
T

)
=d
(
Ŷ εT , Û

ε,n
T

)
,
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where

UnT = sup
0≤k≤n

(
Xε
k Tn

+ B̂Tk

)
, YT = Xε

T + B̂Tn

Û ε,nT = sup
0≤k≤n

(
Xε
k Tn

+ B̂T ε
k

)
, Ŷ εT = Xε

T + B̂T εn

and (Tk)0≤k≤n, (T εk)0≤k≤n and the Brownian motion B̂ are defined in the proof of

Proposition 3.3. So the discrete versions of V and V̂ are given by

V n = e−rTE
(
K − S0e

YT
)+
1{

S0e
Un
T<H

}
V̂ ε,n = e−rTE

(
K − S0e

Ŷ εT

)+
1{

S0e
Û
ε,n
T <H

}.
We will first study the quantity

∣∣∣V n − V̂ ε,n∣∣∣ as for continuous prices in the proof of

Proposition 3.5, and then we use the proof of the the third result of Proposition 10 of
[10] and make the limit when n goes to the infinity.

3.3. Lookback and hindsight options. We will focus only on the lookback
case. For the hindsight options we will use the relations between lookback and hind-
sight options. The quantity S+ (resp. S−) in Table 3.4 is the predetermined maximum

Option call put

Lookback ST −min (S−, S0e
mT ) max

(
S+, S0e

MT
)
− ST

Hindsight
(
max

(
S+, S0e

MT
)
−K

)+ (K −min (S−, S0e
mT ))+

Table 3.4
The payoffs of lookback and hindsight options.

(resp. minimum) of the option. We denote by V cl (S−) and V pl (S+) the call and the
put prices of lookback options. We also denote by V ch (S+,K) and V ph (S−,K) the call
and the put prices of hindsight options. So, we have the following relations between
lookback and hindsight options.

V ch (S+,K) = V pl (max (S+,K)) + S0 − e−rTK
V ph (S−,K) = V cl (min (S−,K))− S0 + e−rTK.

Proposition 3.8. Let X be an infinite activity Lévy process with generating
triplet (γ, σ2, ν). We assume that there exists p > 1 such that

∫
|x|>1 e

pxν(dx) < ∞.

Then the price of a continuous lookback call option and its approximation satisfy

V (S−) = V ε (S−) +O (σ0(ε))

V (S−) = V̂ ε (S−) +O
(
σ0(ε)βT1 (ε)

)
.

Proposition 3.9. Let X be an infinite activity Lévy process with generating
triplet (γ, σ2, ν). We assume that there exists p > 1 such that

∫
|x|>1 e

p|x|ν(dx) < ∞.



10 E. H. A. DIA

Then the price of a continuous lookback put option and its approximation satisfy

V (S+) = V ε (S+) +O (σ0(ε))

V (S+) = V̂ ε (S+) +O

(
σ0(ε)

(
β p
p−1 ,θ

(ε)
)1− 1

p

)
∀θ ∈ (0, 1).

The above results show that replacing small jumps by a Brownian motion leads
to a better approximation, if the condition (2.6) is satisfied.

Proof of Proposition 3.8. To simplify the proof we assume, with no loss of generality,
that r = 0 and S0 = 1. Recall that mT = −M̃T . We have

|V (S−)− V ε (S−)| ≤ E
∣∣∣e−M̃T − e−M̃

ε
T

∣∣∣+ E
∣∣∣eXT − eXεT ∣∣∣

= O (σ0(ε)) ,by Proposition 3 of [10] and Lemma 3.7.

On the other hand, we have∣∣∣V (S−)− V̂ ε (S−)
∣∣∣ ≤ ∣∣∣∣E(e−M̃T − S−

)+
− E

(
e−M̂

X̃,ε
T − S−

)+
∣∣∣∣+
∣∣∣E(eXT − eX̂εT )∣∣∣

= O
(
σ0(ε)βT1 (ε)

)
,by Theorem 2 and Proposition 6 of [10].

Proof of Proposition 3.9. As in the proof of Proposition 3.8, we assume that r = 0
and S0 = 1. We have

|V (S+)− V ε (S+)| ≤ E
∣∣∣eMT − eM

ε
T

∣∣∣+ E
∣∣∣eXT − eXεT ∣∣∣

= O (σ0(ε)) ,by Proposition 4 of [10] and Lemma 3.7.

On the other hand, we have∣∣∣V (S+)− V̂ ε (S+)
∣∣∣ ≤ ∣∣∣∣E (eMT − S+

)+ − E
(
eM̂

ε
T − S+

)+
∣∣∣∣+
∣∣∣E(eXT − eX̂εT )∣∣∣

= O

(
σ0(ε)

(
β p
p−1 ,θ

(ε)
)1− 1

p

)
∀θ ∈ (0, 1),

thanks to Propositions 6 and 9 of [10].
Corollary 3.10. Propositions 3.8 and 3.9 are true for hindsight option provided

that we replace, call by put, and put by call.

3.4. American options. Recall that the price of an American option with strike
K and maturity T is given by

sup
τ∈T[0,T ]

Ee−rτ
(
S0e

Xτ −K
)+
, for the call

sup
τ∈T[0,T ]

Ee−rτ
(
K − S0e

Xτ
)+
, for the put,

where T[0,T ] is the of stopping times with values in [0, T ].
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Proposition 3.11. Let X be an infinite activity Lévy process with generating
triplet (γ, σ2, ν). Then the price of a continuous American option and its approxima-
tion by truncation satisfy

V = V ε +O (σ(ε)) .

Proposition 3.12. Let X an infinite activity Lévy process with generating triplet
(γ, σ2, ν). Then of a continuous American option and its Brownian approximation
satisfy

V = V̂ ε +O (σ(ε)) .

Proof of Proposition 3.11 and Proposition 3.12. For the put, we use the proof of
Proposition 4.6 of [9] (pp. 67-68). Furthermore, using the proof of Proposition 3.5,
the call price is given by

sup
τ∈T[0,T ]

e−rτEeXτ Ē
(
S0 −KeX̃τ

)+
,

where Ē is the expectation under P̄, an equivalent measure of P which comes from the
Esscher transform with Radon-Nikodym derivative

dP̄
dP

∣∣∣∣
Ft

= eXt

EeXt
.

We will denote by (γ̄, σ̄2, ν̄) the generating triplet of X̃ under P̄ . In particular we
have

ν̄(dx) = e−xν(−dx). (3.1)

See Section 9.4 and Section 9.5 of [7] for more details. Hence

∣∣V − V̂ ε
∣∣ =

∣∣∣∣∣ sup
τ∈T[0,T ]

e−rτEeXτ Ē
(

S0 − KeX̃τ
)+

− sup
τ∈T[0,T ]

e−rτEeX
ε
τ Ē
(

S0 − KeX̃
ε
τ

)+
∣∣∣∣∣

=

∣∣∣∣∣ sup
τ∈T[0,T ]

e−rτEeXτ Ē
(

S0 − KeX̃
ε
τ

)+
− sup
τ∈T[0,T ]

e−rτEeX
ε
τ Ē
(

S0 − KeX̃
ε
τ

)+
∣∣∣∣∣

+

∣∣∣∣∣ sup
τ∈T[0,T ]

e−rτEeXτ Ē
(

S0 − KeX̃τ
)+

− sup
τ∈T[0,T ]

e−rτEeXτ Ē
(

S0 − KeX̃
ε
τ

)+
∣∣∣∣∣ .

Note by I1 (resp. I2) the first (resp. the second) term in the right hand side of the
last equality. Set

I1
1 = sup

τ∈T[0,T ]

e−rτ
(
EeXτ − EeX

ε
τ

)
Ē
(
S0 −KeX̃

ε
τ

)+

I2
1 = sup

τ∈T[0,T ]

e−rτ
(
EeX

ε
τ − EeXτ

)
Ē
(
S0 −KeX̃

ε
τ

)+
.
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We can show that

|I1| ≤
∣∣max

(
I1
1 , I

2
1
)∣∣ .

Using the proof of Proposition 4.3 of [9], we get

I1 = O
(
σ(ε)2) .

Furthermore by Remark 2 of [10], we have

I2 = O (σ(ε)) .

This proves the second result of Proposition 3.11. For the second result of Proposi-
tion 3.12, we use the same arguments, but we use this time the proof of Proposition
4.3 of [9] by replacing Xε by X̂ε and Remark 2 of [10].

4. Simulation of infinite activity Lévy processes. In this section we will
show a new method to simulate an infinite activity Lévy process. The first step is to
approximate the Lévy process by a finite activity Lévy process as seen above. Then we
will simulate the big jumps. Not that others methods of simulation of Lévy processes
are proposed in [7, 21, 22].

We have (see Section 2)

Xε
t = Xt −Rεt

= γt+
∫
|x|>1,s∈[0,t]

xJX(dx× ds) +
∫
ε≤|x|≤1,s∈[0,t]

xJ̃X(dx× ds)

=
(
γ −

∫
ε≤|x|≤1

xν(dx)
)
t+
∫
|x|>ε,s∈[0,t]

xJX(dx× ds)

=
(
γ −

∫
ε≤|x|≤1

xν(dx)
)
t+
∫
x>ε,s∈[0,t]

xJX(dx× ds)

+
∫
x<−ε,s∈[0,t]

xJX(dx× ds)

= γε0t+
N+
t∑

i=1
Y +
i −

N−
t∑

i=1
Y −i ,

where

γε0 = γ −
∫
ε≤|x|≤1

xν(dx). (4.1)

The r.v.
(
Y +
i

)
i≥1 are i.i.d. with common law

ν+
ε (dx)

ν(ε,+∞) , the r.v.
(
Y −i
)
i≥1 are i.i.d.

with common law
ν−
ε (−dx)
ν(−∞,ε) . The measures ν+

ε and ν−ε correspond respectively to ν

restricted to (0,+∞) and (−∞, 0). The process Xε is a compound Poisson process.

4.1. Valuation of barrier and lookback options. Since the supremum of
a compound Poisson process is reached at its jump times or its extremities, we can
simulate the supremum of Xε without any discretization. So we can compute the
barrier and lookback options without discretizing the time axis. When we replace
X by X̂ε, to evaluate barrier option we can use Example 6.1 of [7] to avoid time
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discretization. For lookback options, we can use the jump times as discretization
points of the Brownian motion. So, the supremum and the infimum of X̂ε should be
replaced by

M̄ ε
T = max

0≤j≤Nεt+1
X̂T̂ ε

j

m̄ε
T = min

0≤j≤Nεt+1
X̂T̂ ε

j
,

where

T̂ ε0 = 0
T̂ εj = T εj ∧ T,

and
(
T εj
)
j≥1 are the jump times of Xε. We will denote by V̄ ε the corresponding price

of the lookback option.
Proposition 4.1. Let X be an infinite activity Lévy process with generating

triplet (γ, 0, ν). We assume that there exists p > 1 such that
∫
|x|>1 e

pxν(dx) < ∞.

Then

V̂ ε = V̄ ε + o (σ(ε)) ,

where V̂ ε denotes the price of the lookback option where X is replaced by X̂ε. The
condition

∫
|x|>1 e

pxν(dx) <∞ is necessary only for the put.

Proof. We will only prove the put case (the call case is quite easy). We have∣∣∣V̂ ε − V̄ ε∣∣∣ ≤ S0E
∣∣∣eM̂ε

T − eM̄
ε
T

∣∣∣
≤ S0Eemax(M̂ε

T ,M̄T )
∣∣∣M̂ ε

T − M̄ ε
T

∣∣∣ .
So using Cauchy-Schwarz inequality, we get∣∣∣V̂ ε − V̄ ε∣∣∣ ≤ S0

(
Eepmax(M̂T ,M̄T )

) 1
p

(
E
∣∣∣M̂T − M̄T

∣∣∣ p
p−1
) p−1

p

.

Note that, we have

M̄ ε
T ≤ M̂ ε

T .

On the other hand

M̂ ε
T = sup

0≤s≤T

(
σ(ε)Ŵs +Xε

s

)
≤ σ(ε) sup

0≤s≤T
Ŵs +M ε

T .

So

Eepmax(M̂T ,M̄T ) ≤ 2e
p2σ(ε)2T

2 EepM
ε
T .

Hence, using Lemma 1 of [10], there exists a constant C > 0 (independent of ε) such
that ∣∣∣V̂ ε − V̄ ε∣∣∣ ≤ C (E ∣∣∣M̂ ε

T − M̄ ε
T

∣∣∣ p
p−1
) p−1

p

.
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The following lemma concludes the proof.
Lemma 4.2. For any p ≥ 1

E
∣∣∣M̂ ε

T − M̄ ε
T

∣∣∣p = o ((σ(ε))p) .

The proof of Lemma 4.2 can be found in the appendix.

4.2. Valuation of Asian options. We will focus on the fixed strike Asian put
option. The call case can be easily deduced. Floating Asian options, can be evaluated
using fixed strike options and symmetry. Consider the following payoffs(

K − 1
T

∫ T

0
S0e

Xsds

)+

, arithmetic Asian put

(
K − S0e

1
T

∫ T
0
Xsds

)+
, geometric Asian put.

We set

Va = e−rTE

(
K − 1

T

∫ T

0
S0e

Xsds

)+

Vg = e−rTE
(
K − S0e

1
T

∫ T
0
Xsds

)+
.

The Lévy process X considered has the generating triplet (γ, 0, ν). In fact we will
estimate the quantities V εa , V̂ εa , V εg and V̂ εg obtained by replacing X by Xε or X̂ε.

We have

V εa = e−rTE

(
K − 1

T

∫ T

0
S0e

Xεsds

)+

= e−rTE

K − S0

T

NεT+1∑
j=1

∫ T̂ εj

T̂ ε
j−1

eX
ε
sds

+

= e−rTE

K − S0

T

NεT+1∑
j=1

∫ T̂ εj

T̂ ε
j−1

eγ
ε
0s+
∑j−1

i=1
Y εi ds

+

, see (4.1).

So

V εa = e−rTE

K − S0

T

NεT+1∑
j=1

e
∑j−1

i=1
Y εi

∫ T̂ εj

T̂ ε
j−1

eγ
ε
0sds

+

= e−rTE

K − S0

T

NεT+1∑
j=1

e
∑j−1

i=1
Y εi
eγ
ε
0T̂

ε
j − eγ

ε
0T̂

ε
j−1

γε0

+

= e−rTE

K − S0

T

NεT+1∑
j=1

eγ
ε
0T̂

ε
j+
∑j−1

i=1
Y εi − eγ

ε
0T̂

ε
j−1+

∑j−1
i=1

Y εi

γε0

+

.
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Hence

V εa = e−rTE

K − S0

T

NεT+1∑
j=1

e
Xε
T̂
ε−
j − e

Xε
T̂ ε
j−1

γε0

+

. (4.2)

By the same way, we get

V εg = e−rTE

K − S0 exp

 1
T

NεT+1∑
j=1

j−1∑
i=1

Y εi + 1
2

((
T̂ εj

)2
−
(
T̂ εj−1

)2
)+

. (4.3)

In geometric case when we replace Xε by X̂ε, we get

V̂ εg = e−rTE

K − S0 exp

 1
T

NεT+1∑
j=1

j−1∑
i=1

Y εi + 1
2

((
T̂ εj

)2
−
(
T̂ εj−1

)2
)

+σ(ε)
∫ T̂ εj

T̂ ε
j−1

Ŵsds

))+

. (4.4)

And given N ε
T and

(
T̂ εj

)
1≤j≤Nε

T

, the r.v.

(∫ T̂ εj
T̂ ε
j−1

Ŵsds

)
1≤j≤Nε

T
+1

are independent

with Gaussian distribution with mean 0 and variance 1
3

(
T̂ εj − T̂ εj−1

)3
. In the arith-

metic case, we have the following result.
Proposition 4.3. Let X be an infinite activity Lévy process with generating

triplet (γ, 0, ν) and f be a Lipschitz function. We assume that EeMT <∞. Then

Ef

(
1
T

∫ T

0
S0e

X̂εsds

)
= Ef

S0

T

NεT+1∑
j=1

e
X̂ε
T̂ ε
j−1

(
eγ
ε
0(T̂ εj−T̂ εj−1) − 1

γε0
+ σ(ε)gεj

)
+O

(
σ(ε)2) ,

with

gεj =
∫ T̂ εj

T̂ ε
j−1

eγ
ε
0(s−T̂ εj−1)

(
Ŵs − ŴT̂ ε

j−1

)
ds.

Given N ε
T and

(
T̂ εj

)
1≤j≤Nε

T

, the r.v.
(
gεj
)

1≤j≤Nε
T

+1 are independent and gaussian,

and

var
(
gεj
)

= 1
2 (γε0)3

((
2γε0

(
T̂ εj − T̂ εj−1

)
− 3
)
e2γε0(T̂ εj−T̂ εj−1) + 4eγ

ε
0(T̂ εj−T̂ εj−1) − 1

)
.

(4.5)
However gεj is correlated with ŴT̂ ε

j
− ŴT̂ ε

j−1
. Indeed, we have

cov
(
gεj , ŴT̂ ε

j
− ŴT̂ ε

j−1

)
=
T̂ εj − T̂ εj−1

γε0
eγ
ε
0(T̂ εj−T̂ εj−1) − eγ

ε
0(T̂ εj−T̂ εj−1) − 1

(γε0)2 . (4.6)
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A natural control variate for V̂ εa (resp. V εa ) is 1
T

∫ T
0 S0e

X̂εsds (resp. 1
T

∫ T
0 S0e

Xεsds).
We must approximate their values.

Proposition 4.4. Let X be an infinite activity Lévy process with generating
triplet (γ, σ2, ν) and f a Lipschitz function. We assume that

∫
|x|>1 e

xν(dx) < ∞.

Then we have

E
∫ T

0
eXsds− E

∫ T

0
eX

ε
sds = σ(ε)2

2

∫ T

0
sEeX

ε
sds+O

(
σ0(ε)3)

E
∫ T

0
eXsds− E

∫ T

0
eX̂

ε
sds = O

(
σ0(ε)3) .

Recall that in the case where we replace Xs by Xε
s , the approximation error

for Asian option is O (σ0(ε)). So we do not need to know the term
∫ T

0 sEeXεsds.
Furthermore under the condition

(
e(r−δ)s+Xs

)
s≥0 is a martingale, we have

E
∫ T

0
eXsds =


e(r−δ)T − 1

r − δ
if r − δ 6= 0

T otherwise

The proofs of Proposition 4.4 and Proposition 4.3 can be found in the appendix.

4.3. Simulation of big jumps. The simulation of the jump times is relatively
simple. The problem is, because the numbers of jumps on [0, T ] can be large, how to
quickly simulate the size of the jumps. We will focus on the simulation of the positive
jumps

(
Y +
i

)
i≥1. The simulation of

(
Y −i
)
i≥1 will be similar. Let λε+ = ν(ε,∞). The

cumulative distribution function (cdf) of Y +
1 , and its inverse, cannot be determined

explicitly. So one way to simulate Y +
1 is to use rejection sampling. This can be time

consuming for some Lévy measure which have a singularity at 0, especially since it
will make on average λε+T simulations. For CGMY processes Cont and Tankov (2004)
proposed a method based on rejection sampling.

The alternative is to make an inversion of the cdf, F+, of Y +
1 . The method

proposed by Taufer and Leonenko (2009) can be used to achieve this issue, if Y +
1 is

self-decomposable (see [21] for more details).

We propose an other way to invert F+. This method, though introduces a new
error in the simulations, has the advantage to be simple and easily implementatble.
We have, for all x > ε

F+(x) = 1
λε+

∫ x

ε

ν(dx).

Define a positive real A in order to have ν(A,+∞) very small, of order of 10−16 for
example (this is what we use in our simulations). We suppose then that the r.v. Y +

1
is in [ε, A]. Set for any k ∈ {0, . . . , n}

xk = k
A− ε
n

+ ε

yk = F+(xk)
F+(A) .
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Where n is the number of the discretization points on [ε, A]. Note that y0 = 0. How
do we compute (F+(xk))1≤k≤n? Notice that for any k ∈ {1, . . . , n}, we have

F+(xk) =
k∑
j=1

(F+(xj)− F+(xj−1)) ,

with

(F+(xj)− F+(xj−1)) =
∫ xj

xj−1

ν(dx).

The approximation of the integral
∫ xj
xj−1

ν(dx) will depend on the Lévy measure. The

quantities (F+(xk))1≤k≤n need be computed once.
We define the function G+ by, for any y ∈ [0, 1]

G+(y) = x,

where x is the unique real satisfying

F+(x)
F+(A) = y.

Let y ∈ [0, 1], to compute G+(y), we use the following method. We have to find first
the integer k > 1 satifying yk−1 ≤ y < yk. Then we have

yF+(A) = yk−1 +
∫ G+(y)

xk−1

ν(dy).

We must approximate the above integral depending on G+(y), and express the latter
as a function of y. When n and A go to the infinity, G+(y) will converge to the inverse
function of F+. So we state that to simulate Y +

1 , we just need to simulate

G+(U),where U is a uniform r.v. on [0, 1].

5. Numerical examples. In this section we will first show an example of pricing
using the method presented in this Section 4.

Consider a lookback call option with a predetermined maximum S+. The arbi-
trage price is given by

V (S+) = e−rTE
(
S0e

MT − S0e
XT
)
.

The process X is a variance gamma process, i.e. for any t ≥ 0

Xt = θGt + σWGt ,

where W is a standard Brownian motion and G is gamma process with parameter
(1/κ, κ), i.e. the transition density of G is given by

ft(x) = x
t
κ−1 e−

x
κ

κ
t
κΓ
(
t
κ

) , x > 0.

An approximation of V (S+) is given by

V ε (S+) = e−rTE
(
S0e

Mε
T − S0e

XεT

)
.
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The resulting error is studied in Section 3. Note that for variance gamma processes
the condition (2.6) is not satisfied.

To evaluate V ε (S+), we use the simulation method defined in Section 4. The
parameters are : S0 = 100, r = 0.0548, δ = 0, T = 0.40504, S+ = 100, θ = −0.2859,
κ = 0.2505, σ = 0.1927 and the number of Monte Carlo simulations is m = 100000.
The number of discretization points on [ε, A] is n = 100000 (see Section 4.3 for the
definition of A and n).

The fair price given by Becker (2010) is V (S+) = 9.3982. In Table 5.1, we
compare V (S+) and V ε (S+). The errors are relative to V (S+). The comptuing time

ε V ε (S+) Monte Carlo error Total error
10−1 7.076 0.05% 24.7%
10−2 9.347 0.05% 0.50%
10−3 9.401 0.05% 0.04%

Table 5.1
Approximated price of the continuous lookback call in VG model.

for ε = 10−3 is less than 1 second. Note that we only use a standard Monte Carlo
method.

We will, now, study numerically the optimality of the bounds derived in Section 3.
For example in Proposition 3.8, we have shown that (for the lookback call) we have

|V (S−)− V ε (S−)| ≤ Cσ0(ε).

So

log (|V (S−)− V ε (S−)|) ≤ log (C) + log (σ0(ε)) .

Hence when ε goes to 0, we will get

log (|V (S−)− V ε (S−)|)
log (σ0(ε)) ≥ log (C)

log (σ0(ε)) + 1.

So we will represent in Figure 5.1 the function f defined by

f(ε) =
log
(∣∣V (S−)− V 1−ε (S−)

∣∣)
log (σ0(1− ε)) , ∀ε ∈ (0, 1).

The function f as expected converges to 1 when ε goes to 1. The bound is, in the
case of truncation, optimal for lookback options. For Brownian approximation this
does not seem to be the case.

In Figure 5.2, we consider a lookback put. The function f is this time defined by

f(ε) =
log
(∣∣∣V (S+)− V̂ 1−ε (S+)

∣∣∣)
log (1− ε) , ∀ε ∈ (0, 1).

where V (S+) is the price of the lookback put and V̂ 1−ε (S+) its Brownian approxi-
mation. The choice of the denominator in the definition of f is due to the fact that
we are looking for the best power of ε (actually 1− ε in this case) that we can have.
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Fig. 5.1. Optimality of the error bound for a lookback call in VG model. The parameters are
S0 = 100, r = 0.0548, δ = 0, T = 0.40504, S+ = 100, θ = −0.2859, κ = 0.2505, σ = 0.1927.

We will compare this power with that obtained using the bounds in the second re-
sult of Proposition 3.9 (and in Proposition 3.3). In fact we will use the expression

σ0(1 − ε)β(1 − ε) 1
5 log

(
1

β(1−ε)
1
5

)
which is the best bound when p goes to +∞ in

Proposition 3.9. Note that we do not pretend that p can go to the infinity, but the
bound in Proposition 3.9 cannot be better than the latter expression. In this expres-
sion, the power of 1 − ε in CGMY model is 1 − 0.3Y . The function f converges to

Fig. 5.2. Optimality of the error bound for a lookback put in CGMY model. The parameters
are S0 = 100, r = 0.05, δ = 0.02, T = 1, S+ = 100, C = 4, G = 50, M = 60, Y = 0.7.

a constant bigger than 1 − 0.3Y (which corresponds to the horizontal line) when ε
goes to 1. It seems that the function converges to 1 + 0.5Y which corresponds to the
bound σ0(1− ε)β(1− ε). We observe the same phenomenon with the Asian options.

For barrier options, we have the same remarks as for Asian and lookback option.
The bound for barrier options seems to be optimal in jump truncation case. In
Figure 5.3 we consider the case of a down and out call in VG model. So the function
is defined by

f(ε) =
log
(∣∣V − V 1−ε

∣∣)
log (1− ε) , ∀ε ∈ (0, 1).
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It converges to 1 when ε goes to 1, as expected.

Fig. 5.3. Optimality of the error bound for a down and out call option in VG model. The
parameters are S0 = 100, K = 100, H = 80, r = 0.05, δ = 0.02, T = 1, θ = −0.2, κ = 0.1, σ = 0.16.

Appendix A.
Proof of Lemma 4.2. We have

∣∣∣M̂ ε
T − M̄ ε

T

∣∣∣ =

∣∣∣∣∣∣max

 max
0≤j≤Nε

T

 sup
T̂ ε
j
≤s<T̂ ε

j+1

X̂ε
s

 , X̂ε
T

− max
0≤j≤Nε

T
+1

{
X̂ε
T̂ ε
j

}∣∣∣∣∣∣
≤ max

0≤j≤Nε
T


∣∣∣∣∣∣ sup
T̂ ε
j
≤s<T̂ ε

j+1

X̂ε
s − X̂ε

T̂ ε
j

∣∣∣∣∣∣


≤ max
0≤j≤Nε

T

 sup
T̂ ε
j
≤s<T̂ ε

j+1

∣∣∣∣X̂ε
s − X̂ε

T̂ ε
j

∣∣∣∣


≤ σ(ε) max
0≤j≤Nε

T

 sup
T̂ ε
j
≤s<T̂ ε

j+1

∣∣∣Ŵs − ŴT̂ ε
j

∣∣∣
 .

So

E
∣∣∣M̂ ε

T − M̄ ε
T

∣∣∣p ≤ σ(ε)pE max
0≤j≤Nε

T

 sup
T̂ ε
j
≤s<T̂ ε

j+1

∣∣∣Ŵs − ŴT̂ ε
j

∣∣∣p
 .

Notice that, for p ≥ 1

max
0≤j≤Nε

T

 sup
T̂ ε
j
≤s<T̂ ε

j+1

∣∣∣Ŵs − ŴT̂ ε
j

∣∣∣p
 ≤ 2p−1 max

0≤j≤Nε
T

 sup
T̂ ε
j
≤s<T̂ ε

j+1

∣∣∣Ŵs

∣∣∣p +
∣∣∣ŴT̂ ε

j

∣∣∣p


≤ 2p max
0≤j≤Nε

T

 sup
T̂ ε
j
≤s<T̂ ε

j+1

∣∣∣Ŵs

∣∣∣p


≤ 2p sup
0≤s≤T

∣∣∣Ŵs

∣∣∣p .
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On the other hand

lim
ε→0

(
T̂ εj+1 − T̂ εj

)
= 0, a.s.

So by dominated convergence

lim
ε→0

E max
0≤j≤Nε

T

 sup
T̂ ε
j
≤s<T̂ ε

j+1

∣∣∣Ŵs − ŴT̂ ε
j

∣∣∣p
 = 0.

This concludes the proof.

Proof of Proposition 4.3. Set

Zε = 1
T

∫ T

0
S0e

X̂εsds.

We have

Zε = S0

T

NεT+1∑
j=1

e
∑j−1

i=1
Y εi

∫ T̂ εj

T̂ ε
j−1

eγ
ε
0s+σ(ε)Ŵsds

= S0

T

NεT+1∑
j=1

e

∑j−1
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Y εi +γε0T̂
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ds.

Note that using the integral form of Taylor Theorem, we have

e
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(
Ŵs−ŴT̂ ε
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)
+
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Ŵs−ŴT̂ ε

j−1
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0

ey
(
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(
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)
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)
dy.

So, noting α the Lipschitz constant of f , we have

δε :=

∣∣∣∣∣∣Ef
(

1
T
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0
S0e

X̂εsds
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×
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Notice that for s in [T̂ εj−1, T̂
ε
j ], we have

X̂ε
T̂ ε
j−1

+ γε0

(
s− T̂ εj−1

)
+ σ(ε)
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Ŵs − ŴT̂ ε
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j−1

+σ(ε)
(
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Ŵτ .

Thus

δε ≤ α
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≤ ασ(ε)2

2
S0

T
E
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So
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Using Lemma 1 of [9], we conclude that

δε = O
(
σ(ε)2) .

Proof of Proposition 4.4. We have

δε := E
∫ T

0
eXsds− E

∫ T

0
eX

ε
sds

=
∫ T

0
E
(
eXs − eX

ε
s

)
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Using the integral form of the Taylor Theorem, we get

E
(
eXs − eX

ε
s
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= σ(ε)2s

2 EeX
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The last equality is obtained by a simple integration. On the other hand
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Using Proposition 6 of [10], we conclude that

EeX
ε
s

∣∣∣∣∣EeRεs − 1−Rεs −
(Rεs)

2

2

∣∣∣∣∣ = O
(
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uniformly with s ∈ [0, T ]. Hence
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Replacing in the previous expressions Xs by X̂ε
s , we will obtain σ(ε)Ŵs instead of Rεs.

Thus
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Therefore
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