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CURVED KOSZUL DUALITY THEORY

JOSEPH HIRSH AND JOAN MILLÈS

Abstract. We extend the bar-cobar adjunction to operads and properads, not necessarily aug-
mented. Due to the default of augmentation, the objects of the dual category are endowed with
a curvature. As usual, the bar-cobar construction gives a cofibrant resolution for any properad.
Applied to the properad encoding unital and counital Frobenius algebras, notion which appears
in 2d-TQFT, it defines the associated notion up to homotopy. We further define a curved Koszul
duality theory for operads or properads presented with quadratic, linear and constant relations.
This provides smaller resolutions. We apply this new theory to study the homotopy theory and
the cohomology theory of unital associative algebras.

MSC: 18D50, 18G10

Introduction

In [Hoc45], Hochschild introduced a (co)homology theory for associative algebras and in [Sta63],
Stasheff introduced the homotopy theory for associative algebras. Nowadays, we know how to de-
scribe these theories in operadic terms, but this approach does not encode the units in unital
associative algebras. In order to define a homotopy theory and a cohomology theory for unital
associative algebras, we refine the operadic theory and more precisely its Koszul duality theory.

In representation theory, an algebra A is “represented” as an algebra of operations with one in-
put and one output on a vector space V via a representation µ ∈ HomAlg.(A, End(V )). To encode
operations with several inputs and one output, one uses the notion of an operad [May72, BV73].
More generally, one uses the notion of properads to encode operations with several inputs and
several outputs [Val07]. An associative algebra is a special kind of operad and an operad is a
special kind of properad, and theories about properads generalize those of operads and associa-
tive algebras. For example a bar-cobar adjunction defined in a properadic setting generalizes one
defined for operads and algebras. In [Val07], the bar construction B assigned a coaugmented dg
coproperad to an augmented dg properad and the cobar construction Ω assigns an augmented dg
properad to a coaugmented dg coproperad, and the two constructions are adjoint. An important
property of the adjunction is that the bar-cobar composition ΩBP defines a cofibrant resolution
of an augmented dg properad P .

In this paper, we extend the bar-cobar adjunction (Ω,B) to non-augmented properads. The lack
of augmentation appears on the new bar construction as a curvature. We therefore define curved
coproperad, whose our bar construction is an example. We then extend the cobar construction to
coaugmented curved coproperads, resulting in a dg properad. The composition bar-cobar provides
a cofibrant resolution ΩBP of a properad P . For example, we obtain a cofibrant resolution for the
properad encoding unital and/or counital Frobenius algebras. Since the datum of a 2-dimensional
topological quantum field theory, 2d-TQFT for short, is equivalent to a unital and counital Frobe-
nius algebra structure [Abr96, Koc04], this provides homotopy tools to study 2d-TQFT. With
our model, the methods of [Wil07] apply to show that the differential forms ΩdR(M) on a closed,
oriented manifold M bear a unital and counital Frobenius algebra structure up to homotopy.

The first author was supported by a National Science Foundation Graduate Research Fellowship.
The second is supported by the ANR grant JCJC06 OBTH.
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2 JOSEPH HIRSH AND JOAN MILLÈS

The bar-cobar resolution ΩBP is large and it is often desirable to have a smaller resolution.
To this end, we develop a curved Koszul duality theory for properads generalizing the Koszul
duality theory for properads [Val07], operads [GJ94, GK94], and associative algebras [Pri70]. One
of the main object is the Koszul dual coproperad P ¡, which has, here, a curvature. It applies to
properads with a quadratic, linear and constant presentation. The properads for which this theory
apply are called Koszul properads. In this case, the cobar construction ΩP ¡ is a resolution of P .
This theory extends to coloured operads to recover, as an example, the resolution of the coloured
operad Iso given by Markl in [Mar01]. We summarize the different generalizations of the Koszul
duality theory in the following table:
`
`
`
`
`
`
`
`
`
`
`
`

Monoids
Relations

Homogeneous quadratic Quadratic and linear
Quadratic, linear

and constant

Associative algebras [Pri70] [Pos93, PP05]
Operads [GJ94, GK94]

[GCTV09]
Section 4 of this

paperProperads [Val07]

The operad uAs encoding unital associative algebras is an example of an operad with qua-
dratic, linear and constant relations. It is a Koszul operad in the previous sense and we get a
“small” cofibrant resolution uA∞ := ΩuAs¡

∼
−→ uAs. This particularly simple resolution allows

us to define the notion of homotopy unital associative algebras. We recover actually the notion
of homotopy unit for A∞-algebra which appears in [FOOO09]. After we achieved this work, we
were told about the existence of the incoming paper of Lyubashenko [Lyu10]. In this paper, the
author extracts, from the definition of [FOOO09], an operad, which corresponds to the one given
by the present Koszul duality theory, and proves that it is a cofibrant resolution of the operad
uAs. However, with our approach in terms of Koszul duality theory, we prove several of the good
homotopy properties that carry algebras over a cofibrant operad (rectification, transfer, “strict”
minimal model). We also obtain functorial resolutions on the level of unital associative algebras.
We use these other resolutions to study the cohomology theory of unital associative algebras.

We begin the paper with a survey of the results on homotopy unital associative algebras ex-
pressed in an internal language, explained without, for example, the words “operad” or “properad”.
This section corresponds to the results obtained in the last section of this paper. In Section 2, we
recall definitions of associative algebras, operads and properads. In Section 3, we extend the bar
and the cobar construction to the non-augmented framework and we define the notion of curved
twisting morphims. In Section 4, we extend the Koszul duality theory for homogeneous quadratic
properads to properads with quadratic, linear and constant relations. Section 5 is devoted to
resolution of non-augmented properads as bimodules over themselves and to functorial resolutions
of P-algebras. Section 6 studies the operad encoding unital associative algebras. We describe the
homotopy theory and the cohomology theory for this category of algebras.

In this paper, we work over a field K of characteristic 0.
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CURVED KOSZUL DUALITY THEORY 3

1. Results on unital associative algebras

In this section, we develop the homotopy and cohomology theories of unital associative algebras.
The definitions, proofs, techniques, and pictorial descriptions of the results are based on operad
theory and can be found in Section 6. However, this section does not contain the word “operad”
and can be read independently from the rest of the paper. The comparison with the work of
[FOOO09] is described in Section 6.

1.1. Unital associative algebra. A unital associative differential graded algebra, or unital dga,
is a quadruple (A, µ, e, dA), where (A, dA) is a dg module, µ : A ⊗ A → A, and e : K → A are
dg module maps, such that the map µ is associative and such that the element e(1K) is a left and
right unit for the associative product µ.

The version of this structure “up to homotopy” is what we call a uA∞-algebra, for homotopy
unital associative algebra. Let f : V → W be a homogeneous K-linear map of degree |f |. We
denote its derivative by ∂(f) := dW ◦ f − (−1)|f |f ◦ dV .

1.2. Homotopy unital associative algebra. A homotopy unital associative algebra or uA∞-
algebra structure on a dg module (A, dA) is given by a collection of maps {µS

n : A⊗(n−|S|) → A}
of degree n − 2 + |S|, where the set S runs over the set of subsets of {1, . . . , n} for any integer
n ≥ 2 and where S = {1} when n = 1. The µS

n are given pictorially by planar corollas with n
entries labelled by 1, · · · , n on which we put “corks” when the label is in S. For example, we

have µ
{1}
3 = EE• yy. The maps µS

n satisfy the following identities:

• µ
{1}
2 and µ

{2}
2 are homotopies for the unit






∂
(•??��

)

=
•

?? �� − |

∂
( •??��

)

=
•

?? �� − |,

where the empty space between the corollas and the corks is the composition of operations
and where | is the identity of A
• for (n, S) 6= (2, {1}) and (n, S) 6= (2, {2}),

∂(µS
n) =

∑

p+q+r=n
p+1+r=m

(−1)q(r+|S1|)+|S2||S
′
1|+p+1µS1

m ◦ (id, . . . , id︸ ︷︷ ︸
p−|S′

1|

, µS2
q , id, . . . , id︸ ︷︷ ︸

r−|S′′
1 |

).

Or, pictorially:

∂

(

XXXXXXX
•

TTTTT
II

I
uuu

•

jjjjj

)
=
∑
±

��
�OO•

NNNN
iiiiii
qq

•
.

Examples.

(1) Every unital dga (A, µ, e, dA) naturally equips the dg module (A, dA) with the structure
of a uA∞-algebra by

µS
n =





µ if n = 2 and S = ∅
e if n = 1 and S = {1}
0 otherwise

(2) A strictly unital A∞-algebra, or suA∞-algebra is an A∞-algebra (A, dA, {µn}n≥2) with
e ∈ A so that e is a left and right unit for µ2, and e annihilates µn for n ≥ 3 [KS06]. Every
suA∞-algebra is naturally a uA∞-algebra by

µS
n =





µn if n ≥ 2, S = ∅
e if n = 1 and S = {1}
0 otherwise

Remark. Every uA∞-algebra contains an A∞-algebra if we take µn := µ∅
n for all n ≥ 1. The ad-

ditional algebraic structure given by a uA∞-algebra provides homotopies for the “unital relations”
along with the homotopies already present for the “associative relations.”
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1.3. Infinity-morphism. We define the notion of infinity-morphism between two uA∞-algebras
A and B by a collection of maps fS

n : A⊗(n−|S|) → B of degree n− 1+ |S|, represented graphically
by planar trees with “corks” as the uA∞-algebra structures but with a triangle ▽ as vertex. For

example, we have f
{1}
3 =

BB• ||
▽ . The fS

n satisfy the relations:

∂


 TTTTTTT

•

OOOOO
DD

D
xxx

•

mmm
mmm

▽


 =

∑
±

ppp
p

WWWW
•

PPPPP

iiiiiii
ppp

•

▽
−
∑
±

FF
F

FF
F

xx
x

ppp
•

▽

SSSSSSSS ▽ ▽

eeeeeeeee
gggg

•

,

where the planar trees with “corks” and no triangle represent the uA∞-algebra structure of A
on the top and the uA∞-algebra structure of B on the bottom. With this definition of infinity-
morphism, we prove a rectification theorem.

1.3.1. Theorem (Rectification Theorem, Theorem 6.3.2). Let A be a uA∞-algebra. We can rectify
A: there is a unital associative algebra A′ such that A is uA∞-equivalent to A′.

Moreover, we have a transfer theorem.

1.3.2. Theorem (Homotopy Transfer Theorem, Theorem 6.4.5). Let A be a homotopy unital
associative algebra and let V be a chain complex. Given a strong deformation retract

V
i //

A h
||

p
oo ,

i.e., p and i are chain maps, where p ◦ i = idV and dAh + hdA = idA−i ◦ p, there is a natural
uA∞-algebra structure on V , and a natural extension of i to an infinity-morphism.

1.4. Comparison with the literature. In the literature, there are several definitions of “weakly
unital” or “homotopy unital” A∞-algebras [KS06, Lyu02, Fuk02, FOOO09]. The definitions
of [KS06] and [Lyu02], describe properties of A∞-algebras, while the definition presented in
[FOOO09] describes a structure on an A∞-algebra. In [LM06] these are compared and shown to
be, in some sense, equivalent. Our notion of homotopy unital associative algebra, or uA∞-algebra,
is an A∞-algebra with additional structure, and in fact coincides with the structure described in
[FOOO09].

In [FOOO09], the authors prove (Theorem 5.4.2’) that there is a (gapped, filtered) suA∞

minimal model for every (gapped, filtered) uA∞-algebra. We prove the following analogue.

1.4.1. Theorem (Corollary 6.5.3). Let A be a uA∞-algebra. There is an suA∞-algebra structure
on the homology of A which is equivalent to A.

We extend this theorem to a broad class of algebraic structures, including Batalin-Vilkovisky
algebras and commutative algebras.

1.5. André-Quillen cohomology theory for unital associative algebra. Following the ideas
of Quillen, we define a cohomology theory associated to any unital associative dga A with coef-
ficients in a A-bimodule M , denoted H•

uAs(A, M). We prove that this cohomology theory is an
Ext-functor and that it is equal to the Hochschild cohomology theory of the associative algebra
A.

1.5.1. Theorem (Theorem 6.6.7). Let A be a unital associative dga. We have

H•
uAs(A, M) ∼= HH•+1(A, M).

2. Operads and Properads

In this section, we recall the notion of algebra, operad and properad as successive generaliza-
tions. We refer to the book of Loday and Vallette [LV] for a complete and modern exposition
about algebras and operads in dg mod, to the book of [MSS02] for another presentation and to
the thesis of Vallette [Val07] for properads.
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2.1. Algebras. Let K-mod denote the monoidal category (K-mod, ⊗K, K) ofK-modules. A unital
associative algebra is a monoid (A, µ, e) in this monoidal category. The product µ : A⊗K A→ A
is associative and e : K→ A is a unit for the product.

As in representation theory, the elements of A are seen as operations with one input and one
output. Then we represent the product a1 · · · an by a vertical bivalent tree whose vertices are
indexed by the ai, see Figure 1.

��
an

��
...

��
a1

��

Figure 1. Representation of the product a1 · · · an

2.2. Operads. An S-module P = {P(n)}n≥0 is a collection of K-modules P(n) endowed with
right action of the symmetric group Sn. One defines from [May72] the monoidal product ◦ on the
category of S-modules by

(P ◦ Q)(n) :=
⊕

k≥0

(
P(k)⊗Sk

(
⊕

i1+···+ik=n

(Q(i1)⊗ · · · ⊗ Q(ik))⊗Si1×···×Sik
K[Sn]

))
,

where the notation ⊗Sk stands for the space of coinvariants under the (diagonal) action of the
symmetric group Sk:

(p⊗ q1 ⊗ · · · ⊗ qk ⊗ σ) · ν := p · ν ⊗ qν−1(1) ⊗ · · · ⊗ qν−1(k) ⊗ ν̄
−1 · σ

for any p ∈ P(k), qj ∈ Q(ij), σ ∈ Sn and ν ∈ Sk with ν̄ ∈ Sn the induced block-wise permutation.
This monoidal product encodes the composition of multilinear operations and we represent it by
2-levels trees as shown in Figure 2.

5

��@
@@

@ 3

��

4

��~~~
~

1

��@
@@

@ 6

��~~~
~

8

��@
@@

@ 2

��

7

��~~~
~

q1

**TTTTTTTTTTTT q2

��

q3

ttjjjjjjjjjjjj

p

��

Figure 2. An element in (P ◦ Q)(8)

The unit for the monoidal product is I := (0, K, 0, . . .) where the K is in arity 1 and represent
the identity element modeled by the tree |. It forms a monoidal category denoted by S-Mod.

An operad is a monoid (P , γ, e) in the monoidal category of S-modules S-Mod. The associative
product P ◦P → P is called the composition product and e : I → P is the unit for the composition
product.

Example. A unital associative algebra induces an operad by this injective map

Unital associative algebras Operads, A 7→ (0, A, 0, . . .)
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2.3. Properads. Algebras encode operations with one input and one output. Operads encode
operations with several inputs and one output. To encode operations with multiple inputs and
outputs, one uses the notion of properad.

An S-bimodule P is a collection {P(m, n)}m,n≥0 of Sm-Sn-bimodules. One recalls from [Val07]
a monoidal product using 2-levels graphs as in Figure 3.

  A
AA

AA

�� ~~}}
}}

}

  A
AA

AA

~~}}
}}

}

q1

))SSSSSSSSSSSSS

  

q2

~~
kkkkkk

uukkkkkk

p1

~~}}
}}

}

  A
AA

AA
p2

��

Figure 3. An element in (P ⊠Q)(3, 5)

Let a and b the number of vertices on the first level and on the second level respectively. Let
N be the number of internal edges between the two levels. We associate to an a-tuple of integers
ı̄ = (i1, . . . , ia) the sum |̄ı| := i1 + · · ·+ ia. To any pair of a-tuples ı̄ and ̄ we denote by P(̄, ı̄)
the tensor product P(j1, i1)⊗ · · · ⊗ P(ja, ia) and by Sı̄ the image of Si1 × · · · × Sia in S|ı̄|.

Let k̄ = (k1, . . . , kb) be a b-tuple and let ̄ = (j1, . . . , ja) be an a-tuple such that |k̄| = |̄| = N .
A (k̄, ̄)-connected permutation is a permutation σ in SN such that the graph of a geometric
representation of σ is connected when one connects the inputs labelled by j1+ · · ·+ji+1, . . . , j1+
· · ·+ ji+1 for 0 ≤ i ≤ a− 1 and the outputs labelled by k1 + · · ·+ ki + 1, . . . , k1 + · · ·+ ki+1 for
0 ≤ i ≤ b− 1. We denote by Sc

k̄,̄
the set of (k̄, ̄)-connected permutations.

We define the monoidal product ⊠, denoted ⊠c in [Val07], on the category of S-bimodules by

(P ⊠Q)(m, n) :=
⊕

N∈N



⊕

l̄,k̄,̄,ı̄

K[Sm]⊗Sl̄
P(l̄, k̄)⊗Sk̄

K[Sc
k̄,̄

]⊗S̄ Q(̄, ı̄)⊗Sı̄ K[Sn]




S
op
b

×Sa

,

where the second direct sum runs over the b-tuples l̄, k̄ and the a-tuples ̄, ı̄ such that |l̄| = m,
|k̄| = |̄| = N , |̄ı| = n and we consider the module of coinvariants with respect to the S

op
b × Sa-

action:

ρ⊗p1⊗· · ·⊗pb⊗σ⊗q1⊗· · ·⊗qa⊗ω ∼ ρ·τ
−1
l̄
⊗pτ(1)⊗· · ·⊗pτ(b)⊗τk̄·σ·ν̄⊗qν−1(1)⊗· · ·⊗qν−1(a)⊗ν

−1
ı̄ ·ω,

for ρ ∈ Sm, ω ∈ Sn, σ ∈ Sc
k̄,̄

and for τ ∈ Sb with τk̄ the associated block-wise permutation,

ν ∈ Sa with ν̄ the associated block-wise permutation. We write an element in P ⊠ Q like this
θ(p1, . . . , pb)σ(q1, . . . , qa)ω. The unit I for the monoidal product is given by

{
I(1, 1) := K and
I(m, n) := 0 otherwise.

The category of S− bimodules with the operation ⊠ forms a monoidal category with unit I. We
denote this monoidal category by S-biMod.

A properad is a monoid (P , γ, e) in the monoidal category S-biMod of S-bimodules. The
associative product γ : P ⊠P → P is called the composition product and e : I → P is the unit for
the composition product.

Example. An operad induces a properad as follows

Operads Properads, P 7→ P̃ , where

{
P̃(1, n) := P(n) and

P̃(m, n) := 0 for m 6= 1.
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Finally, we have the following inclusions:

Monoidal category: (K-Mod, ⊗K)  (S-Mod, ◦)  (S-biMod, ⊠)
Monoid: Associative algebras  Operads  Properads.

The results about properads in this paper apply to algebras and operads as well by the above
inclusions of categories.

One defines dually the notions of coalgebra, cooperad, coproperad. For example, a coproperad
is a comonoid (C, ∆, η) in the monoidal category of S-bimodules S-biMod. The coproduct ∆ : C →
C⊠C is coassociative and admits a counit η : C → I. All these definitions extend to the differential
graded setting, or dg setting for short. The differentials are compatible with the properad structure,
resp. coproperad structure, in the sense that they are derivations, resp. coderivations (see [LV] or
[Val07] for precise definitions). We will often refer to a dg “object” just as “object,” for example
we call dg properads “properads.”

3. Curved twisting morphisms

In this section, we recall the notion of twisting morphisms for augmented properads and co-
properads from [Val08] and [MV09] and the associated bar-cobar adjunction. To extend these
notions to the case where the properad is not augmented, we introduce the new notion of curved
coproperad and of curved twisting morphism between a curved coproperad and a not necessarily
augmented properad. We also extend the bar and the cobar constructions to this framework.
This provides a functorial cofibrant replacement for properads. We emphasize the fact that the
properad is not assumed to be augmented.

3.1. Twisting morphisms. We recall the theory of twisting morphisms between augmented
coproperads and augmented properads from [MV09].

Let M and N be two S-bimodules. By abuse of notation, we will denote by M ⊗ N the
infinitesimal composite product of one element of M with one element of N grafted above, that
is the space of linear combinations of connected graphs with two vertices, the first one labelled by
an element of M and the one above labelled by an element of N . This is not quite the same as
Q ⊠(1,1) P of [MV09], in which they define the product of augmented properads, and only take
elements from the augmentation ideal. However, we write sometimesM⊠(1, 1)N instead ofM⊗N .
To an operad P , we associate the infinitesimal composition product γ(1, 1) : P ⊠(1, 1) P → P with
the help of e and γ. Associated to a coproperad C, we define the infinitesimal decomposition map
∆(1, 1) : C → C⊠(1, 1) C by the projection of ∆ (with the help of η) on C⊠(1, 1) C, or with the above
notation, on C ⊗ C.

We recall the convolution product ⋆ on Hom(C, P) :=
∏

m,n≥0 HomK(C(m, n), P(m, n)) from

[MV09]. Let f, g ∈ Hom(C, P). We denote by f ⋆ g the composite

C
∆(1, 1)
−−−−→ C ⊠(1, 1) C

f⊠(1, 1)g
−−−−−→ P ⊠(1, 1) P

γ(1, 1)
−−−−→ P .

We define the derivative ∂ of degree −1 on Hom(C, P) by

∂(f) := dP ◦ f − (−1)|f |f ◦ dC .

The convolution product ⋆ on Hom(C, P) is a Lie-admissible product (see [MV09] for more
details). It is stable on the space of equivariant maps from C to P denoted by HomS(C, P). Then
the bracket [f, g] := f ⋆ g − (−1)|f ||g|g ⋆ f is a Lie bracket on HomS(C, P).

A morphism of S-bimodules α : (C, dC)→ (P , dP) of degree −1 in the Lie algebra HomS(C, P)
is called a twisting morphism if it is a solution to the Maurer-Cartan equation

∂(α) + α ⋆ α = ∂(α) +
1

2
[α, α] = 0.

We denote by Tw(C, P) the set of twisting morphisms in HomS(C, P).
We say that an operad P is augmented when there is a morphism P ։ I of dg properads

such that I
e
−→ P ։ I is the identity. It is equivalent to P ∼= I ⊕ P as dg properads where

P := ker(P ։ I). Dually, we say that a coproperad C is coaugmented when there is a morphism

I  C of dg coproperads such that I  C
η
−→ I is the identity. It is equivalent to C ∼= I ⊕ C as dg
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coproperads where C := coker(I  C). When P is augmented and C is coaugmented, we require

the twisting morphisms α to satisfy the compositions C
α
−→ P ։ I and I  C

α
−→ P being equal

to 0. A coaugmented coproperad is called conilpotent when for all x ∈ C, there exists an n > 0
such that ∆

n

(1,1)(x) = 0, where ∆(1,1) : C → C ⊠(1,1) C is the primitive part of ∆(1,1) and where

∆
n

(1,1) = (∆(1,1) ⊗ id
⊗(n−1)
C ) ◦∆

n−1

(1,1) (see [LV] for more details in cooperad case).

When P is augmented and C is conilpotent, we recall from [Val07] that the bifunctor Tw(−, −)
is representable on the left by the cobar construction and on the right by the bar construction,
that is we have the following adjunction

Ω : conilpotent dg coprop.⇋ augmented dg prop. : B

and there are natural correspondences

Homaug. dg prop.(ΩC, P) ∼= Tw(C, P) ∼= Homconil. dg coprop.(C, BP).

3.2. Curved twisting morphism. We refine the previous section to the case where P is not
necessarily augmented. A curvature has to be introduced on the level of dg coproperads to encode
the default of augmentation. The associated notion is called a curved coproperad. We define the
notion of curved twisting morphism between a curved coproperad and a dg properad as a solution
of the curved Maurer-Cartan equation.

3.2.1. Curved coproperad. A curved coproperad is a triple (C, dC , θ), where C is a graded (but
not dg) coproperad, the predifferential dC is a coderivation of C of degree −1 and the curvature
θ : C → I is a map of degree −2 such that:

a) d2C = (θ ⊗ idC − idC ⊗ θ) ◦∆(1,1),
b) θ ◦ dC = 0.

A morphism between curved coproperads (C, dC , θ)→ (C′, dC′ , θ′) is a morphism of coproperads
f : C → C′ such that dC′ ◦ f = f ◦ dC and θ′ ◦ f = θ. We denote this category by curved coprop..

We prove the following technical lemma that will be useful later.

3.2.2. Lemma. Let C be a coproperad. The cobracket (θ ⊗ idC − idC ⊗ θ) ◦ ∆(1, 1) with a linear
form θ : C → I is a coderivation.

Proof. The coassociativity of ∆(1, 1) gives[(
(θ ⊗ idC − idC ⊗ θ) ◦∆(1, 1)

)
⊗ idC + idC ⊗

(
(θ ⊗ idC − idC ⊗ θ) ◦∆(1, 1)

)]
◦∆(1, 1)

=
[(
(θ ⊗ idC) ◦∆(1, 1)

)
⊗ idC − idC ⊗

(
(idC ⊗ θ) ◦∆(1, 1)

)]
◦∆(1, 1)

= (θ ⊗∆(1, 1) −∆(1, 1) ⊗ θ) ◦∆(1, 1) = ∆(1, 1) ◦
(
(θ ⊗ idC − idC ⊗ θ) ◦∆(1, 1)

)
.

�

3.2.3. The convolution curved Lie algebra. We define the new notion of curved Lie algebra
generalizing the notion of dg Lie algebra. A curved Lie algebra is a quadruple (g, [−, −], dg, θ),
where (g, [−, −]) is a Lie algebra, the predifferential dg is a derivation of g of degree −1 and the
curvature θ is an element of g (or equivalently a map K→ g) of degree −2 such that:

a) d2
g
= [−, θ];

b) dg(θ) = 0.

Let (C, dC , θ) be a curved coproperad and let (P , dP) be a dg properad. We fix the element

Θ := e ◦ θ : C
θ
−→ I

e
−→ P

of degree −2 in Hom(C, P).

3.2.4.Proposition. When C is a curved coproperad and P is a dg properad, we have on HomS(C, P) =∏
m,n≥0 HomS(C(m, n), P(m, n)):

{
∂2 = [−, Θ] := (- ⋆ Θ)− (Θ ⋆ -)
∂(Θ) = 0.

Then (HomS(C, P), [−, −], ∂, Θ) is a curved Lie algebra, called the convolution curved Lie alge-
bra.
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Proof. We do the computations:

∂2(f) = dP ◦ ∂(f)− (−1)|∂(f)|∂(f) ◦ dC
= dP

2 ◦ f − (−1)|f |dP ◦ f ◦ dC + (−1)|f |(dP ◦ f ◦ dC − (−1)|f |f ◦ dC
2)

= −f ◦ dC
2 = −f ◦ (θ ⊗ idC − idC ⊗ θ) ◦∆(1,1) = f ⋆ Θ −Θ ⋆ f

and ∂(Θ) = dP ◦ e ◦ θ − (−1)|Θ|e ◦ θ ◦ dC = 0 since dP ◦ e = 0 and θ ◦ dC = 0. �

An element α : (C, dC , θ) → (P , dP) of degree −1 in the curved Lie algebra HomS(C, P) is
called a curved twisting morphism if it is a solution of the curved Maurer-Cartan equation

∂(α) + α ⋆ α = Θ.

We denote by Tw(C, P) the set of curved twisting morphisms in HomS(C, P).

Remark. The words “curved” and “curvature” refer to the geometric context. In that setting,
the Maurer-Cartan equation applied to a connection provides the curvature form. The flat case
corresponds to the curvature equal to zero, that is to the classical case.

3.3. Bar and cobar constructions. In this section, we extend the bar construction of aug-
mented dg properads to a curved bar construction from dg properads with target in curved copr-
operads. In the other way round, we extend the cobar construction of coaugmented coproperads
to coaugmented curved coproperads. In the algebra case, the cobar construction generalizes the
bar construction of curved algebras given in [PP05] and in [Pos93] to properads, though it is not
immediate that our constructions are the same, as [PP05, Pos93] do not make use of coalgebras.

3.3.1. Semi-augmented dg properads. A semi-augmented dg properad, or sdg properad for
short, (P , dP , ε) is a dg properad P whose underlying S-bimodule is endowed with an augmenta-
tion of S-bimodules ε : P ։ I, not necessarily dg or of properads, called semi-augmentation. In
other words, ε is a retraction of S-bimodules of the unit e : I → P and we have an isomorphism

e+ inc : I⊕P
∼=−→ P of S-bimodules, where P := ker ε and inc is the inclusion P  P . We denote

ρ := (e + inc)−1|P : P ։ P. In the following, we do not write the inclusion inc in the formulae.
The map γ := ρ ◦ γ : P ⊠ P → P is not necessarily associative, even though the composition
product γ : P ⊠ P → P is associative.

Remark. The assumption for P to have a semi-augmentation ε is not restrictive since we are
working over a field K and since we just need to fix a section of P(1, 1). When P(1, 1) = I, we
choose the identity map. This is often the case, as it is for the operad encoding unital associative
algebras (see Section 6).

We define on P the map dP := ρ ◦ dP , which is a differential since dP is a differential and since
the differential on I is 0. The differentials satisfy ρ ◦ dP = dP ◦ ρ. However, we have dP 6= dP in
general.

A morphism between two sdg properads (P , dP , ε)
f
−→ (P ′, dP′ , ε′) is a morphism of dg proper-

ads f : (P , dP) → (P ′, dP′) such that ε′ ◦ f = ε. We define f̄ := ρ′ ◦ f : P → P ′ and we remark
that dP′ ◦ f̄ = f̄ ◦ dP . We denote by sdg prop. the category of semi-augmented dg properads.

3.3.2. Coaugmented and conilpotent curved coproperads. When C is coaugmented, that
is, C has a coaugmentation I  C so that C ∼= I ⊕ C as coproperads, we require that any twisting

morphism α satisfies the compositions I  C
α
−→ P and C

α
−→ P

ε
−→ I to be zero. We denote

by coaug. curved coprop. the category of coaugmented curved coproperads and by conil. curved

coprop. the category of conilpotent curved coproperads (see Section 3.1).

We construct a pair of functors

B : sdg prop.⇋ coaug. curved coprop. : Ω.

Let M be an S-bimodule. The notation F(M), resp. Fc(M), stands for the free properad on M ,
resp. the cofree coproperad on M . A derivation on F(M), resp. a coderivation on Fc(M), is
characterized by its restriction on M , resp. by its image on M . The notation sM , resp. s−1M ,
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stands for the homological suspension, resp. the homological desuspension, of the S-bimodule M .
We refer to [Val07] for more details.

3.3.3. Curved bar construction of a sdg properad. The bar construction of the sdg properad
(P , dP , ε) is given by the conilpotent curved coproperad

BP := (Fc(sP), dbar , θbar).

The predifferential is defined by dbar := d1 + d2, where d2 is the unique coderivation of degree −1
which extends the map

Fc(sP)։ Fc(sP)(2) ∼= s2(P ⊠(1, 1) P)
s−1γ
−−−→ sP

where γ := ρ ◦ γ : P ⊠(1, 1) P → P and d1 is the unique coderivation of degree −1 which extends
the map

Fc(sP)։ sP
ids⊗dP−−−−−→ sP.

The curvature θbar is the map of degree −2

Fc(sP)։ sP ⊕ Fc(sP)(2) ∼= sP ⊕ s2(P ⊠(1, 1) P)
s−1dP+s−2γ
−−−−−−−−→ P

ε
−→ I.

3.3.4. Lemma. The predifferential and the curvature satisfy

a) dbar
2 = (θbar ⊗ id− id⊗ θbar) ◦∆(1, 1);

b) θbar ◦ dbar = 0.

Proof. First we can restrict the proof of the equality a) and b) to Fc(sP)(≤3) since dbar
2 =

1
2 [dbar, dbar] and (θbar⊗ id− id⊗ θbar) ◦∆(1, 1) are coderivations (see Lemma 3.2.2) and since θbar
is non zero only on Fc(sP)(2).

The composite

Fc(sP)(≤3)
dbar

|Fc(sP)(≤2)
−[(θbar⊗id−id⊗θbar)◦∆(1, 1)]

|I⊗sP⊕sP⊗I

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Fc(sP)(≤2)⊕

(I ⊗ sP ⊕ sP ⊗ I)
(dbar

|sP−θbar)+γ|I⊗sP⊕sP⊗I

−−−−−−−−−−−−−−−−−−−→ I ⊕ sP

equals to
(
dbar

2 − (θbar ⊗ id− id⊗ θbar) ◦∆(1, 1) − θbar ◦ dbar
)|I⊕sP

and to (dγ+dP )
2|I⊕sP

where
dγ+dP is the unique coderivation of degree −1 on Fc(sP) which extends the map

Fc(sP)։ Fc(sP)(≤2) ∼= sP ⊕ s2P ⊠(1, 1) P
ids⊗dP+s−1γ
−−−−−−−−−→ sP .

Moreover, since γ is associative and dP is a compatible differential, we have dγ+dP

2 = 0. Thus

dbar
2 − (θbar ⊗ id− id⊗ θbar) ◦∆(1, 1) − θbar ◦ dbar = 0,

that is, due to the degree
{
dbar

2 = (θbar ⊗ id− id⊗ θbar) ◦∆(1, 1)

θbar ◦ dbar = 0.

�

3.3.5. Lemma. The bar construction is a functor B : sdg prop.→ conil. curved coprop..

Proof. Let f : (P , dP , ε)→ (P ′, dP′ , ε′) be a morphism of sdg properads. It induces a morphism
of dg S-bimodules f̄ : P → P ′. The map Fc(f̄) : Fc(sP) → Fc(sP ′) is a map of coproperads
by construction. The morphism f̄ commutes with γP and γP′ , thus Fc(f̄) commutes with the
predifferentials. For a similar reason θ′bar ◦ F

c(f̄) = θbar. �
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3.3.6. Cobar construction of a coaugmented curved coproperad. The cobar construction
of the coaugmented curved coproperad (C, dC , θ) is given by the sdg properad

ΩC := (F(s−1C), d := d0 + d1 − d2, ε).

The term d0 is the unique derivation of degree −1 which extends the map

s−1C
sθ
−→ I  F(s−1C).

The term d1 is the unique derivation of degree −1 which extends the map

s−1C
id

s−1⊗dC−−−−−−→ s−1C F(s−1C).

The term d2 is the unique derivation of degree −1 which extends the infinitesimal decomposition
map of C, up to desuspension:

s−1C
s−1∆(1,1)
−−−−−−→ s−2Fc(C)(2) ∼= F(s−1C)(2)  F(s−1C).

The semi-augmentation ε is the natural projection F(s−1C) = I ⊕ s−1C ⊕ · · · ։ I. It is an
augmentation of properads but it is not an augmentation of dg properads in general.

3.3.7. Lemma. The derivation d on F(s−1C) satisfies d2 = 0.

Proof. First of all, if we define the weight on C by C(0) = I, C(1) = C and C(n) = 0 when n 6= 0, 1
and extend it to F(s−1C), we get that the map d0 is of weight −1, the map d1 is of weight 0 and
the map d2 is of weight 1. Thus, the term d2 split in the following way

d2 = d0
2

︸︷︷︸
weight=−2

+ d0d1 + d1d0︸ ︷︷ ︸
weight=−1

+ d1
2 − d0d2 − d2d0︸ ︷︷ ︸

weight=0

− (d1d2 + d2d1)︸ ︷︷ ︸
weight=1

+ d2
2

︸︷︷︸
weight=2

.

So, we have to show that each group of terms is equal to zero. The term d20 is zero because
im(d0) ⊂ I, and any derivation annihilates I. The sum d0d1 + d1d0 is zero since θ ◦ dC = 0 and dC
is zero on I and by the Koszul sign rule. The equality d2C = (θ ⊗ idC − idC ⊗ θ) ◦∆(1,1) and the

Koszul sign rule give d1
2 − d0d2 − d2d0 = 0. The equality d1d2 + d2d1 = 0 is due to the fact that

dC is a coderivation. Finally d2
2 = 0 by “coassociativity” of ∆(1,1) and by the Koszul sign rule.

�

3.3.8. Lemma. The cobar construction is a functor Ω : coaug. curved coprop.→ sdg prop..

Proof. Let f : (C, dC , θ) → (C′, dC′ , θ′) be a morphism between coaugmented curved copr-
operads. The map F(f) : F(s−1C) → F(s−1C′) is a map of properads by construction and
d′2 ◦ F(f) = F(f) ◦ d2 since f is a morphism of coproperads. The equality dC′ ◦ f = f ◦ dC implies
d′1 ◦ F(f) = F(f) ◦ d1, the equality θ′ ◦ f = θ implies d′0 ◦ F(f) = F(f) ◦ d0 and then F(f)
commutes with the differential. �

3.4. Bar-cobar adjunction. The cobar construction on conilpotent curved coproperads and the
bar construction on dg properads represent the bifunctor of curved twisting morphisms and form
a pair of adjoint functors. The counit of adjunction provides a cofibrant replacement functor for
dg properads.

3.4.1. Theorem. For any conilpotent curved coproperad C and for any sdg properad P, there is
are natural correspondences

Homsdg prop.(ΩC, P) ∼= Tw(C, P) ∼= Homcoaug. curved coprop.(C, BP).

Proof. We make the first bijection explicit. A morphism of sdg properads fα : F(s−1C) → P

is uniquely determined by a map sα : s−1C → P of degree 0 such that s−1C
sα
−→ P

ε
−→ I is 0, or

equivalently, by a map α : C → P of degree −1 satisfying I  C
α
−→ P and C

α
−→ P

ε
−→ I are zero

(condition for twisting morphisms when C is coaugmented, see 3.3.2).
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Moreover, fα commutes with the differentials if and only if the following diagram commutes

s−1C
sα //

d0+d1−d2

��

P
dP // P

F(s−1C)
F(sα)

// F(P),

γ̃

OO

where γ̃ is induced by γ. We have

dP ◦ (sα) = s(dP ◦ α)
γ̃ ◦ F(sα) ◦ d0 = e ◦ (sθ) = s(e ◦ θ)
γ̃ ◦ F(sα) ◦ d1 = sα ◦ (ids−1 ⊗ dC) = −s(α ◦ dC)
γ̃ ◦ F(sα) ◦ d2 = γ ◦ (sα⊠(1, 1) sα) ◦ s

−1∆(1, 1) = s(γ ◦ (α⊠(1, 1) α) ◦∆(1, 1)).

Thus the commutativity of the previous diagram is equivalent to the equality

e ◦ θ − α ◦ d− γ ◦ (α⊠(1, 1) α) ◦∆(1, 1) = dP ◦ α,

that is ∂(α) + α ⋆ α = Θ.
We now make the second bijection explicit. A morphism of coaugmented coproperads gα : C →

Fc(sP) is uniquely determined by a map sα : C → sP which sends I to 0, that is by a map

α : C → P of degree −1 satisfying I  C
α
−→ P and C

α
−→ P

ε
−→ I are zero.

Moreover, gα commutes with the predifferential and with the curvature if and only if the
following diagrams commute

C
sα+(sα⊗sα)◦∆(1, 1)//

dC

��

sP ⊕ sP ⊠(1, 1) sP

dbar=d1+d2

��

and

C sα
// sP

C

θ

��

gα // BP

θbar~~}}
}}

}}
}}

I.

Since α⋆α = −(s−1inc) ◦ d2 ◦ (sα⊗ sα) ◦∆(1, 1) + e ◦ θbar ◦ gα, the commutativity of the diagrams

gives ∂(α) + α ⋆ α = Θ. Moreover, the projections of the curved Maurer-Cartan equation on P
and on I give the two commutative diagrams. This concludes the proof. �

Examples.

• To the identity morphism idBP : BP → BP of coaugmented curved coproperads corre-
sponds the curved twisting morphism π : BP → P defined by Fc(sP)։ sP ∼= P  P .
• To the identity morphism idΩC : ΩC → ΩC of properads corresponds the curved twisting
morphism ι : C → ΩC defined by C → C ∼= s−1C F(sC).

3.4.2. Lemma. For any conilpotent curved coproperad C and for any sdg properad P, every curved
twisting morphism α : C → P factors through the universal curved twisting morphisms π and ι:

ΩC
fα

!!C
C

C
C

C
α //

ι

=={{{{{{{{

gα !!B
B

B
B P

BP ,

π

=={{{{{{{{

where fα is a morphism of sdg properads and gα is a morphism of conilpotent curved coproperads.

Proof. The dashed arrows are just the images of α by the two bijections of Proposition 3.4.1. �
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3.4.3. Weight filtration. We say that a dg S-bimodule M is weight filtered differential graded,
or wfdg for short, when it is endowed with a filtration of dg S-bimodules FωM , ω ∈ N. When M
is a (co)properad, we assume that the (co)product preserves the filtration. In the weight filtered
setting, we only consider those twisting morphisms that preserve the filtration. A wfdg properad
P is called connected when F0P = I (= Im(e)).

We endow any free properad F(V ) with a weight grading given by the number of generators.
This induces a weight filtration on any properad F(V )/(R) defined by generators and relations.
Sub-coproperads of Fc(V ) are also weight filtered by the number of generators. When P is a wfdg
properad, BP comes equipped with a weight filtration. An element in BP is a connected graph
whose vertices are labelled by elements µi of P. It is in the component of weight ω of BP if there
exist ωi such that any µi is in the component of weight ωi of P and

∑
ωi ≤ ω. Similarly, we

endow ΩC with a weight filtering when C is weight filtered.
The curved twisting morphism π preserves the weight filtration.

3.4.4. Theorem. Let (P , dP , ε) be a connected wfdg semi-augmented properad. The counit of
the bar-cobar adjunction is a quasi-isomorphism of wfdg semi-augmented properads, that is the
bar-cobar construction ΩBP is a resolution of P

ΩBP
∼
−→ P .

When P is concentrated in non-negative degree, the bar-cobar construction is a cofibrant properad
for the model category defined in Appendix A of [MV07].

Proof. We work in the model category defined in Appendix A of [MV07]. Since ΩBP is quasi-
free, the remark after Corollary 40 of [MV07] gives that ΩBP is cofibrant when we assume that
P is non-negatively homologically graded.

As explained in the previous section, ΩBP = (F(s−1F(sP)), d = d0+d1−d2) is weight filtered
by Fp when P is weight filtered. We have

d0 : Fp → Fp−1 and d1 : Fp → Fp and d2 : Fp → Fp,

where d0 is induced by θbar, d1 is induced by dbar and d2 is induced by the coproduct on Fc(sP).
So Fp is a filtration of chain complexes, it is exhaustive and bounded below and we can apply the
classical theorem of convergence of spectral sequences (cf. Theorem 5.5.1 of [Wei94]) to obtain

E•
p,q ⇒ Hp+q(ΩBP).

We endow P with a filtration F ′
p induced by the weight. This is a filtration of chain complexes

since dP preserves the weight filtration. The filtration F ′
p is exhaustive and bounded below so we

can apply the classical theorem of convergence of spectral sequences (cf. Theorem 5.5.1 of [Wei94])
to obtain

E′•
p,q ⇒ Hp+q(P).

The counit of the bar-cobar adjunction preserves the filtration and induces a map of spectral
sequences E•

p,q → E′•
p,q. Moreover, E0

•,• = ΩB(grP). The graded properad grP associated to
the filtration F ′

p on P is always augmented and connected (in the sense of [Val07], that is grP

is weight graded and grP(0) = I). However, it is not reduced, that is P(0, n) and P(m, 0) can
be non zero. Theorem 5.8 of [Val07] applies to reduced properads for which the author provides
a canonical writing of an element in P ⊠ P in order to define a contracting homotopy. Such a
canonical writing is not possible for non reduced properads. However, it is possible to define a
contracting homotopy by means of a sum over all the possibilities. This works for non reduced
properads (over a field of characteristic 0) and Theorem 5.8 of [Val07] extends to non reduced
properads. So we get that E1

p,q = gr(p)(Hp+q(grP)). Thus the counit of the bar-cobar adjunction

induces an isomorphism of spectral sequences E•
p,q → E′•

p,q when • ≥ 1. Since E′•
p,q ⇒ Hp+q(P),

the same is true for E•
p,q and the morphism ΩBP

∼
−→ P is a quasi-isomorphism. �

Remarks.
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(1) In [Pos09], Positselski defined a bar construction and a cobar construction between curved
dg algebras and curved dg coalgebras. The curvatures on both sides encode the default of
augmentation or of coaugmentation. In this paper, we are interested only in the default of
augmentation and the picture becomes asymmetric. When we reduce our bar construction
and our cobar construction to semi-augmented algebras and curved coalgebras, we recover
the particular case of [Pos09] where the curved coalgebras are coaugmented.

(2) In [Nic08], Nicolàs proved a similar bar-cobar adjunction on the level of algebras and
coalgebras. But the picture is dual. The bar construction goes from curved associative
algebras to conilpotent graded-augmented coalgebras (see [Nic08] for the precise definitions)
and the cobar construction goes the other way around. In his case, the curvature does
not control the default of augmentation with respect to the composition product and with
respect to the dg setting, but only with respect to the dg setting. In the spirit of [Nic08],
we should say the dual statement: the default of augmentation with respect to the dg
setting measures the curvature.

3.4.5. Homotopy Frobenius algebras. A unital and counital Frobenius algebra is a quintuple
(A, µ, ∆, e, η) where A is a vector space, µ : A⊗A→ A is a commutative and associative product,
∆ : A → A ⊗ A is a cocommutative and coassociative coproduct, e : K → A is a unit for the
product and η : A → K is a counit for the coproduct such that the product µ =

??�� and the
coproduct ∆ = ��?? satisfy the Frobenius relation

��??��=
??��

��?? = ??��?? .

In operadic terms, we get that A is an algebra over the properad ucFrob :=

F( • , • ,
??��, ��??)/( ??

?����
�− ??

? ??
��
�, ���??

???− ��� ��
???, •??�� − |, ?? •

�� − |, •
��??
− |, ��

•

??
− |, ��??��−

??��
��??,

??��
��??− ??��??).

This properad is not augmented but Theorem 3.4.4 applies and we get as a corollary:

3.4.6. Theorem. The bar-cobar resolution on ucFrob is a cofibrant resolution of the properad
ucFrob, that is

ΩBucFrob
∼
−→ ucFrob.

We define a ucFrob-algebra up to homotopy as an algebra over this resolution. As proved in
[Abr96, Koc04], the datum of a 2-dimensional topological quantum field theory, 2d-TQFT for short
is equivalent to a unital and counital Frobenius algebra structure. Therefore, we should be able
to use this to study 2d-TQFT with homotopy methods.

There is an interesting application in differential geometry. With the present resolution of
ucFrob and with the methods of [Wil07], one endows the differential forms ΩdR(M) on a closed,
oriented manifold M with a structure of ucFrob-algebra up to homotopy, which induces the
ucFrob-algebra structure on the cohomology H•(M).

4. Curved Koszul duality theory

We extend the Koszul duality theory for homogeneous quadratic properads [Val07] and quadratic-
linear properads [GCTV09] to inhomogeneous quadratic properads with a quadratic, linear and
constant presentation. When the properad is inhomogeneous quadratic, it is not necessarily aug-
mented. Therefore we introduce a Koszul dual coproperad endowed with a curvature, which
measures this failure. As explained in Section 2, an associative algebra is a particular kind of
properad. Hence this section applies to associative algebras as well to recover the construction
given by [Pos93] and [PP05]. However, the presentation given here is slightly different and more
general: it works without any finiteness assumption. We end the section with a Poincaré-Birkhoff-
Witt theorem for properads.
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4.1. Inhomogeneous quadratic properad. An inhomogeneous quadratic properad is a prop-
erad P which admits a presentation of the form P = F(V )/(R), where V is a degree graded
S-bimodule and (R) is the ideal generated by a degree graded S-bimodule R ⊂ I ⊕ V ⊕F(V )(2).
The superscript (2) indicates the weight degree. We require that R is a direct sum of (homological)
degree homogeneous subspaces. Thus the properad P is degree graded and has a weight filtration
induced by the S-bimodule of generators V . We assume further that the following conditions hold:

(I) The space of generators is minimal, that is R ∩ {I ⊕ V } = {0}.
(II) The space of relations is maximal, that is (R) ∩ {I ⊕ V ⊕F(V )(2)} = R.

Let q : F(V )։ F(V )(2) be the canonical projection and let qR ⊂ F(V )(2) be the image under
q of R. We consider the quadratic properad qP := F(V )/(qR). Since R ∩ {I ⊕ V } = {0}, there
exists a map ϕ : qR→ I ⊕ V such that R is the graph of ϕ:

R = {X − ϕ(X), X ∈ qR}

= {X − ϕ1(X) + ϕ0(X), X ∈ qR, ϕ1(X) ∈ V, ϕ0(X) ∈ K}.

The weight grading on the free properad F(V ) induces the following filtration on P

Fp := π
(
⊕ω≤pF(V )(ω)

)
,

where π stands for the canonical projection F(V )։ P . We denote the associated graded properad
by gr(P). The relations qR hold in gr(P). Therefore, there exists an epimorphism of graded
properads

p : qP ։ gr(P).

We assume throughout that every inhomogeneous quadratic properad is semi-augmented in the
sense of Section 3.3.1. We recall that sV stands for the homological suspension of V , and that the
Koszul dual coproperad of the homogeneous quadratic properad qP is the coproperad cogenerated
by sV with corelations in s2qR (see Section 2.2 of [Val08]) denoted:

qP ¡ := C(sV, s2qR) = I ⊕ sV ⊕ s2qR⊕ · · · .

It is a subcoproperad of the cofree coproperad Fc(sV ) on sV . In the cofree coproperad Fc(V ),
the weight of an element corresponds to the number of generating elements from V used to write
it. There exists a unique coderivation d̃ : qP ¡ → Fc(sV ) of degree −1 (see Section 3.2 in [MV09])
which extends the map

qP ¡
։ s2qR

s−1ϕ1
−−−−→ sV.

Moreover, we denote by θ : qP ¡ → I the map of degree −2

qP ¡
։ s2qR

s−2ϕ0
−−−−→ I.

4.1.1. Lemma. Let P = F(V )/(R) be an inhomogeneous quadratic properad. Condition (II)
implies that:

• The coderivation d̃ on Fc(sV ) restricts to a coderivation dP ¡ of degree −1 on the subco-
properad qP ¡ = C(sV, s2qR);
• The coderivation dP ¡ satisfies dP ¡

2 = (θ ⊗ idqP ¡ − idqP ¡ ⊗ θ) ◦∆(1,1);
• The coderivation dP ¡ satisfies θ ◦ dP ¡ = 0.

Proof. We define the map

ψ : qR⊗ V ⊕ V ⊗ qR → F(V )(≤3)

r ⊗ v + v′ ⊗ r′ 7→ (r + ϕ1(r) − ϕ0(r)) ⊗ v + v′ ⊗ (r + ϕ1(r) − ϕ0(r)).

Since any kind of tree in F(V )(3) has one of the forms

??
?
??

?
��
���
� , ������

???
??? ,

<<<
<<<

������
,
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an element in qP ¡(3) has two decompositions by ∆(1, 1) in s
2qR⊗ sV ⊕ sV ⊗ s2qR ∼= s3(qR⊗ V ⊕

V ⊗ qR). Moreover, the two decompositions give the same image with an opposite sign (Koszul

sign rule) under ψ. Therefore ψ ◦ (s−3∆(1, 1))(qP
¡(3)) ⊂ {R⊗ V ⊕ V ⊗R} ∩ {I ⊕ V ⊕ V ⊗2}.

Condition (II) implies in particular

{R⊗ V + V ⊗R} ∩ {I ⊕ V ⊕ V ⊗2} ⊂ R.

Projecting on each direct summand, we can rewrite this inclusion as the system of equations

(1) (s−1ϕ1 ⊗ idsV + idsV ⊗ s−1ϕ1) ◦∆(1,1)(qP
¡(3)) ⊂ qP ¡(2) (projection on V ⊗2);

(2)
(
s−1ϕ1 ◦ (s−1ϕ1⊗ idsV + idsV ⊗s−1ϕ1)− (s−2ϕ0⊗ idsV − idsV ⊗s−2ϕ0)

)
◦∆(1,1)|qP¡(3) = 0

(projection on V );
(3) s−2ϕ0 ◦ (s−1ϕ1 ⊗ idsV + idsV ⊗ s−1ϕ1) ◦∆(1,1)|qP¡(3) = 0 (projection on I).

By the universal property which defines qP ¡ = C(sV, s2qR), it is enough to check that d̃(qP ¡(3)) ⊂

qP ¡(2) to restrict d̃ to a coderivation of degree −1 on qP ¡, this is exactly the meaning of equation

(1). The equation (2) corresponds to the second point of the lemma restricted to qP ¡(3). The

equality extends to qP ¡ since dP¡
2 = 1

2 [dP¡ , dP¡ ] and (θ⊗idqP¡−idqP¡⊗θ)◦∆(1,1) are coderivations
(see Lemma 3.2.2). The equation (3) corresponds to the third point of the lemma since θ is zero

outside of qP ¡(2). �

4.2. Koszul dual coproperad. Let P be an inhomogeneous quadratic properad with a quadratic,
linear and constant presentation P = F(V )/(R) (such that Conditions (I) and (II) hold). The
Koszul dual coproperad of P is the weight graded curved coproperad

P ¡ := (qP ¡, dP¡ , θ).

4.3. Koszul properad. A properad is called a Koszul properad if it admits an inhomogeneous
quadratic presentation P = F(V )/(R) such that Conditions (I) and (II) hold and such that its
associated quadratic properad qP := F(V )/(qR) is Koszul in the classical sense.

Since the underlying S-bimodule of P ¡ is I⊕sV ⊕s2qR⊕· · · , we define the map of coproperads
gκ : P ¡

 Fc(sV ) BP . This map commutes with the predifferentials and with the curvatures,
hence it is a morphism of curved coproperads. So by Lemma 3.4.2, there is a curved twisting

morphism κ : P ¡
 BP

π
−→ P . It is explicitly equal to P ¡

։ sV
s−1

−−→ V  P . By Theorem 3.4.1,
we also obtain a map of dg properads ΩP ¡

։ ΩBP → P .

4.3.1. Theorem. Let P be a Koszul properad. The cobar construction on the Koszul dual curved
coproperad P ¡ is a cofibrant resolution of P:

ΩP ¡ ∼
−→ P .

Proof. We work in the model category defined in the Appendix A of [MV07]. Since we are
working in the non-negatively graded case and ΩP ¡ is quasi-free, the remark after Corollary 40
gives that ΩP ¡ is cofibrant.

Let C := s−1qP ¡ be the desuspension of the augmentation coideal of the coproperad qP ¡. So,
the underlying S-bimodule of ΩP ¡ is F(C). Let us consider the new “homological” degree induced
by the weight of elements of qP ¡, given by the weight in Fc(V ), minus 1. As in the proof of the
Appendix A of [GCTV09], Theorem 30, we call this grading the syzygy degree. Therefore, the
syzygy degree of an element in F(C) is given by the sum of the weight of the elements which label
its vertices minus the numbers of vertices. Since the weight of an element in C is greater than 1,
the syzygy degree on F(C) is non-negative.
The term d0, induced by θ, the term d1, induced by dP¡ and the term d2, induced by the infin-
itesimal decomposition map on C, lower the syzygy degree by 1. Hence, we get a well-defined
non-negatively graded chain complex.
We endow ΩP ¡ = F(C) with a filtration given by the total weight, that is the weight of an element
in F(C) is the sum of the weight of the elements which label the vertices. We have

d0 : Fp → Fp−2 and d1 : Fp → Fp−1 and d2 : Fp → Fp.
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This filtration is exhaustive and bounded below so we can apply the classical theorem of conver-
gence of spectral sequences (cf. Theorem 5.5.1 of [Wei94]) to obtain that

E•
p, q ⇒ Hp+q(ΩP

¡).

The filtration Fp induces a filtration Fp on the homology of ΩP ¡ such that

E∞
p, q
∼= Fp(Hp+q(ΩP

¡))/Fp−1(Hp+q(ΩP
¡)) =: gr(p)(Hp+q(ΩP

¡)).

Moreover, we have E0
p, q = Fp(F(C)p+q)/Fp−1(F(C)p+q) = F(C)

(p)
p+q, that is the elements of syzygy

degree equal to p+q and of weight p. The differential d0 on the first term of the spectral sequence is

given by d2. Hence, since qP is Koszul and concentrated in syzygy degree 0, we have E1
p, q = qP

(p)
p+q

(Theorem 7.6 of [Val07] by means of the extension seen in the proof of Theorem 3.4.4 applies),
concentrated in the line p+ q = 0 and the spectral sequence collapses at rank 1. We have

{
E1

p, -p = qP(p) ∼= E∞
p, -p

∼= gr(p)(H0(ΩP ¡))

E1
p, q = 0 = E∞

p, q
∼= gr(p)(Hp+q(ΩP ¡)) when p+ q 6= 0.

For the syzygy degree, we have

H0(ΩP
¡) ∼= F(V )/Im(d0 + d1 − d2) ∼= P .

So, the quotient gr(p)(H0(ΩP ¡)) is equal to gr(p)(P). Finally, the morphism ΩP ¡ ∼
−→ P is a

quasi-isomorphism. �

4.3.2. Theorem (Poincaré-Birkhoff-Witt theorem). When P is a Koszul properad, the natural
epimorphism of properads qP ։ grP is an isomorphism of bigraded properads, with respect to the
weight grading and the homological degree. Therefore, the following S-bimodules, graded by the
homological degree, are isomorphic:

P ∼= gr(P) ∼= qP .

Proof. It is a direct corollary of the previous proof. �

To show Condition (II), that is (R) ∩ {I ⊕ V ⊕ F(V )(2)} = R, can be difficult. The following
proposition shows that we do not have to compute the full (R) but only the part {R⊗V +V ⊗R}.

4.3.3. Proposition. A properad P is Koszul if and only if it admits a presentation P = F(V )/(R)
such that R ⊂ I ⊕ V ⊕F(V )(2) satisfying the following conditions

(I) R ∩ {I ⊕ V } = {0};
(II’) {R⊗ V + V ⊗R} ∩ {V ⊕F(V )(2)} ⊂ R;
(III) the associated quadratic properad qP := F(V )/(qR) is Koszul in the classical sense.

Proof. Definition 4.3 always implies conditions (I), (II’) and (III). First, we have to remark that
the property (II’) instead of (II) is enough to show Lemma 4.1.1 and to define P ¡. Moreover,
Theorem 4.3.1 and Theorem 4.3.2 are still true. Then we can apply the Poincaré-Birkhoff-Witt
Theorem which gives in weight 2 that qR = q((R) ∩ {I ⊕ V ⊕ F(V )(2)}). This last equality is
equivalent to (II) under the condition (I). �

4.3.4. Coloured properad. Following the ideas of van der Laan in [van03], we can extend this
curved Koszul duality to coloured properads. Martin Doubek told us that our construction applies
to the coloured operad Iso encoding chain complexes isomorphisms to recover the resolution
given by Markl in [Mar01]. Thanks to this resolution, Markl defines a notion of strong homotopy
equivalence and proves a relax version of the perturbation lemma, that he calls Ideal Perturbation
Lemma.

5. Resolution of algebras

We now give a resolution of a semi-augmented dg properad (P , dP , ε) as a P-bimodule. In the
operadic case, this provides functorial cofibrant resolutions for P-algebras. We use such resolutions
to define a cohomology theory associated to unital associative algebras in the next section.
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5.1. Resolutions of properads as bimodule. We generalize the resolution given by the bar
construction with coefficients to properads (not necessarily augmented). Moreover, for an inho-
mogeneous properad which is Koszul, we get a smaller resolution of it called the Koszul complex.

5.1.1. Dg composite product. Let (M, dM ) and (N, dN ) be two dg S-bimodules. Recall from
[MV07] the differential on the monoidal product ⊠ of two S-bimodules. Let idM ⊠

′ dN : M ⊠N →
M ⊠N be the morphism of S-bimodules defined by

(idM ⊠
′ dN )(ρ(m1, . . . , mb)σ(n1, . . . , na)ω) :=

a∑

j=1

±ρ(m1, . . . , mb)σ(n1, . . . , dN (nj), . . . , na)ω

and let dM
8
⊠ idN :M ⊠N →M ⊠N be the morphism of S-bimodules defined by

(dM
8
⊠ idN)(ρ(m1, . . . , mb)σ(n1, . . . , na)ω) :=

b∑

i=1

±ρ(m1, . . . , dM (mi), . . . , mb)σ(n1, . . . , na)ω.

This gives a differential on M ⊠N by dM⊠N := dM
8
⊠ idN + idM ⊠

′ dN .

5.1.2. Twisted composite product. In this section, we study the free dg P-bimodules over a
curved coproperad (C, dC , θ). To any map α : C → P of degree −n, we associate the unique
derivation (see Section 3.2 of [MV07] for precise definitions) of left P-modules dlα : P⊠ C → P ⊠ C
of degree −n which extends the map

C
∆(1, 1)
−−−−→ C ⊠(1, 1) C

α⊗idC−−−−→ P ⊠(1, 1) C.

By symmetry, we define also the derivation of right P-modules drα : C ⊠P → C ⊠P of degree −n.
We endow the free P-bimodule P ⊠ C ⊠ P with the following derivation of P-bimodules:

dα := dP⊠C⊠P − d
l
α

8
⊠ idP + idP ⊠

′ drα,

where dP⊠C⊠P := dP
8
⊠ idC⊠P + (idP ⊠

′ dC)
8
⊠ idP + idP⊠C ⊠

′ dP with (idP ⊠
′ dC)

8
⊠ idP =

idP ⊠
′ (dC

8
⊠ idP) by associativity of the composite product.

5.1.3. Lemma. On the P-bimodule P ⊠ C ⊠ P, the derivation dα satisfies

dα
2 = −dl∂(α)+α⋆α−Θ

8
⊠ idP + idP ⊠

′ dr∂(α)+α⋆α−Θ.

Thus, when α ∈ Tw(C, P), we have dα
2 = 0 and the derivation dα defines a differential on the

chain complex

P ⊠α C ⊠α P := (P ⊠ C ⊠ P , dα = dP⊠C⊠P − d
l
α

8
⊠ idP + idP ⊠

′ drα).

Proof. We do the computation for dP = 0, the general case follows immediately. We have

dα
2 = ((idP ⊠

′ dC)
8
⊠ idP − dlα

8
⊠ idP + idP ⊠

′ drα)
2

= (idP ⊠
′ d2C)

8
⊠ idP + (dlα)

2 8
⊠ idP + idP ⊠

′ (drα)
2

−((idP ⊠′ dC) ◦ dlα + dlα ◦ (idP ⊠
′ dC))

8
⊠ idP + idP ⊠

′ ((dC
8
⊠ idP) ◦ drα + drα ◦ (dC

8
⊠ idP))

−(dlα
8
⊠ idP) ◦ (idP ⊠′ drα)− (idP ⊠

′ drα) ◦ (d
l
α

8
⊠ idP).

Since dC
2 = (θ ⊗ idC − idC ⊗ θ) ◦ ∆(1, 1), we have (idP ⊠

′ dC
2) 8⊠ idP = dlΘ

8
⊠ idP − idP ⊠′ drΘ.

Moreover, the associativity of γ and the coassociativity of ∆(1, 1) give (d
l
α)

2 = −dlα⋆α and (drα)
2 =

drα⋆α where the sign is given by the Koszul sign rule and the fact that α has degree −1. Then
(idP ⊠

′ dC) ◦ dlα + dlα ◦ (idP ⊠
′ dC) = dlα◦dC

and (dC
8
⊠ idP) ◦ drα + drα ◦ (dC

8
⊠ idP) = drα◦dC

since

dC is a coderivation. Finally, (dlα
8
⊠ idP) ◦ (idP ⊠′ drα) + (idP ⊠

′ drα) ◦ (d
l
α

8
⊠ idP) = 0 since α has

degree −1. This gives the result. �
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5.1.4. Koszul morphism. A curved twisting morphism α : (C, dC , θ) → (P , dP , ε) is called a

Koszul morphism when the map ξ defined by P ⊠α C ⊠α P ։ P ⊠ I ⊠ P ∼= P ⊠ P
γ
−→ P is a

resolution of P , that is
ξ : P ⊠α C ⊠α P

∼
−→ P .

5.1.5. Proposition. Let P be a wfdg semi-augmented properad. The curved twisting morphism
π : BP → P is a curved Koszul morphism, that is, the twisted composite product P ⊠π BP ⊠π P
is a resolution of the properad P called the augmented bar resolution

ξ : P ⊠π BP ⊠π P
∼
−→ P .

Proof. The method is the same as in the proof of Theorem 3.4.4. The weight filtration on P
induces a filtration on BP given by the total weight. This gives a filtration Fp by the weight
on P ⊠π BP ⊠π P and a filtration F ′

p by the weight on P . These filtrations are filtrations of
chain complexes since the differentials either preserve or decrease the weight. The filtrations are
exhaustive and bounded below and the map ξ preserves the filtrations. We apply the classical
theorem of convergence of spectral sequences (cf. Theorem 5.5.1 of [Wei94]) to obtain

{
E•

p,q ⇒ Hp+q(P ⊠π BP ⊠π P)
E′•

p,q ⇒ Hp+q(P).

Since the differential of E0
•,• is the weight preserving part of the differential of P ⊠π BP ⊠π P ,

the isomorphism of graded vector spaces E0
•,•
∼= grP ⊠π B(grP)⊠π grP is an isomorphism of dg

modules. Since grP is an augmented properad, we can apply Theorem 4.17 of [Val07] (we use the
same trick as in the proof of Theorem 3.4.4 for the fact that the properad is non reduced a priori)

to grP with R = grP to get that E1
p,q = Hp+q(gr

(p)P) = E′1
p,q. Then E

r
p,q and E′r

p,q coincide for

r ≥ 1 and ξ induces an isomorphism between E∞
p,q and E′∞

p,q
∼= gr(p)Hp+q(P). This concludes the

proof. �

Let P be an inhomogeneous properad, P ¡ its Koszul dual cooperad and κ : P ¡ → P the
associated curved twisting morphism. The chain complex P ⊠κ P ¡

⊠κ P is called the total Koszul
complex.

5.1.6. Proposition. Let P be an inhomogeneous properad and P ¡ be its Koszul dual coproperad.
When P is Koszul, the curved twisting morphism κ : P ¡ → P is a curved Koszul morphism, that
is, the total Koszul complex P ⊠κ P

¡
⊠κ P is a resolution of the properad P

ξ : P ⊠κ P
¡
⊠κ P

∼
−→ P .

Proof. The proof is similar to the proof of Proposition 5.1.5. The differences are the following.
Since P is Koszul, the Poincaré-Birkhoff-Witt Theorem 4.3.2 gives E0

•,• = grP ⊠κ qP ¡
⊠κ grP ∼=

qP ⊠κ qP ¡
⊠κ qP . So the Koszul criterion (Theorem 7.8 of [Val07] with the trick of the proof

of Theorem 3.4.4 for the non reduced case) and the comparison Lemma (Theorem 5.4 of [Val07])
with L = qP ⊠κ qP ¡

⊠κ qP , L′ = qP , P ′ = qP , M = qP ⊠κ qP ¡ and M ′ = I, and the Poincaré-
Birkhoff-Witt Theorem 4.3.2 apply to give that E1

p,q = Hp+q(qP(p)) ∼= Hp+q(gr
(p)P). �

5.2. Resolution of algebras. From now on, we consider only operads and cooperads since there
is in general no notion of free algebra over a properad. In this section, we use the resolutions of P
as a P-bimodule of the previous section to provide functorial resolutions for algebras over P as,
for example, for unital associative algebras (see Section 6).

5.2.1. Coalgebra over a curved cooperad. Let (C, dC , θ) be a curved cooperad. A (C, dC , θ)-
coalgebra is a triple (C, ∆C , dC) where (C,∆) is a C-coalgebra, and a coderivation dC : C → C of
degree −1 such that:

dC
2 = (θ ◦ idC) ◦∆C ,

where the ◦ inside the parentheses is the operadic composition product and the ◦ outside the
parentheses is the composition of morphisms.

A morphism of (C, dC , θ)-coalgebras f : (C, ∆C , dC) → (C′, ∆C′ , dC′) is a morphism f : C →
C′ of C-coalgebras which commutes with the predifferentials dC and dC′ .



20 JOSEPH HIRSH AND JOAN MILLÈS

5.2.2. Relative composition product. Let (P , dP , ε) be a sdg operad. A right P-module (L, ρ)
is an S-module endowed with a map ρ : L ◦ P → L compatible with the product and the unit
of the operad. We define similarly the notion of left P-module. We define the relative composite
product L◦PR of a right P-module (L, ρ) and a left P-module (R, λ) by the coequalizer diagram

L ◦ P ◦ R
ρ◦idR //
idL◦λ

// L ◦ R // // L ◦P R ,

where in the above line all ◦ are the operadic composition product. These definitions extend to
the dg setting.

5.2.3. Bar construction of P-algebras. To any curved twisting morphism α : C → P from a
curved cooperad (C, dC , θ) to an operad (P , dP , ε), we associate a functor

Bα : dg (P , dP , ε)-algebras→ (C, dC , θ)-coalgebras.

For a P-algebra (A, γA), we define on C(A) = (C ◦ P) ◦P A the maps
{
d1 : C(A)

dC◦idA+idC◦
′dA−−−−−−−−−−−→ C(A)

d2 := drα ◦P idA : C(A)
∆(1)◦idA

−−−−−−→ C ◦(1) C(A)
(idC⊗α)◦idA
−−−−−−−−→ C ◦ P(A)

idC◦γA
−−−−→ C(A),

where (C ◦ P) ◦ A
dr
α◦idA
−−−−−→ (C ◦ P) ◦ A ։ C(A) factors through C(A) to give drα ◦P idA since γA

is a dg map. (Here, ∆(1) corresponds to the infinitesimal decomposition map ∆(1,1) and C ◦(1) C
corresponds to C ⊠(1,1) C when we restrict to cooperads.)

5.2.4. Lemma. Since α is a curved twisting morphism, we have

(d1 + d2)
2 = (θ ◦ idC(A)) ◦∆C(A).

Proof. We compute




d1
2 = dC

2 ◦ idA = ((θ ⊗ idC − idC ⊗ θ) ◦∆(1)) ◦ idA
= (θ ◦ idC(A)) ◦ (∆(1) ◦ idA)− d

r
Θ ◦P idA

= (θ ◦ idC(A)) ◦∆C(A) − d
r
Θ ◦P idA (θ is non-zero only on P(1))

d2
2 = drα⋆α ◦P idA

d1d2 + d2d1 = dr∂(α) ◦P idA.

Thus (d1 + d2)
2 = dr∂(α)+α⋆α−Θ ◦P idA + (θ ◦ idC(A)) ◦ ∆C(A) and we get the result since α is a

curved twisting morphism. �

The bar construction on A is the (C, dC , θ)-coalgebra BαA := (C(A), d := d1 + d2).

5.2.5. Cobar construction of a C-coalgebra. Similarly to the previous section, to any curved
twisting morphism α : (C, dC , θ)→ (P , dP , ε), we associate a functor

Ωα : (C, dC , θ)-coalgebras→ dg (P , dP , ε)-algebras.

For any (C, dC , θ)-coalgebra (C, ∆C , dC), we define on P(C) the maps
{

d1 : P(C)
dP◦idC+idP◦′dC−−−−−−−−−−−→ P(C)

d2 : P(C)
idP◦′∆C−−−−−−→ P ◦(1) C(C)

(idP⊗α)◦idC
−−−−−−−−→ P ◦ P(C)

γ◦idC
−−−−→ P(C).

5.2.6. Lemma. Since α is a curved twisting morphism, we have

(d1 − d2)
2 = 0.

Proof. We compute





d1
2 = idP ◦′ dC

2 = idP ◦′ ((θ ◦ idC) ◦∆C)

d2
2 = −(γ ◦ idC) ◦ (idP ◦ (α ⋆ α) ◦ idC) ◦ (idP ◦

′ ∆C)
−d1d2 − d2d1 = −(γ ◦ idC) ◦ (idP ◦ ∂(α) ◦ idC) ◦ (idP ◦′ ∆C).

Thus (d1−d2)2 = −(γ ◦ idC)◦ (idP ◦ (∂(α)+α⋆α−Θ)◦ idC )◦ (idP ◦′∆C) = 0 since α is a curved
twisting morphism. �

The cobar construction on C is the dg P-algebra ΩαC := (P(C), dΩαC := d1 − d2).
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5.2.7. The bar-cobar resolution. The bar-cobar construction on a P-algebra provides a func-
torial cofibrant resolution of any P-algebra when the curved twisting morphism α is Koszul.

5.2.8. Proposition. Let α : (C, dC , θ) → (P , dP , ε) be a curved Koszul morphism between a
curved cooperad (C, dC , θ) and a sdg operad (P , dP , ε) which are bounded below. Then the bar-
cobar resolution ΩαBαA is a resolution of the P-algebra A, that is,

ΩαBαA = P ◦α C ◦α A
∼
−→ A.

Moreover when A is bounded below, it is a cofibrant resolution.

Proof. There is a model category structure on the category of right P-modules given in Proposi-
tion 14.1.A of [Fre09]. The cofibrant objects are described in Proposition 14.2.2 of [Fre09] and since
the cooperad C and the operad P are bounded below, the right P-module P ◦α C ◦αP is cofibrant.
Finally, Theorem 15.1.A of [Fre09] gives that P ◦α C ◦α A ∼= (P ◦α C ◦α P) ◦P A

∼
−→ P ◦P A ∼= A is

a resolution.
In the (semi-)model category structure on P-algebras defined in [Fre09], cofibrant P-algebras

are retracts of quasi-free P-algebras endowed with a good filtration (Proposition 12.3.8 in [Fre09]).
This is the case here since the chain complexes are bounded below. �

5.2.9. Theorem. Let (P , dP , ε) be a sdg operad. The curved Koszul morphism π : BP → P gives
a resolution

ΩπBπA = P ◦π BP ◦π A
∼
−→ A,

which is cofibrant when A is bounded below. When P is a Koszul operad, the total Koszul complex
gives a smaller resolution

ΩκBκA = P ◦κ P
¡ ◦κ A

∼
−→ A,

which is cofibrant when A is bounded below.

Proof. It is a direct corollary of Proposition 5.2.8 and Propositions 5.1.5 and 5.1.6. �

6. Homotopy and cohomology theories for unital associative algebras

In this section we describe a simple resolution of the operad which encodes unital associative
algebras, uAs, obtained by the methods described in section 4. In fact, many of the theorems in
this section can be generalized in a straightforward way to any (inhomogeneous) Koszul properad.
Algebras over the resolution uA∞ are called homotopy unital A∞-algebras, or uA∞-algebras, for
short. We use some nice properties of our resolution to prove that uA∞-algebras may be replaced
up to equivalence by strictly unital associative algebras. Using our explicit transfer formulae, we
show that a unital associative algebra may be transferred to homology as a strictly unital A∞-
algebra (see Definition 6.5.1). This gives a proof that one may always choose a minimal model
for a uA∞-algebra which is actually a strictly unital A∞-algebra. In this sense, it is “enough”
to resolve only the associative relation of uAs, obtaining the operad A∞, and then adjoin a unit,
giving the operad which encodes strictly unital A∞-algebras. As a corollary of our discussion, we
provide sufficient conditions so that: “When trying to find resolutions of algebraic structures with
units, it is ‘good enough’ to resolve the structure (without its units) first, and then append the
units to that resolution.” The notion of uA∞-algebras is exactly the notion of “A∞-algebras with
a homotopy unit” of [FOOO09]. Concerning the notion of ∞-morphism and the nice properties
of uA∞-algebras, we still have to compare them with the theory presented in [FOOO09].

6.1. Homotopy unital associative algebras. We give a presentation for the operad encoding
unital associative algebras. This presentation is an inhomogeneous quadratic presentation and we
can apply the theory of the previous sections to compute its Koszul dual cooperad, and hence an
explicit resolution.

We use the notation n := {1, . . . , n}. The symbol µ stands for an element in a cooperad and
the symbol µ stands for an element in an operad.
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6.1.1. The operad encoding unital associative algebras. We denote by uAs the operad
whose representations in the category of dg modules are precisely differential graded unital asso-
ciative algebras. We consider the following presentation

uAs = F ( • ,
??��) /( ??

?����
�− ??

? ??
��
�, •??��− |, ??•

��− |).

Remark. We fix this presentation to make our computations of the Koszul dual, uAs¡ and ul-
timately uA∞. Note that this presentation for uAs is an inhomogeneous quadratic presentation
(see 4.1 for a definition).

To make the Koszul dual cooperad, uAs¡ of uAs explicit, we compute its associated quadratic
operad:

quAs¡ = F( • ,
??��)/( ??

?����
�− ??

? ??
��
�, •??�� , ??•

�� ) = • ⊕As.

Let’s take a moment to explain the notation on the right-hand side of the equation above.

6.1.2. Definition. Let P, Q be augmented operads. Then the direct sum operad P ⊕Q is defined
to be F

(
P,Q

)
/ (RP , RQ, RPQ), where RP , RQ are the relations in P ,Q respectively, and RPQ is

the collection of all compositions of a pair of elements, one in P, one in Q.

Remark. The direct sum operad is the product in the category of augmented operads.

6.1.3. Proposition. If P and Q are both quadratic augmented operads, then P ⊕Q is a quadratic
augmented operad.

Proof. For any two presented operads, P = F (V1) / (R1) ,Q = F (V2) / (R2), the direct sum
operad P ⊕ Q is naturally presented by F (V1, V2) / (R1, R2, RV1V2). If (V1, R1) and (V2, R2) are
both quadratic presentations, then so is the natural presentation for P ⊕Q. �

We will make use of the identification quAs¡ = • ⊕ As to compute the Koszul dual cooperad
of quAs¡ (see 6.1.4). Before we compute the resulting cooperad, quAs¡, we first describe it.

Linearly, we have an isomorphism quAs¡ ∼= K
[
µS
n

]
n≥1,S⊂n

. The element µS
n ∈ quAs¡ corre-

sponds to a (co)operation with n− |S| inputs: however, we draw this operation as a corolla with

n leaves, and a cork covering each of the leaves in the set S. For example, µ
{1,4}
5 corresponds to

•OO??��
•
oo. We point out here that the space of n-to-1 operations is infinite dimensional for every n ≥ 0.

To see this, note that every n-to-1 corolla is an n-ary operation, and by adding a corked leaf,
we get a new n-to-1 operation. Continuing to add corked leaves gives infinitely many new n-ary
operations.

Also notice that µ∅
n = OO??��oo for n ≥ 1 spans the subcooperad corresponding to As¡ and

{
µ∅
1 =

|, µ
{1}
1 = •

}
spans the subcooperad corresponding to • ¡ (with µ∅

1 corresponding to the identity
cooperation in both cases).

Using this basis, the infinitesimal decomposition ∆(1) is given by summing over all possible
(nontrivial) ways to split the corolla into two, preserving the number of leaves and the number
and positions of the corks. Pictorially:

•

TTTTT II
I

uuu
•

jjjjj 7→ Σ±
III
•

uuu

•

III uuu
.

For example,

∆(1)

(
JJ• tt
)
= JJ• tt −

•JJtt
JJtt −

JJtt
•JJtt .

We compute the Koszul dual cooperad, quAs¡ by the following proposition.

6.1.4.Proposition. Let P = F(V )/(R) be a quadratic operad where V is finite-dimensional. Then
by Proposition 6.1.3 the operad •⊕P is given by (•⊕P)(0) := (K· •)⊕P(0) and (•⊕P)(n) := P(n)
for all n 6= 0 and endowed with the operadic structure given by the (trivial) structure on •, the
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structure on P, and trivial composition between • and P. The Koszul dual cooperad of • ⊕ P is
given by the coaugmented cooperad

(• ⊕ P)¡ ∼= K · {µS , where µ ∈ P ¡(n), S ⊂ n and |µS | = |µ|+ |S|}.

The set S is the set of the positions of the “corks” •. Let ξ ∈ P ¡(n) such that ∆(1)(ξ) =∑
(µ; id, . . . , id︸ ︷︷ ︸

p

, ν, id, . . . , id︸ ︷︷ ︸
r

), where µ ∈ P ¡(m), ν ∈ P ¡(q), p + 1 + r = m and p + q + r = n.

Then the infinitesimal decomposition map on ξS ∈ (• ⊕ P)¡, where S ⊂ n, is given by

∆(1)(ξS) =
∑

(−1)ǫ(µS1
; id, . . . , id︸ ︷︷ ︸

p−|S′
1|

, νS2 , id, . . . , id︸ ︷︷ ︸
r−|S′′

1 |

),

where ǫ = |ν||S1|+ |S2||S
′′
1 |,

µS1
∈ P ¡(m − |S1|), νS2 ∈ P

¡(q − |S2|) and






S′
1 ⊂ p
S2 ⊂ q
S′′
1 ⊂ {p+ 2, . . . , p+ 1 + r}

such that S =

S′
1 ⊔ (S2 + p) ⊔ (S′′

1 + q − 1) and S1 = S′
1 ⊔ S

′′
1 .

Proof. The operad • ⊕ P is a quadratic operad given by F(• ⊕ V )/(R⊕ V ⊗ •) where

V ⊗ • := {µ{k}, with µ ∈ V (n) and {k} ⊂ n}.

We follow Appendix B of [Lod01] defining P ! := F(V ∨)/(R⊥), where V ∨ := V ∗ ⊗ (sgn) with the
signature representation (sgn) and R⊥ is the orthogonal space for the natural pairing 〈−,−〉 :
V ∨ ⊗ V → K. Since (V ⊗ •)⊥ = F(2)(V

∨), we get

(• ⊕ P)! = F(•∨ ⊕ V ∨)/(R⊥ ∩ F(2)(V
∨)) ∼= {µS , where µ ∈ P !(n) and S ⊂ n}

and the composition is induced, up to signs, by the composition on P !.
Following [LV], we have P ¡ := S−1c ⊗H (P !)∗ where S−1c is the operadic desuspension. Then

the Koszul dual cooperad of • ⊕ P is equal to

(• ⊕ P)¡ ∼= {µS , where µ ∈ P ¡(n), S ⊂ n and |µS | = |µ|+ |S|}

and the (infinitesimal) cocomposition is given, up to signs, by the (infinitesimal) cocomposition of
P ¡. To compute the signs, we recall that the corks • have degree −1 and we apply the Koszul rule.
The sign (−1)|ν||S1| in the formula of the proposition comes from the fact that ν passes through

the corks indexed by S1 and the sign (−1)|S2||S
′′
1 | comes from the fact that the corks indexed by

S2 pass through the corks indexed by S′′
1 . �

6.1.5. Corollary. The Koszul dual cooperad associated to quAs is equal to

quAs¡ = (• ⊕As)¡ ∼= K
[
µS
n

]
,

where µn ∈ As
¡(n), S ⊂ n, so µS

n ∈ uAs¡(n − |S|) and |µS
n | = n − 1 + |S|. The infinitesimal

decomposition map is given by

∆(1)(µ
S
n) =

∑

p+q+r=n
p+1+r=m

(−1)(q+1)(r+|S1|)+|S2||S
′′
1 |(µS1

m ; id, . . . , id︸ ︷︷ ︸
p−|S′

1|

, µS2
q , id, . . . , id︸ ︷︷ ︸

r−|S′′
1 |

),

where





S′
1 ⊂ p
S2 ⊂ q
S′′
1 ⊂ {p+ 2, . . . , p+ 1 + r}

such that S = S′
1 ⊔ (S2 + p) ⊔ (S′′

1 + q − 1) and S1 =

S′
1 ⊔ S

′′
1 .

Moreover, the coproduct is given by

∆(µS
n) =

∑

i1−|T1|+···+im−|T |−|Tm−|T ||=n−|S|

(−1)ǫ(µT
m;µT1

i1
, . . . , µ

Tm−|T |

im−|T |
),
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where

{
T ⊂ m
Tj ⊂ ij

such that T = R0 ⊔ . . . ⊔Rm−|T | and

S = R0 ⊔ (T1 + |R0|) ⊔ (R1 + i1) ⊔ . . .⊔
(Tm−|T | + |R0|+ · · ·+ |Rm−|T |−1|+ i1 + · · ·+ im−|T |−1) ⊔ (Rm−|T | + i1 + · · ·+ im−|T |)

and where

ǫ := |T |(n−m) +

m−|T |∑

j=1

[
(ij − 1)(k − j + |T1|+ · · ·+ |Tj−1|) + |Rj |(|T1|+ · · ·+ |Tj|)

]
.

Proof. Provided that the degree of µn ∈ As
¡(n) is n − 1 and provided the formula for the

coproduct in As¡ given in [LV], chapter 8, where we include the decomposition involving µm = |
or µq = |,

∆(1)(µn) =
∑

p+q+r=n
p+1+r=m

(−1)(q+1)r(µm; id, . . . , id︸ ︷︷ ︸
p

, µq, id, . . . , id︸ ︷︷ ︸
r

),

Proposition 6.1.4 gives the description of quAs¡ and of the infinitesimal decomposition map. The
coproduct is given in the same way as explained in the proof of Proposition 6.1.4 thanks to the
coproduct in As¡ given in [LV] by

∆(µn) =
∑

i1+···+im=n

(−1)ǫ
′

(µm;µi1
, . . . , µim

),

where ǫ′ :=
∑m

j=1(ij − 1)(k − j). �

6.1.6. Proposition. The operad quAs is Koszul, that is

quAs ◦κ quAs¡
∼
−→ I.

Proof. We remark that

quAs ◦κ quAs¡ ∼=
• ⊕





⊕

S⊆n

(As ◦κ As
¡)(n)





n≥1

.

Since •??�� = 0 = ?? •
�� in quAs, the differential on (As ◦κ As¡)(n) is given by the usual differential

on As ◦κ As
¡ except for d(

•
) = •. Moreover, we know that (As ◦κ As

¡)(n)
∼
−→ I(n). Thus

quAs ◦κ quAs¡
∼
−→ I. �

6.1.7. Lemma. The curved cooperad uAs¡ is equal to the curved cooperad

uAs¡ = (quAs¡,∆quAs¡ , 0, θ) ,

where ∆quAs¡ was made explicit in Corollary 6.1.5 and

θ(µS
n) =

{
−1 · | if n = 2 and, S = {1} or S = {2}
0 otherwise

.

Proof. For the definitions given in 4.1, we remark that the space of generators defining uAs
satisfies Conditions (I) and (II) of Section 4.1. According to the definition 4.2, we just have
to compute the predifferential duAs¡ and its curvature θ. Since the relations in uAs have no
linear terms, the predifferential duAs¡ = 0. To compute θ, we find the elements of weight 2,
which correspond to the relations in quAs. We identify each cooperation with the corresponding
leading quadratic term of a relation in uAs, and then assign to that operation the opposite of the
corresponding constant term of the relation:

??
?����

�− ??
? ??

��
�←→

??�� 7→ 0

•??�� ←→
•??�� 7→ −1 · |

??•
�� ←→ ??•

�� 7→ −1 · |

�
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6.1.8. Theorem. The cobar construction on the Koszul dual curved cooperad associated to uAs
provides a cofibrant resolution of uAs

uA∞ := ΩuAs¡
∼
−→ uAs.

Proof. By Proposition 6.1.6, quAs is Koszul, and then Theorem 4.3.1 gives the result. �

We now make the operad uA∞ more explicit.
The underlying operad of the dg operad ΩuAs¡ is the free operadF

(
s−1quAs¡

)
= F

(
s−1

{
µS
n

})
,

n ≥ 2, S ⊂ n and n = 1, S = {1}, giving a free generating set for ΩuAs¡. As a derivation of the
composition structure, the differential d = d0 + 0 − d2 is completely determined by its action on
the generators:

(1)





•??�� 7→
•
??�� − |

?? •
�� 7→

•
??�� − |

•OO??��
•
oo 7→ Σ(−1)ǫ

??
•

��

??
•

��

where the last line means: for (n, S) 6= (2, {1}) and (n, S) 6= (2, {2}), we have

d(µS
n) =

∑

p+q+r=n
p+1+r=m

(−1)q(r+|S1|)+|S2||S
′
1|+p+1(µS1

m ; id, . . . , id︸ ︷︷ ︸
p−|S′

1|

, µS2
q , id, . . . , id︸ ︷︷ ︸

r−|S′′
1 |

),

Remark. On the right-hand side of equation (1), the two-level trees now represent the composi-
tions in the free operad.

We obtain the following description for a uA∞-algebra structure.

6.1.9. Proposition. A uA∞-algebra structure on a dg module (A, dA) is given by a collection

of maps, µ
{1}
1 , {µS

n}n≥2, S⊂n where each µS
n is a map A⊗(n−|S|) → A of degree n + |S| − 2 which

together satisfy the following identities:
{
∂(µ

{1}
2 ) = µ∅

2 ◦ (µ
{1}
1 ,−)− idA

∂(µ
{2}
2 ) = µ∅

2 ◦ (−, µ
{1}
1 )− idA

and for (n, S) 6= (2, {1}) and (n, S) 6= (2, {2})

∂(µS
n) =

∑

p+q+r=n
p+1+r=m

(−1)q(r+|S1|)+|S2||S
′
1|+p+1µS1

m ◦ (id, . . . , id︸ ︷︷ ︸
p−|S′

1|

, µS2
q , id, . . . , id︸ ︷︷ ︸

r−|S′′
1 |

).

Proof. Since uA∞ is a quasi-free operad, a map µA : uA∞(A) → A of degree 0 is determined

by a collection of maps, µ
{1}
1 , {µS

n}n≥2, S⊂n where each µS
n is a map A⊗(n−|S|) → A of degree

n+ |S| − 2, defined by:

µS
n(a1 ⊗ · · · ⊗ an−|S|) := µA(µ

S
n ⊗ a1 ⊗ · · · ⊗ an−|S|).

The fact that the map µA is a dg map gives the uA∞ relations among the µS
n . �

Remark. This notion of uA∞-algebra corresponds to the notion of homotopy unit for an A∞-
algebra given in [FOOO09].

6.2. Infinity-morphisms. Following the classical case, we describe the infinity-morphisms of
algebras over the Koszul resolution of a Koszul inhomogeneous quadratic operad. We give explicit
formulae for infinity-morphism of uA∞-algebras.

Unless we indicate otherwise, for the rest of this section, P will denote a Koszul inhomoge-
neous quadratic operad, P ¡ its curved Koszul dual cooperad and P∞ := ΩP ¡ denotes the Koszul
resolution of P (see Section 4).
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Let A be a P∞-algebra, and denote its structure map by µA ∈ Homdg op(P∞,EndA). Then by
the bar-cobar adjunction 3.4.1, we have

Homdg operads(ΩP
¡,EndA) ∼= Tw(P ¡,EndA).

By classical Hom-tensor duality, we have the bijection

HomS-Mod(P
¡,EndA) ∼= Homdg mod(P

¡(A), A)
µA 7−→ dµA

.

We recall the classical lemma, that we can find for example in [LV].

6.2.1. Lemma. A coderivation of P ¡(A) is completely characterized by its corestriction to the
cogenerators

Hommod.(P ¡(A), A) ∼= Coder(P ¡(A))
dµA

7−→ Dr
µA
.

We call a curved codifferential any coderivation D of degree −1 which satisfies

D2 = (θ ◦ idP¡(A)) ◦∆P¡(A).

We have the following extension of a classical result about codifferentials:

6.2.2. Lemma. A P∞-algebra structure on A is equivalent to a codifferential on P ¡(A)

Tw(P ¡, EndA) ∼= curCodiff(P ¡(A))
µA 7−→ DµA

:= dP ¡(A) +Dr
µA
.

Proof. The predifferential dP¡ is a coderivation so the mapDµA
:= dP¡(A)+D

r
µA

is a coderivation.
The construction here is the same as the construction in Section 5.2.3 with Dr

µA
= drµA

◦P idA, so

µA ∈ Tw(P ¡, EndA) implies D2
µA

= (θ ◦ idP¡(A)) ◦∆P¡(A).

According to the proof of Lemma 5.2.4, we only have to remark that Dr
∂(µA)+µA⋆µA−Θ = D2

µA
−

(θ◦ idP¡(A))◦∆P¡(A) = 0 implies dA ◦dµA
+dµA

◦dP¡(A)+dµA⋆µA
−dΘ = (Dr

∂(µA)+µA⋆µA−Θ)
|A = 0.

Since dA ◦ dµA
+ dµA

◦ dP¡(A) + dµA⋆µA
− dΘ is sent to ∂(µA) + µA ⋆ µA −Θ and 0 is sent to 0 by

reversing the bijection in the Hom-tensor duality, we get the result. �

6.2.3. Infinity-morphism of P∞-algebras. Let A and B be two P∞-algebras, with structure
maps µA and µB . A ∞-morphism A B of P∞-algebras is a dg P ¡-coalgebra map

F : (P ¡(A), DµA
)→ (P ¡(B), DµB

).

This description of ∞-morphisms makes it clear that P∞-algebras,∞-morphisms, and compo-
sition given by composition of dg P ¡-coalgebra maps forms a category.

A uAs¡-coalgebras map F : uAs¡(A)→ uAs¡(B) is characterized by its corestriction to B, that
is F is determined by a collection of maps fS

n : A⊗(n−|S|) → B. The fact that F commutes with
the differentials is equivalent to a family of equations on the fS

n . Pictorially, the collection of maps
fS
n satisfy:

∂


 SSSSSSS

•

OOOOO
DD

D
ww

w
•

mmm
mmm

fS
n


 =

∑
±

ppp
pSSS

•

µS2
q (A)

TTTTTTT

hhhhhhhhh
jjjj•

fS1
m

−
∑
±

CCC
KK

KK
K

ss
ss

s
tt

t
•

f
T1
i1

PPPPPPPP f
T2
i2

f
Tm−|T |

im−|T |

jjjjjjjjjj

kkk
•

µT
m(B)

.

6.2.4. Proposition. Let A, B be two uA∞-algebras, and let µS
n(A), µ

S
n(B) be the respective struc-

ture maps. An ∞-morphism between A and B is a collection of maps

{fS
n : A⊗(n−|S|) → B}n≥1, S⊂n of degree n+ |S| − 1,

satisfying: for n = 1, dA ◦ f
∅
1 = f∅

1 ◦ dA, that is f
∅
1 is a chain map, and for n+ |S| ≥ 2,

∂(fS
n ) = ∑

p+q+r=n
p+1+r=m

(−1)p+q(r+|S1|)+|S2||S
′′
1 |fS1

m ◦ (idA, . . . , idA︸ ︷︷ ︸
p−|S′

1|

, µS2
q (A), idA, . . . , idA︸ ︷︷ ︸

r−|S′′
1 |

)
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+
∑

i1−|T1|+···+im−|T |−|Tm−|T ||=n−|S|

−ǫ(−1)(m+|T |−1)(n−m+|S|−|T |)µT
m(B) ◦

(
fT1

i1
, . . . , f

Tm−|T |

im−|T |

)
,

where





S′
1 ⊂ p
S2 ⊂ q
S′′
1 ⊂ {p+ 2, . . . , p+ 1 + r}

such that S = S′
1 ⊔ (S2 + p) ⊔ (S′′

1 + q − 1) and S1 =

S′
1 ⊔ S

′′
1 , where

{
T ⊂ m
Tj ⊂ ij

such that T = R0 ⊔ . . . ⊔Rm−|T | and

S = R0 ⊔ (T1 + |R0|) ⊔ (R1 + i1) ⊔ . . .⊔
(Tm−|T | + |R0|+ · · ·+ |Rm−|T |−1|+ i1 + · · ·+ im−|T |−1) ⊔ (Rm−|T | + i1 + · · ·+ im−|T |)

and where ǫ := |T |(n−m) +
∑m−|T |

j=1

[
(ij − 1)(k− j + |T1|+ · · ·+ |Tj−1|) + |Rj |(|T1|+ · · ·+ |Tj |)

]
.

Proof. An ∞-morphism A  B is a uAs¡-coalgebra morphism F : uAs¡(A) → uAs¡(B). Such
a morphism is completely determined by its image on the cogenerators of uAs¡(B), that is by a
map f : uAs¡(A) → B (of degree 0), or equivalently by a collection of maps {fS

n : A⊗(n−|S|) →
B}n≥1, S⊂n of degree n+ |S| − 1. The fact that F commutes with the predifferential is equivalent
to the following commutative diagram

uAs¡(A)
∆◦idA //

d1+d2

��

uAs¡ ◦ uAs¡(A)
id◦f // uAs¡(B)

dB+d
|B
2

��
uAs¡(A)

f
// B.

Making this diagram explicit gives exactly the formulae of the Proposition. �

Example. For n = 1 and S = {1}, the formula gives

∂

(
f
{1}
1

• )
=

µ
{1}
1 (A)

•

f∅
1

− µ
{1}
1 (B)

•

,

that is, the element f
{1}
1 bounds the failure of f∅

1 to preserve the unit.

Remark. In [Lyu10], Lyubashenko proposes a definition for ∞-morphism between uA∞-algebras
as a resolution of bimodule. It would be interesting to compare his definition with our definition.

Before we end the section, we use the results above to give the following definition.

6.2.5. Definition. A ∞-morphism of P∞-algebras F : A B is a quasi-isomorphism if the chain
map f∅

1 : A→ B induces an isomorphism in homology.

6.3. Rectification. We now prove that for every uA∞-algebra A there is a universal ∞-quasi-
morphism IA between A and a uAs-algebra. This universal morphism takes the form of the unit
of an adjunction. We make use of the bar and cobar constructions of algebras over Koszul operads
(Sections 5.2.3, 5.2.5) for uA∞-algebras and uAs-algebras.

The twisting morphisms ι : uAs¡ → ΩuAs¡ = uA∞ and κ : uAs¡ → uAs are defined in Section
3.4 and 4.3.

6.3.1. Lemma. Let A be uA∞-algebra. The morphism of dg S-modules A  ΩκBιA is a quasi-
isomorphism.

Proof. We endow uAs ◦κ uAs¡ ◦ι ΩuAs¡ with a filtration Fp given by

Fp(uAs ◦ uAs
¡ ◦ ΩuAs¡) =

⊕

ω+m≤p

(uAs ◦ uAs¡)(ω) ◦ (ΩuAs¡)m.
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Moreover we endow ΩuAs¡ with a filtration given by the homological degree, so that the morphism
ΩuAs¡ uAs ◦κ uAs¡ ◦ι ΩuAs¡ preserves the filtrations. Since the weight on uAs ◦κ uAs¡ is non-
negative and ΩuAs¡ is non-negatively graded, the filtrations are bounded below. Moreover, the
filtrations are exhaustive. Thus, we can apply the classical theorem of convergence of spectral
sequences (cf. Theorem 5.5.1 of [Wei94]) to obtain

E•
p,q ⇒ Hp+q(uAs ◦κ uAs

¡ ◦ι ΩuAs
¡) and E′•

p,q ⇒ Hp+q(ΩuAs
¡)

and an induced morphism between the spectral sequences. The differential on E0
p,q coincides with

the differential on quAs ◦ quAs¡, so Proposition 6.1.6 shows that E1
p,q
∼= E′1

p,q. It follows that

Er
p,q
∼= E′r

p,q for all r ≥ 1 and we get that ΩuAs¡
∼
−→ uAs ◦κ uAs¡ ◦ι ΩuAs¡.

We have ΩκBιA ∼= (uAs ◦κ uAs
¡ ◦ι uA∞) ◦uA∞ A. The short exact sequence

(uAs ◦κ uAs
¡ ◦ι uA∞) ◦ uA∞ ◦A→ (uAs ◦κ uAs

¡ ◦ι uA∞) ◦A→ (uAs ◦κ uAs
¡ ◦ι uA∞) ◦uA∞ A

induces a long exact sequence in homology. Since we work over a field of characteristic 0, the
ring K[Sn] is semi-simple by Maschke’s theorem, that is every K[Sn]-module is projective. So the
Künneth formula implies that H•((uAs◦κuAs¡◦ιuA∞)◦uA∞◦A) ∼= H•(uA∞)◦H•(uA∞)◦H•(A)
and H•((uAs◦κuAs¡ ◦ιuA∞)◦A) ∼= H•(uA∞)◦H•(A). Finally, this gives that H•((uAs◦κuAs¡ ◦ι
uA∞) ◦uA∞ A) ∼= H•(uA∞) ◦H•(uA∞) H•(A) ∼= H•(A). �

6.3.2. Theorem (Universal rectification). Let A be a uA∞-algebra. There is a dg uAs-algebra,
ΩκBιA and an ∞-quasi-isomorphism IA : A  ∼ ΩκBιA so that for any dg uAs-algebra B and
any ∞-morphism F : A  B, there is a unique dg uAs-algebras map f̃ : ΩκBιA → B so that
F = f̃ ◦ IA, that is the following diagram commutes:

ΩκBιA
f̃

##G
G

G
G

G

A
F

//

IA

OO

B

Proof. The map IA is defined by

iSn(a1, . . . , an−|S|) = µS
n(a1, . . . , an−|S|) ∈ BιA →֒ ΩκBιA.

By direct computation, this map is a ∞-morphism between the uA∞-algebras A and ΩκBιA. To
see that this map is a quasi-isomorphism, observe that i∅1 is equal to the inclusion map in Lemma

6.3.1. To define the map f̃ , we note that the ∞-morphism of uA∞-algebras F is determined by
the collection of maps fS

n , or by the collection of elements {fS
n (a1, . . . , an−|S|)} in B. We define

the module map BιA→ B by

µS
n(a1, . . . , an−|S|) 7→ fS

n (a1, . . . , an−|S|).

This map is a dg module map if and only if F is a ∞-morphism. Since the uAs-algebra ΩκBιA is
freely generated by {µS

n(a1, . . . , an−|S|)}, we define the map f̃ to be the lift of the above dg map

to a uAs-algebras map ΩκBιA→ B. By construction we have f̃ ◦ IA = F . �

Let us interpret the result above in terms of the categories of algebras. Since we have an
operad map uA∞ ։ uAs, we have an inclusion functor (one-to-one on objects and on morphisms)
uAs-alg →֒ uA∞-alg, which we denote by i. Denote by R the assignment that takes each uA∞-

algebra A to the uAs-algebra R(A) = ΩκBι(A). Because the arrow A
IA−−→ iR(A) is universal, R

can be extended to morphisms so that it becomes a functor from uA∞-alg→ uAs-alg:

R(A)
R(F ) // R(B)

A

OO

F // B.

OO

We summarize in the following proposition.
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6.3.3. Proposition. The functor i, the object-assignment R, and the universal morphisms A
IA−−→

iR(A) determine the extension of R to a functor R : uA∞-alg → uAs-alg so that I : id → iR is
the unit of an adjunction:

uA∞-alg
R //

uAs-alg
i

oo .

Proof. See Mac Lane [Mac98] chapter 4, theorem 1.

It is tempting to try to put a model category structure on the right-hand side so that this
pair of functors becomes some kind of Quillen equivalence, as Lefevre-Hasegawa [LH03] did for
A∞-algebras and As-algebras. (Actually, A∞-algebras are not quite a model category, see the
referenced paper for more details). Instead we observe that each functor takes quasi-isomorphisms
to quasi-isomorphisms, and so each functor induces a functor between the homotopy categories
(localizations of each category by its quasi-isomorphisms). We claim these induced functors are
an adjoint-equivalence of the homotopy categories.

6.4. Transfer formulae. In this section we provide formulae, based on labelled trees, for the
pullback of a uA∞-structure along a strong deformation retract.

For this entire section, suppose V,A are chain complexes, and

V
i //

A h
||

p
oo ,

is a strong deformation retract, i.e., p and i are chain maps, where p ◦ i = idV and dAh+ hdA =
idA−i ◦ p. Moreover, suppose A is a uA∞-algebra, with structure map µA.

6.4.1. Definition. Let n ≥ 2, S ⊂ n, we define the set T S
n be the set of planar, rooted trees, with

n leaves, and a cork above each ith leaf if i ∈ S which is labelled by either the word “connected”

or “disconnected.” We define T ∅
1 = { | } and T

{1}
1 = { •connected}.

6.4.2. Definition. Let T ∈ T S
n , and let v be any internal vertex in T . We denote by in(v) the

ordered (left-to-right) set of incoming edges to the vertex v. For each element i ∈ in(v), we define
li and ci as follows:

(1) li is the total number of leaves without connected corks in the tree T whose (unique) path
to the root passes through edge i

(2) ci is the total number of incoming edges to v without connected corks to the right of edge
i.

6.4.3. Definition. For any T ∈ T S
n and any internal vertex v ∈ T , we define

ǫ(v) =
∑

1≤i<j≤|in(v)|

(li + 1) lj +
∑

i∈in(v)
with a connected

cork on it

ci.

For any tree T ∈ T S
n , we set

(2) ǫ(T ) =
∑

internal vertices
v∈T

ǫ(v).

6.4.4. Definition. Let gstructure : T
S
n → Hom(V ⊗(n−|S|), V ) be the set map that takes an element

T ∈ T S
n and assigns to each vertex v the operation µ

S(v)
in(v)(A) where S(v) are the positions of the

connected corks, the operation µ1
1 to each disconnected cork, the homotopy h to each internal

edge (that is not the outgoing edge of a connected cork), and the map i to each leaf without
a cork above it, and the map p to the root of the tree. After this assignment, one composes
the operations as indicated by internal edges to arrive at an operation V ⊗(in(v)−|S|) → V . Let
gmorphism : T S

n → Hom(V ⊗(n−|S|), A) be the set map that takes an element T ∈ T S
n and assigns

to the tree the same element as gstructure (T ), but with the homotopy h assigned to the root, rather
than the map p.
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Examples. Let T be the element of T
{1,4}
5 that looks like

T =

<<
<<

<
disconnected

•

��
��

99
99

9
connected

•

��
��
�

<<
<<

<

v3��
��

�

v4 99
99

9

v2��
��

�

88
88

8

��
��
�

v1

.

��

The sign (−1)ǫ(T ) for this tree is given by

ǫ(T ) = ǫ(v1) + ǫ(v2) + ǫ(v3) + ǫ(v4)
= [(1 + 1) · 1 + (1 + 1) · 3 + (1 + 1) · 3 + 0] + [(1 + 1) · 2 + 0] + [(1 + 1) · 1 + 0] + [(1 + 1) · 1 + 1]
= 14 + 4 + 2 + 3
= 23
≡ 1 mod 2.

The operation assigned to the tree T, gstructure(T ), is given by the following composition of oper-
ations:

gstructure(T ) =

i

�� i

��

i

��

h

A
•

i��

99
99

��
��

A��
��

h��
�

99
99

9

•

��
�� <<

<<

��
��

A
99

99

A��
��

h
99

9

h��
�

88
88

��
��

A

.

p��

while the morphism assigned to the tree T, gmorphism (T ) is given by:

gmorphism(T ) =

i

�� i

��

i

��

h

A
•

i��

99
99

��
��

A��
��

h��
�

99
99

9

•

��
�� <<

<<

��
��

A
99

99

A��
��

h
99

9

h��
�

88
88

��
��

A

.

h��
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6.4.5. Proposition. The maps defined by

(3) µS
n(V ) :=

∑

T∈T S
n

(−1)ǫ(T )gstructure (T ) .

give V the structure of a uA∞-algebra. Moreover, the maps defined by

(4) iSn :=
∑

T∈T S
n

(−1)ǫ(T )gmorphism (T ) .

provide a ∞-quasi-isomorphism of uA∞-algebras I : V  ∼ A.

Proof. A combinatorial argument similar to the argument for transferringA∞-structures [Mar06]
will suffice. �

Examples. For small values of n, the transferred structure is given by

µ
{1}
1 (V ) := p ◦ µ

{1}
1 (A) =

A
•

p��

µ∅
2(V ) := p ◦ µ∅

2(A) ◦ i
⊗2 =

i�� i��

::
:

��
�

A

p��

µ
{1}
2 (V ) :=

i

��

A
•

h
::

:

::
:

��
�

A

p��

−

i��
•

99
99

9

��
��

A

p��

i
{2}
2 (V ) :=

i

��

A
•

h
��
�

::
:

��
�

A

h��

+

i��

99
99

��
��
�

•

A

h��

For the reader familiar with transfer of A∞-structures, restricting attention to the operations
µ∅
n(V ) recovers the familiar transfer formulae [Kad83, Mer99, KS06, Mar06, LV].

Remark. Though our signs differ from [Mar06], we use his ideas to develop a coherent sign
convention for our transfer formulae. The reader should note that our function ǫ(v) differs from
the θ(v) in [Mar06] even on the operations µ∅

n(V ), in small ways, such as right-to-left orientation of
trees instead of left-to-right. Instead we choose our signs to agree with [Sta63, LV] when restricted
to the classical A∞ operations.

6.5. Comparing unital-(associative-infinity) and (unital-associative)-infinity. In previ-
ous sections, we have developed the definition of the operad uA∞ whose algebras are homo-
topy unital A∞-algebras. There have been several definitions of homotopy unital A∞-algebras
[FOOO09, KS06, Lyu02], and these notions have been compared in [LM06]. There is also a def-
inition of strictly unital A∞-algebras [KS06, FOOO09]—we will refer to these as suA∞-algebras
throughout this section—they may be thought of as unital-(associative-infinity) algebras as op-
posed to our (unital-associative)-infinity algebras. We will compare uA∞-algebras to suA∞-
algebras. This comparison includes Theorem 6.5.3, which states that every uA∞-algebra has
an equivalent unital-A∞-structure on its homology. We demonstrate that this theorem is fairly



32 JOSEPH HIRSH AND JOAN MILLÈS

general, and applies to many algebraic structures with units, including unital commutative asso-
ciative algebras, unital Batalin-Vilkovisky algebras, and co-algebraic versions of these structures.

First we define suA∞-algebras and their ∞-morphisms.

6.5.1. Definition. An suA∞-algebra (A, {µn}n≥1, e) is an A∞-algebra (A, {µn}n≥1) with e ∈ A
such that dA(e) = 0 and e is a left and right unit for µ2, and e annihilates µn for n ≥ 3 [KS06].

Remarks. (1) There exists a dg-operad whose algebras are precisely suA∞-algebras, and
we denote it by suA∞. Furthermore, the operad suA∞ is the quotient of uA∞ by the
ideal generated by

{
µS
n

}
n≥2, |S|≥1

. A quick computation yields that this map is a quasi-

isomorphism.
(2) The operad suA∞ is not cofibrant. If it were, the lifting property would imply that it

is a retract of uA∞ by the quotient map uA∞
∼
−→ suA∞, which a computation shows is

impossible.

We now describe a diagram of categories of algebras. We will use the following notation

• As-alg: the category of associative algebras with algebra homomorphisms
• uAs-alg: the category of unital associative algebras with algebra homomorphisms that
preserve the unit
• ∞-A∞-alg: the category of A∞-algebras with ∞-morphisms
• ∞-uA∞-alg: the category of uA∞ algebras with ∞-morphisms
• suA∞-alg: the category of suA∞-algebras with the A∞ ∞-morphisms for which f1 pre-
serves the unit and fn annihilates it (for n ≥ 2)

First, we have the following diagram of operads:

uAs suA∞
∼oooo uA∞

∼oooo

As

OO

OO

A∞
∼oooo

OO

OO

On the categories of algebras, the diagram becomes:

uAs-alg //

��

suA∞-alg // ∞-uA∞-alg

��

As-alg // ∞-A∞-alg

We proved earlier (Section 6.3) that the first of the following composition of horizontal inclusions
{
uAs-alg → ∞-uA∞-alg,
As-alg → ∞-A∞-alg

has a left-adjoint, ΩιBκ, which we called the universal rectification (it is known that the second
has a similarly defined left-adjoint). Each of the inclusions,

{
uAs-alg → As-alg,
su-A∞-alg → A∞-alg

has a left-adjoint as well, given by adjoining an element u and extending the product(s) to make
u a strict unit (with appropriate annihilation conditions, in the case of suA∞-algebras).

We now analyze the relationship between uA∞ and suA∞ via our transfer formulae.

6.5.2. Theorem. Let V
i //

A h
||

p
oo , be a strong deformation retract, and { •A,

??��
A} a strict

uAs-structure on A. Suppose further that h
(
•A
)
= 0. Then the operations µS

n(V ) given by the
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transfer formulae (see definition in Proposition 6.4.5) have the property that

µS
n(V ) = 0

whenever n ≥ 2 and |S| ≥ 1. Furthermore, the uA∞-morphism structure J on the chain map i
has the property that whenever |S| ≥ 1,

JS
n = 0,

even when n = 1. In particular this means that the transferred uA∞ structure is an suA∞-algebra,
and the uA∞-∞ quasi-isomorphism is an suA∞-∞ quasi-isomorphism.

Proof. For n ≥ 2, |S| ≥ 1, each summand in µS
n(V ) contains as some part of the diagram (of

compositions) the following composite:

A
•

h

= h(•A) = 0,

so each of those operations is itself 0. The same fact gives the result for J , along with the fact
that

J
{1}
1 = A

•

h

= 0.

The vanishing of these higher operations and morphisms implies that the transferred uA∞

structure and morphism are strictly-unital, because the operad suA∞ is the quotient of uA∞ by
precisely these operations. �

Remark. We point out that since we are working over a field, and d(•A) = 0, it is always possible
to choose a strong deformation retract between V and A so that h

(
•A
)
= 0 (provided, of course,

V is equivalent to A).

The following corollary of Theorem 6.5.2 is an analogue of Theorem 5.4.2’ in [FOOO09], which
they prove in both the filtered and unfiltered setting.

6.5.3. Corollary. Let A be a uA∞-algebra. Then there exists a uAs-algebra R, and an suA∞-
algebra structure on H•(A) so that A

∼
−→ R and H•(A)

∼
−→ R. That is, for an arbitrary uA∞-

algebra A, there is a minimal model for A which is an suA∞-algebra.

Proof. By Theorem 6.3.2, we have IA : A ∼ ΩκBιA = R(A). Note that in particular, H• (A) ≃i

H• (R(A)). We will denote both by H .

Since there exist strong deformation retracts H
i //

R(A) h
yy

p
oo where h annihilates the unit,

transferring the uAs structure on ΩκBιA along any such strong deformation retract, by Theorem
6.5.2, gives an equivalent suA∞-algebra structure on H . �

In what follows, we prove an analogous theorem for a wide class of properads P . First, we must
say what we mean by a “unital version” of P .

6.5.4. Definition. Let P = F(V )/(R) be an inhomogeneous quadratic properad. We say an
inhomogeneous quadratic properad uP = F(•⊕V )/(R⊕R′) is a unital version of P if and only if

• the map of operads P → uP induced by the inclusion V → • ⊕ V is injective,
• the induced map qP → quP together with the inclusion •

 quP gives an isomorphism
of operads • ⊕ qP ≃ quP,
• the inhomogeneous quadratic relations associated to a single composition of the cork with
an operation in P has only the leading quadratic term and a constant term.

Remark. The name “unital version” for uP is not always appropriate. For example, if we take
for P the operad Lie, then the operad cLie, which governs Lie algebras with a designated central
element, is a unital version of Lie as in the above (where the constant term is taken to be zero),
though of course a central element is far from what we typically think of as a unit.
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Suppose uP is a unital version of P , and that both are inhomogeneous Koszul properads. Then
ΩuP ¡ =: uP∞

∼
−→ uP , and by Proposition 6.1.4, the underlying coproperad of uP ¡ is isomorphic

to • ¡ ∗ qP ¡. This observation allows us to define “strictly-unital P∞-algebras,” or suP∞-algebras,
as we defined suA∞: we can identify the “unital homotopies” as those made of a (co)operation
µα ∈ qP ¡ with some configuration S of corks above the leaves.

6.5.5. Definition. Suppose uP is a unital version of P, and that both are inhomogeneous Koszul
properads. We define the properad suP∞ as the quotient of uP∞ by the (differential) properadic
ideal generated by the operations

{
µS
α : for µα ∈ qP ¡ and S 6= ∅

}
.

That is, we quotient by all the “unital relations” and “unital homotopies.”

Remark. Though it looks like we only quotient by unital homotopies in the above, taking the
differential ideal generated by the unital homotopies means we also quotient by the image under
duP∞ of the unital homotopies with weight 2, which are precisely the unital relations.

If uP is a unital version of P , and both are inhomogeneous Koszul properads, the quotient map
suP∞ ։ uP is a quasi-isomorphism. In general, however, the operad suP∞ is not cofibrant. Even
so, we have the following transfer theorem for suP∞-algebras.

6.5.6. Theorem. Let uP be a unital version of P, and suppose both are inhomogeneous Koszul.

Then given any uP-algebra A and a strong deformation retract V
i //

A h
||

p
oo , where the

homotopy h satisfies h(•A) = 0, the transferred (uP)∞-algebra is an suP∞-algebra structure, and
the uP∞ ∞-morphism structure on J is an suP∞ ∞-morphism.

6.5.7. Corollary. Suppose we have properads P , uP as in Theorem 6.5.6, and suppose A is a uP-
algebra. Then there is an suP∞-algebra structure on the homology of A and an suP∞ ∞-quasi
isomorphism H  ∼ A.

Proof. It is a corollary of the proof for uAs, given the universal rectification and transfer formulae
for arbitrary Koszul inhomogeneous quadratic properads uP (which are not made explicit in this
paper). �

6.5.8. Corollary. In the following list of pairs, (P , uP), uP is a unital model for P and both
are inhomogeneous Koszul. In particular, each uP-algebra structure may be transferred to an
equivalent suP∞ structure on homology in the above sense.

(1) (Com, uCom), where uCom is the operad governing unital commutative associative algebras,
(2) (Lie, cLie), where cLie is the operad governing Lie algebras with a designated central

element,
(3) (Gerst, uGerst), where uGerst is the operad governing unital Gerstenhaber algebras, ie,

Gerstenhaber algebras with a unit for the commutative associative product which is anni-
hilated by the bracket,

(4) (BV, uBV), where uBV is the operad governing unital BV-algebras, ie, BV algebras with a
unit for the commutative associative product which is annihilated by the bracket and the
delta operator (see [GCTV09] for a treatment of BV as an inhomogeneous Koszul operad).

Remark.

(1) Though we have spoken only about units, counits may be treated similarly.
(2) Treating ucFrob, the properad governing Frobenius algebras with unit and counit, would

be interesting to the authors.

6.6. Cohomology theory for unital associative algebra. In this section, we define the André-
Quillen cohomology theory for unital associative algebras following the general definition of [Mil08].
We prove that the cohomology can be written as an Ext-functor and we compare this definition
to the Hochschild cohomology theory.
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6.6.1. André-Quillen cohomology theory. We consider now the operad P = uAs and the
curved cooperad C = uAs¡ = (quAs¡, 0, θ). The Koszul morphism between uAs and uAs¡ is given
by

κ : uAs¡ ։ • ⊕
??�� uAs.

Let A be a uAs-algebra. Following Sections 1 and 2 of [Mil08], we use the cofibrant resolution

ΩκBκA = uAs ◦κ uAs
¡(A)

∼
−→ A

of Section 5 to compute the André-Quillen cohomology of A thanks to the cotangent complex

A⊗uAs uAs¡(A) ∼=
A uAs¡(A) A

ZZZZZ ddddd ∼= A⊗ uAs¡(A)⊗A.

We denote an element in A⊗uAs uAs¡(A) by a⊗ (µS
n ⊗ b1 · · · bn−|S|)⊗ c, where a, bt and c are

in A and where µS
n is in uAs¡(n− |S|). Following the end of Section 2 of [Mil08], we compute the

differential on A⊗uAs uAs¡(A), which is given by

dϕ := dA⊗uAsuAs¡(A) − δ
l
ϕ + δrϕ.

The differential dA⊗uAsuAs¡(A) depends only on dA (since duAs = 0, duAs¡ = 0), the map ϕ :

uAs¡(A)։ A is the projection and the terms δlϕ and δrϕ are given by the following proposition.

6.6.2. Proposition. We have
δlϕ(a⊗ (µS

n ⊗ b1 · · · bn−|S|)⊗ c) :=

ǫ1a · b1 ⊗ (µS−1
n−1 ⊗ b2 · · · bn−|S|)⊗ c+ (−1)nǫn−|S|a⊗ (µS

n−1 ⊗ b1 · · · bn−|S|−1)⊗ bn−|S| · c,

where ǫi :=

{
(−1)|a|+|bi|(n−2+|S|+|b1|+···+|bi−1|) if i /∈ S,
0 otherwise,

and

δrϕ(a⊗ (µS
n ⊗ b1 · · · bn−|S|)⊗ c) := (δ • + δγ)(a⊗ (µS

n ⊗ b1 · · · bn−|S|)⊗ c) =

−
∑

S=S1⊔{u}⊔S′
1

(−1)|a|+n+|S1|a⊗ (µS\u
n ⊗ b1 · · · 1A · · · bn−|S|)⊗ c

−
∑

{t, t+1}⊔S=S2⊔{t, t+1}⊔S′
2

(−1)|a|+t+|S|a⊗ (µ
S2⊔{S′

2−1}
n−1 ⊗ b1 · · · bt · bt+1 · · · bn−|S|)⊗ c,

where maxS1 < u < minS′
1 and maxS2 < t < t+ 1 < minS′

2 and δ • holds for the first sum and
δγ for the second. Moreover, dϕ(

•) = 0.

Proof. The differential on the cotangent complex is given following the end of Sections 2 of
[Mil08]. We make the computations explicit thanks to the infinitesimal decomposition map of
uAs¡, described in Corollary 6.1.5. �

6.6.3. Proposition. The André-Quillen cohomology groups of a uAs-algebra A with coefficients
in a unital A-bimodule M are given by

H•
uAs(A, M) := H•(HomA-bimod.(A⊗

uAs uAs¡(A), M), ∂),

where ∂(f) := dM ◦ f − (−1)|f |f ◦ dϕ and A-bimod. is the category of unital A-bimodules.

6.6.4. Ext-functor and comparison with the Hochschild cohomology theory. To a unital
associative algebra, we can associate two abelian groups: the Hochschild cohomology groups of A
(as defined in [Hoc45], or [Lod98], chap. 1, for a modern reference), that is, the André-Quillen
cohomology groups of the associative algebra A (forgetting the unit), or the André-Quillen co-
homology groups of A seen as a unital associative algebra (previous section). We show that the
cohomology groups coincide.

6.6.5. Theorem. Let A be a uAs-algebra and let M be a unital A-bimodule. We have

H•
uAs(A, M) ∼= Ext•A⊗uAsK

(ΩuAs(A), M),

where ΩuAs(A) is the unital A-bimodule of Kähler differential forms (see [Mil08] for more details).
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Proof. Similarly to the case of Hochschild cohomology theory, we define the map h on A ⊗
uAs¡(A)⊗A by

h(a⊗ (µS
n ⊗ b1 · · · bn−|S|)⊗ c) = −(−1)

|a|(n+|S|)1⊗ (µS+1
n+1 ⊗ ab1 · · · bn−|S|)⊗ c.

It satisfies dh+ hd = id on A⊗ uAs¡(A)⊗ A. Thus the chain complex

A⊗ uAs¡(A)⊗A
dϕ
−−→ A⊗A⊗A։ ΩuAs(A)→ 0

is acyclic since we derive the left-adjoint functor of Kähler differential forms to obtain the cotangent
complex, and the cohomology is an Ext-functor. �

We use this theorem to compare this cohomology theory to the Hochschild cohomology theory.

6.6.6. Proposition. There is a quasi-isomorphism of unital A-bimodules

A⊗uAs As¡(A) ∼= A⊗As¡(A) ⊗A
∼
−→ A⊗uAs uAs¡(A) ∼= A⊗ uAs¡(A)⊗A.

Proof. First, we endowed A⊗uAs¡(A)⊗A with a filtration given by the number of corks, denoted
by

Fp(A⊗ uAs
¡(A)⊗A) :=

⊕

S⊆n, |S|≤p

A⊗ (uAs¡(n− |S|)⊗Sn−|S|
A⊗(n−|S|))⊗A.

We have dA⊗uAsuAs¡(A) : Fp → Fp, δ
l
ϕ : Fp → Fp, δ • : Fp → Fp−1 and δγ : Fp → Fp. Thus the

filtration is a filtration of chain complexes. It is bounded below and exhaustive so we can apply
the classical theorem of convergence of spectral sequences (cf. Theorem 5.5.1 of [Wei94]) and we
obtain a spectral sequence E•

p,q such that

E•
p,q ⇒ Hp+q(A⊗ uAs

¡(A)⊗A).

The differential d0 on E0
p,q := Fp(A ⊗ uAs¡(A) ⊗ A)p+q/Fp−1(A ⊗ uAs¡(A) ⊗ A)p+q is given by

d0 = dA⊗uAsuAs¡(A) − δ
l
ϕ + δγ . There is an inclusion of chain complexes

i : A⊗As¡(A)⊗A ⊕p, qE
0
p,q
∼= A⊗ uAs¡(A) ⊗A,

where the last isomorphism is only of vector spaces. The projection p : ⊕p, qE
0
p,q
∼= A⊗As¡(A)⊗

A ⊕ C≥1 ։ A ⊗ As¡(A) ⊗ A, where C≥1 is given by elements with at least one cork, is a chain
complexes map. We define the map h by

h(a⊗ (µS
n ⊗ b1 · · · bn−|S|)⊗ c) := −(−1)

minSa⊗ (µS+1
n+1 ⊗ b1 · · · b(minS)−11AbminS · · · bn−|S|)⊗ c.

With these definitions, we have p ◦ i = idA⊗uAs¡(A)⊗A and id⊕p, qE0
p,q
− i ◦ p = dh+ hd. Hence, we

have a deformation retract

A⊗As¡(A)⊗A
i //
⊕p, qE

0
p,q h

ww

p
oo

and the inclusion i is a quasi-isomorphism. It follows that E1
p,q = 0 when p 6= 0 and the spectral

sequence collapses. Considering the filtration F ′
p(A⊗As

¡(A)⊗A) = A⊗As¡(A)⊗A for all p ≥ 0
(bounded below and exhaustive), the inclusion induces a map of spectral sequences which is a
quasi-isomorphism on the E1-pages and higher. Since E′•

p,q converges to Hp+q(A ⊗As¡(A) ⊗ A)
and E•

p,q converges to Hp+q(A⊗ uAs¡(A) ⊗A), we get the proposition. �

6.6.7. Corollary. Let A be a unital associative algebra. For • ≥ 1, we have

H•
uAs(A, M) ∼= HH•+1(A, M).

Proof. The cohomology of uAs-algebras is given by the Ext-functor Ext•A⊗uAsK
(ΩuAs(A), M)

(Theorem 6.6.5) and we have the projective resolution A⊗ uAs¡(A)⊗A
∼
−→ ΩuAs(A). By Propo-

sition 6.6.6, the projective (quasi-free) A-bimodule A⊗As¡(A)⊗A is also a projective resolution
of ΩuAs(A) and computes the Hochschild cohomology (see the definition 1.1.3 in [Lod98]). �
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