Joseph Hirsh 
  
Joan Millès 
  
Joan Mill Ès 
  
CURVED KOSZUL DUALITY THEORY

Keywords: 

come    

Introduction

In [START_REF] Hochschild | On the cohomology groups of an associative algebra[END_REF], Hochschild introduced a (co)homology theory for associative algebras and in [START_REF] Stasheff | Homotopy associativity of H-spaces. I[END_REF], Stasheff introduced the homotopy theory for associative algebras. Nowadays, we know how to describe these theories in operadic terms, but this approach does not encode the units in unital associative algebras. In order to define a homotopy theory and a cohomology theory for unital associative algebras, we refine the operadic theory and more precisely its Koszul duality theory.

In representation theory, an algebra A is "represented" as an algebra of operations with one input and one output on a vector space V via a representation µ ∈ Hom Alg. (A, End(V )). To encode operations with several inputs and one output, one uses the notion of an operad [START_REF] May | The geometry of iterated loop spaces[END_REF][START_REF] Boardman | Homotopy invariant algebraic structures on topological spaces[END_REF]. More generally, one uses the notion of properads to encode operations with several inputs and several outputs [START_REF] Vallette | A Koszul duality for PROPs[END_REF]. An associative algebra is a special kind of operad and an operad is a special kind of properad, and theories about properads generalize those of operads and associative algebras. For example a bar-cobar adjunction defined in a properadic setting generalizes one defined for operads and algebras. In [START_REF] Vallette | A Koszul duality for PROPs[END_REF], the bar construction B assigned a coaugmented dg coproperad to an augmented dg properad and the cobar construction Ω assigns an augmented dg properad to a coaugmented dg coproperad, and the two constructions are adjoint. An important property of the adjunction is that the bar-cobar composition ΩBP defines a cofibrant resolution of an augmented dg properad P.

In this paper, we extend the bar-cobar adjunction (Ω, B) to non-augmented properads. The lack of augmentation appears on the new bar construction as a curvature. We therefore define curved coproperad, whose our bar construction is an example. We then extend the cobar construction to coaugmented curved coproperads, resulting in a dg properad. The composition bar-cobar provides a cofibrant resolution ΩBP of a properad P. For example, we obtain a cofibrant resolution for the properad encoding unital and/or counital Frobenius algebras. Since the datum of a 2-dimensional topological quantum field theory, 2d-TQFT for short, is equivalent to a unital and counital Frobenius algebra structure [START_REF] Abrams | Two-dimensional topological quantum field theories and Frobenius algebras[END_REF][START_REF] Kock | Frobenius algebras and 2D topological quantum field theories[END_REF], this provides homotopy tools to study 2d-TQFT. With our model, the methods of [START_REF] Wilson | Free frobenius algebra on the differential forms of a manifold[END_REF] apply to show that the differential forms Ω dR (M ) on a closed, oriented manifold M bear a unital and counital Frobenius algebra structure up to homotopy.
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The bar-cobar resolution ΩBP is large and it is often desirable to have a smaller resolution. To this end, we develop a curved Koszul duality theory for properads generalizing the Koszul duality theory for properads [START_REF] Vallette | A Koszul duality for PROPs[END_REF], operads [START_REF] Getzler | Operads, homotopy algebra and iterated integrals for double loop spaces[END_REF][START_REF] Ginzburg | Koszul duality for operads[END_REF], and associative algebras [START_REF] Priddy | Koszul resolutions[END_REF]. One of the main object is the Koszul dual coproperad P ¡ , which has, here, a curvature. It applies to properads with a quadratic, linear and constant presentation. The properads for which this theory apply are called Koszul properads. In this case, the cobar construction ΩP ¡ is a resolution of P. This theory extends to coloured operads to recover, as an example, the resolution of the coloured operad Iso given by Markl in [START_REF] Markl | Ideal perturbation lemma[END_REF]. We summarize the different generalizations of the Koszul duality theory in the following table :   ```````````M onoids Relations Homogeneous quadratic Quadratic and linear Quadratic, linear and constant Associative algebras

[Pri70] [Pos93, PP05] Operads [GJ94, GK94] [GCTV09]
Section 4 of this paper Properads [START_REF] Vallette | A Koszul duality for PROPs[END_REF] The operad uAs encoding unital associative algebras is an example of an operad with quadratic, linear and constant relations. It is a Koszul operad in the previous sense and we get a "small" cofibrant resolution uA ∞ := ΩuAs ¡ ∼ -→ uAs. This particularly simple resolution allows us to define the notion of homotopy unital associative algebras. We recover actually the notion of homotopy unit for A ∞ -algebra which appears in [START_REF] Fukaya | Lagrangian Intersection and Floer Theory: Anomaly and Obstruction[END_REF]. After we achieved this work, we were told about the existence of the incoming paper of Lyubashenko [START_REF]Homotopy unital A∞-algebras[END_REF]. In this paper, the author extracts, from the definition of [START_REF] Fukaya | Lagrangian Intersection and Floer Theory: Anomaly and Obstruction[END_REF], an operad, which corresponds to the one given by the present Koszul duality theory, and proves that it is a cofibrant resolution of the operad uAs. However, with our approach in terms of Koszul duality theory, we prove several of the good homotopy properties that carry algebras over a cofibrant operad (rectification, transfer, "strict" minimal model). We also obtain functorial resolutions on the level of unital associative algebras. We use these other resolutions to study the cohomology theory of unital associative algebras.

Results on unital associative algebras

In this section, we develop the homotopy and cohomology theories of unital associative algebras. The definitions, proofs, techniques, and pictorial descriptions of the results are based on operad theory and can be found in Section 6. However, this section does not contain the word "operad" and can be read independently from the rest of the paper. The comparison with the work of [START_REF] Fukaya | Lagrangian Intersection and Floer Theory: Anomaly and Obstruction[END_REF] is described in Section 6.

1.1. Unital associative algebra. A unital associative differential graded algebra, or unital dga, is a quadruple (A, µ, e, d A ), where (A, d A ) is a dg module, µ : A ⊗ A → A, and e : K → A are dg module maps, such that the map µ is associative and such that the element e(1 K ) is a left and right unit for the associative product µ.

The version of this structure "up to homotopy" is what we call a uA ∞ -algebra, for homotopy unital associative algebra. Let f : V → W be a homogeneous K-linear map of degree |f |. We denote its derivative by ∂(f

) := d W • f -(-1) |f | f • d V .
1.2. Homotopy unital associative algebra. A homotopy unital associative algebra or uA ∞algebra structure on a dg module (A, d A ) is given by a collection of maps {µ S n : A ⊗(n-|S|) → A} of degree n -2 + |S|, where the set S runs over the set of subsets of {1, . . . , n} for any integer n ≥ 2 and where S = {1} when n = 1. The µ S n are given pictorially by planar corollas with n entries labelled by 1, • • • , n on which we put "corks" when the label is in S. For example, we have µ {1} 3

= i i

• y y . The maps µ S n satisfy the following identities:

• µ {1} 2 and µ {2} 2 are homotopies for the unit      ∂ • c c = • c c -| ∂ • c c = • c c -|,
where the empty space between the corollas and the corks is the composition of operations and where | is the identity of A • for (n, S) = (2, {1}) and (n, S) = (2, {2}),

∂(µ S n ) = p+q+r=n p+1+r=m
(-1) q(r+|S1|)+|S2||S ′ 1 |+p+1 µ S1 m • (id, . . . , id

p-|S ′ 1 |
, µ S2 q , id, . . . , id

r-|S ′′ 1 |
).

Or, pictorially:

∂ • s s s u u u • j j j j j = ± y y • x x x x i i i i i i q q • .
Examples.

(1) Every unital dga (A, µ, e, d A ) naturally equips the dg module (A, d A ) with the structure of a uA ∞ -algebra by

µ S n =    µ if n = 2 and S = ∅ e if n = 1 and S = {1} 0 otherwise
(2) A strictly unital A ∞ -algebra, or suA ∞ -algebra is an A ∞ -algebra (A, d A , {µ n } n≥2 ) with e ∈ A so that e is a left and right unit for µ 2 , and e annihilates µ n for n ≥ 3 [START_REF] Kontsevich | Notes on A∞-algebras, A∞-categories and non-commutative geometry[END_REF]. Every suA ∞ -algebra is naturally a uA ∞ -algebra by

µ S n =    µ n if n ≥ 2, S = ∅ e if n = 1 and S = {1} 0 otherwise
Remark. Every uA ∞ -algebra contains an A ∞ -algebra if we take µ n := µ ∅ n for all n ≥ 1. The additional algebraic structure given by a uA ∞ -algebra provides homotopies for the "unital relations" along with the homotopies already present for the "associative relations." 1.3. Infinity-morphism. We define the notion of infinity-morphism between two uA ∞ -algebras A and B by a collection of maps f S n : A ⊗(n-|S|) → B of degree n -1 + |S|, represented graphically by planar trees with "corks" as the uA ∞ -algebra structures but with a triangle ▽ as vertex. For example, we have f , where the planar trees with "corks" and no triangle represent the uA ∞ -algebra structure of A on the top and the uA ∞ -algebra structure of B on the bottom. With this definition of infinitymorphism, we prove a rectification theorem.

1.3.1. Theorem (Rectification Theorem, Theorem 6.3.2). Let A be a uA ∞ -algebra. We can rectify A: there is a unital associative algebra

A ′ such that A is uA ∞ -equivalent to A ′ .
Moreover, we have a transfer theorem.

1.3.2. Theorem (Homotopy Transfer Theorem, Theorem 6.4.5). Let A be a homotopy unital associative algebra and let V be a chain complex. Given a strong deformation retract

V i / / A h | | p o o ,
i.e., p and i are chain maps, where p

• i = id V and d A h + hd A = id A -i • p,
there is a natural uA ∞ -algebra structure on V , and a natural extension of i to an infinity-morphism.

1.4. Comparison with the literature. In the literature, there are several definitions of "weakly unital" or "homotopy unital" A ∞ -algebras [START_REF] Kontsevich | Notes on A∞-algebras, A∞-categories and non-commutative geometry[END_REF][START_REF] Lyubashenko | Category of A∞ categories[END_REF][START_REF] Fukaya | Floer homology and mirror symmetry[END_REF][START_REF] Fukaya | Lagrangian Intersection and Floer Theory: Anomaly and Obstruction[END_REF]. The definitions of [START_REF] Kontsevich | Notes on A∞-algebras, A∞-categories and non-commutative geometry[END_REF] and [START_REF] Lyubashenko | Category of A∞ categories[END_REF], describe properties of A ∞ -algebras, while the definition presented in [START_REF] Fukaya | Lagrangian Intersection and Floer Theory: Anomaly and Obstruction[END_REF] describes a structure on an A ∞ -algebra. In [START_REF] Lyubashenko | Unital A infinity categories[END_REF] these are compared and shown to be, in some sense, equivalent. Our notion of homotopy unital associative algebra, or uA ∞ -algebra, is an A ∞ -algebra with additional structure, and in fact coincides with the structure described in [START_REF] Fukaya | Lagrangian Intersection and Floer Theory: Anomaly and Obstruction[END_REF].

In [START_REF] Fukaya | Lagrangian Intersection and Floer Theory: Anomaly and Obstruction[END_REF], the authors prove (Theorem 5.4.2') that there is a (gapped, filtered) suA ∞ minimal model for every (gapped, filtered) uA ∞ -algebra. We prove the following analogue.

1.4.1. Theorem (Corollary 6.5.3). Let A be a uA ∞ -algebra. There is an suA ∞ -algebra structure on the homology of A which is equivalent to A.

We extend this theorem to a broad class of algebraic structures, including Batalin-Vilkovisky algebras and commutative algebras.

1.5. André-Quillen cohomology theory for unital associative algebra. Following the ideas of Quillen, we define a cohomology theory associated to any unital associative dga A with coefficients in a A-bimodule M , denoted H • uAs (A, M ). We prove that this cohomology theory is an Ext-functor and that it is equal to the Hochschild cohomology theory of the associative algebra A.

1.5.1. Theorem (Theorem 6.6.7). Let A be a unital associative dga. We have

H • uAs (A, M ) ∼ = HH •+1 (A, M ).

Operads and Properads

In this section, we recall the notion of algebra, operad and properad as successive generalizations. We refer to the book of Loday and Vallette [LV] for a complete and modern exposition about algebras and operads in dg mod, to the book of [START_REF] Markl | Operads in algebra, topology and physics[END_REF] for another presentation and to the thesis of Vallette [START_REF] Vallette | A Koszul duality for PROPs[END_REF] for properads.

2.1. Algebras. Let K-mod denote the monoidal category (K-mod, ⊗ K , K) of K-modules. A unital associative algebra is a monoid (A, µ, e) in this monoidal category. The product µ : A ⊗ K A → A is associative and e : K → A is a unit for the product.

As in representation theory, the elements of A are seen as operations with one input and one output. Then we represent the product a 1 • • • a n by a vertical bivalent tree whose vertices are indexed by the a i , see Figure 1.

a n . . . a 1 Figure 1. Representation of the product a 1 • • • a n 2.2.
Operads. An S-module P = {P(n)} n≥0 is a collection of K-modules P(n) endowed with right action of the symmetric group S n . One defines from [START_REF] May | The geometry of iterated loop spaces[END_REF] the monoidal product • on the category of S-modules by

(P • Q)(n) := k≥0 P(k) ⊗ S k i1+•••+i k =n (Q(i 1 ) ⊗ • • • ⊗ Q(i k )) ⊗ Si 1 ו••×Si k K[S n ] ,
where the notation ⊗ S k stands for the space of coinvariants under the (diagonal) action of the symmetric group S k :

(p ⊗ q 1 ⊗ • • • ⊗ q k ⊗ σ) • ν := p • ν ⊗ q ν -1 (1) ⊗ • • • ⊗ q ν -1 (k) ⊗ ν-1 • σ
for any p ∈ P(k), q j ∈ Q(i j ), σ ∈ S n and ν ∈ S k with ν ∈ S n the induced block-wise permutation. This monoidal product encodes the composition of multilinear operations and we represent it by 2-levels trees as shown in Figure 2.

5 d d d d 3 4 ~~~~1 d d d d 6 ~~~~8 d d d d 2 7 ~~~q 1 * * q 2 q 3
t t j j j j j j j j j j j j p

Figure 2. An element in (P • Q)(8)
The unit for the monoidal product is I := (0, K, 0, . . .) where the K is in arity 1 and represent the identity element modeled by the tree |. It forms a monoidal category denoted by S-Mod.

An operad is a monoid (P, γ, e) in the monoidal category of S-modules S-Mod. The associative product P • P → P is called the composition product and e : I → P is the unit for the composition product. Let a and b the number of vertices on the first level and on the second level respectively. Let N be the number of internal edges between the two levels. We associate to an a-tuple of integers ī = (i 1 , . . . , i a ) the sum |ī|

Example. A unital associative algebra induces an operad by this injective map

Unital associative algebras

:= i 1 + • • • + i a .
To any pair of a-tuples ī and  we denote by P(, ī) the tensor product P(j 1 , i 1 ) ⊗ • • • ⊗ P(j a , i a ) and by S ī the image of

S i1 × • • • × S ia in S |ī| .
Let k = (k 1 , . . . , k b ) be a b-tuple and let  = (j 1 , . . . , j a ) be an a-tuple such that | k| = || = N . A ( k, )-connected permutation is a permutation σ in S N such that the graph of a geometric representation of σ is connected when one connects the inputs labelled by

j 1 + • • •+ j i + 1, . . . , j 1 + • • • + j i+1 for 0 ≤ i ≤ a -1 and the outputs labelled by k 1 + • • • + k i + 1, . . . , k 1 + • • • + k i+1 for 0 ≤ i ≤ b -1. We denote by S c
k, the set of ( k, )-connected permutations. We define the monoidal product ⊠, denoted ⊠ c in [START_REF] Vallette | A Koszul duality for PROPs[END_REF], on the category of S-bimodules by

(P ⊠ Q)(m, n) := N ∈N   l, k,,ī K[S m ] ⊗ Sl P( l, k) ⊗ Sk K[S c k, ] ⊗ S Q(, ī) ⊗ Sī K[S n ]   S op b ×Sa
, where the second direct sum runs over the b-tuples l, k and the a-tuples , ī such that | l| = m, | k| = || = N , |ī| = n and we consider the module of coinvariants with respect to the S op b × S aaction:

ρ⊗p 1 ⊗• • •⊗p b ⊗σ⊗q 1 ⊗• • •⊗q a ⊗ω ∼ ρ•τ -1 l ⊗p τ (1) ⊗• • •⊗p τ (b) ⊗τk•σ•ν  ⊗q ν -1 (1) ⊗• • •⊗q ν -1 (a) ⊗ν -1 ī •ω, for ρ ∈ S m , ω ∈ S n , σ ∈ S c
k, and for τ ∈ S b with τk the associated block-wise permutation, ν ∈ S a with ν  the associated block-wise permutation. We write an element in P ⊠ Q like this θ(p 1 , . . . , p b )σ(q 1 , . . . , q a )ω. The unit I for the monoidal product is given by

I(1, 1) := K and I(m, n) := 0 otherwise.
The category of Sbimodules with the operation ⊠ forms a monoidal category with unit I. We denote this monoidal category by S-biMod.

A properad is a monoid (P, γ, e) in the monoidal category S-biMod of S-bimodules. The associative product γ : P ⊠ P → P is called the composition product and e : I → P is the unit for the composition product.

Example. An operad induces a properad as follows Operads Properads, P → P, where P(1, n) := P(n) and P(m, n) := 0 for m = 1.

Finally, we have the following inclusions:

Monoidal category:

(K-Mod, ⊗ K ) (S-Mod, •) (S-biMod, ⊠) Monoid:
Associative algebras Operads Properads.

The results about properads in this paper apply to algebras and operads as well by the above inclusions of categories.

One defines dually the notions of coalgebra, cooperad, coproperad. For example, a coproperad is a comonoid (C, ∆, η) in the monoidal category of S-bimodules S-biMod. The coproduct ∆ : C → C ⊠ C is coassociative and admits a counit η : C → I. All these definitions extend to the differential graded setting, or dg setting for short. The differentials are compatible with the properad structure, resp. coproperad structure, in the sense that they are derivations, resp. coderivations (see [LV] or [START_REF] Vallette | A Koszul duality for PROPs[END_REF] for precise definitions). We will often refer to a dg "object" just as "object," for example we call dg properads "properads."

Curved twisting morphisms

In this section, we recall the notion of twisting morphisms for augmented properads and coproperads from [START_REF] Vallette | Manin products, Koszul duality, Loday algebras and Deligne conjecture[END_REF] and [START_REF] Merkulov | Deformation theory of representation of prop(erad)s i[END_REF] and the associated bar-cobar adjunction. To extend these notions to the case where the properad is not augmented, we introduce the new notion of curved coproperad and of curved twisting morphism between a curved coproperad and a not necessarily augmented properad. We also extend the bar and the cobar constructions to this framework. This provides a functorial cofibrant replacement for properads. We emphasize the fact that the properad is not assumed to be augmented.

3.1. Twisting morphisms. We recall the theory of twisting morphisms between augmented coproperads and augmented properads from [START_REF] Merkulov | Deformation theory of representation of prop(erad)s i[END_REF].

Let M and N be two S-bimodules. By abuse of notation, we will denote by M ⊗ N the infinitesimal composite product of one element of M with one element of N grafted above, that is the space of linear combinations of connected graphs with two vertices, the first one labelled by an element of M and the one above labelled by an element of N . This is not quite the same as Q ⊠ (1,1) P of [START_REF] Merkulov | Deformation theory of representation of prop(erad)s i[END_REF], in which they define the product of augmented properads, and only take elements from the augmentation ideal. However, we write sometimes M ⊠ (1, 1) N instead of M ⊗N . To an operad P, we associate the infinitesimal composition product γ (1, 1) : P ⊠ (1, 1) P → P with the help of e and γ. Associated to a coproperad C, we define the infinitesimal decomposition map ∆ (1, 1) : C → C ⊠ (1, 1) C by the projection of ∆ (with the help of η) on C ⊠ (1, 1) C, or with the above notation, on C ⊗ C.

We recall the convolution product ⋆ on Hom(C, P) := m, n≥0 Hom K (C(m, n), P(m, n)) from [START_REF] Merkulov | Deformation theory of representation of prop(erad)s i[END_REF]. Let f, g ∈ Hom(C, P). We denote by f ⋆ g the composite

C ∆ (1, 1) ----→ C ⊠ (1, 1) C f ⊠ (1, 1) g -----→ P ⊠ (1, 1) P γ (1, 1) ----→ P.
We define the derivative ∂ of degree -1 on Hom(C, P) by

∂(f ) := d P • f -(-1) |f | f • d C .
The convolution product ⋆ on Hom(C, P) is a Lie-admissible product (see [START_REF] Merkulov | Deformation theory of representation of prop(erad)s i[END_REF] for more details). It is stable on the space of equivariant maps from C to P denoted by Hom S (C, P). Then the bracket [f, g] := f ⋆ g -(-1) |f ||g| g ⋆ f is a Lie bracket on Hom S (C, P).

A morphism of S-bimodules α : (C, d C ) → (P, d P ) of degree -1 in the Lie algebra Hom S (C, P) is called a twisting morphism if it is a solution to the Maurer-Cartan equation

∂(α) + α ⋆ α = ∂(α) + 1 2 [α, α] = 0.
We denote by Tw(C, P) the set of twisting morphisms in Hom S (C, P). We say that an operad P is augmented when there is a morphism P ։ I of dg properads such that I e -→ P ։ I is the identity. It is equivalent to P ∼ = I ⊕ P as dg properads where P := ker(P ։ I). Dually, we say that a coproperad C is coaugmented when there is a morphism I C of dg coproperads such that I C η -→ I is the identity. It is equivalent to C ∼ = I ⊕ C as dg coproperads where C := coker(I C). When P is augmented and C is coaugmented, we require the twisting morphisms α to satisfy the compositions C α -→ P ։ I and I C α -→ P being equal to 0. A coaugmented coproperad is called conilpotent when for all x ∈ C, there exists an n > 0 such that ∆ n (1,1) (x) = 0, where ∆ (1,1) : C → C ⊠ (1,1) C is the primitive part of ∆ (1,1) and where ∆

n (1,1) = (∆ (1,1) ⊗ id ⊗(n-1) C ) • ∆ n-1
(1,1) (see [LV] for more details in cooperad case). When P is augmented and C is conilpotent, we recall from [START_REF] Vallette | A Koszul duality for PROPs[END_REF] that the bifunctor Tw(-, -) is representable on the left by the cobar construction and on the right by the bar construction, that is we have the following adjunction Ω : conilpotent dg coprop. ⇋ augmented dg prop. : B and there are natural correspondences Hom aug. dg prop. (ΩC, P) ∼ = Tw(C, P) ∼ = Hom conil. dg coprop. (C, BP).

3.2. Curved twisting morphism. We refine the previous section to the case where P is not necessarily augmented. A curvature has to be introduced on the level of dg coproperads to encode the default of augmentation. The associated notion is called a curved coproperad. We define the notion of curved twisting morphism between a curved coproperad and a dg properad as a solution of the curved Maurer-Cartan equation.

Curved coproperad.

A curved coproperad is a triple (C, d C , θ), where C is a graded (but not dg) coproperad, the predifferential d C is a coderivation of C of degree -1 and the curvature θ : C → I is a map of degree -2 such that: a)

d 2 C = (θ ⊗ id C -id C ⊗ θ) • ∆ (1,1) , b) θ • d C = 0. A morphism between curved coproperads (C, d C , θ) → (C ′ , d C ′ , θ ′ ) is a morphism of coproperads f : C → C ′ such that d C ′ • f = f • d C and θ ′ • f = θ.
We denote this category by curved coprop..

We prove the following technical lemma that will be useful later.

3.2.2. Lemma. Let C be a coproperad. The cobracket (θ ⊗ id Cid C ⊗ θ) • ∆ (1, 1) with a linear form θ : C → I is a coderivation.

Proof. The coassociativity of ∆ (1, 1) gives (θ

⊗ id C -id C ⊗ θ) • ∆ (1, 1) ⊗ id C + id C ⊗ (θ ⊗ id C -id C ⊗ θ) • ∆ (1, 1) • ∆ (1, 1) = (θ ⊗ id C ) • ∆ (1, 1) ⊗ id C -id C ⊗ (id C ⊗ θ) • ∆ (1, 1) • ∆ (1, 1) = (θ ⊗ ∆ (1, 1) -∆ (1, 1) ⊗ θ) • ∆ (1, 1) = ∆ (1, 1) • (θ ⊗ id C -id C ⊗ θ) • ∆ (1, 1) .
3.2.3. The convolution curved Lie algebra. We define the new notion of curved Lie algebra generalizing the notion of dg Lie algebra. A curved Lie algebra is a quadruple (g, [-, -], d g , θ), where (g, [-, -]) is a Lie algebra, the predifferential d g is a derivation of g of degree -1 and the curvature θ is an element of g (or equivalently a map K → g) of degree -2 such that: a)

d 2 g = [-, θ]; b) d g (θ) = 0. Let (C, d C , θ
) be a curved coproperad and let (P, d P ) be a dg properad. We fix the element

Θ := e • θ : C θ -→ I e -→ P
of degree -2 in Hom(C, P).

3.2.4. Proposition. When C is a curved coproperad and P is a dg properad, we have on Hom S (C, P) = m, n≥0 Hom S (C(m, n), P(m, n)):

∂ 2 = [-, Θ] := (-⋆ Θ) -(Θ ⋆ -) ∂(Θ) = 0.
Then (Hom S (C, P), [-, -], ∂, Θ) is a curved Lie algebra, called the convolution curved Lie algebra.

Proof. We do the computations:

∂ 2 (f ) = d P • ∂(f ) -(-1) |∂(f )| ∂(f ) • d C = d P 2 • f -(-1) |f | d P • f • d C + (-1) |f | (d P • f • d C -(-1) |f | f • d C 2 ) = -f • d C 2 = -f • (θ ⊗ id C -id C ⊗ θ) • ∆ (1,1) = f ⋆ Θ -Θ ⋆ f and ∂(Θ) = d P • e • θ -(-1) |Θ| e • θ • d C = 0 since d P • e = 0 and θ • d C = 0.
An element α : (C, d C , θ) → (P, d P ) of degree -1 in the curved Lie algebra Hom S (C, P) is called a curved twisting morphism if it is a solution of the curved Maurer-Cartan equation

∂(α) + α ⋆ α = Θ.
We denote by Tw(C, P) the set of curved twisting morphisms in Hom S (C, P).

Remark. The words "curved" and "curvature" refer to the geometric context. In that setting, the Maurer-Cartan equation applied to a connection provides the curvature form. The flat case corresponds to the curvature equal to zero, that is to the classical case.

3.3. Bar and cobar constructions. In this section, we extend the bar construction of augmented dg properads to a curved bar construction from dg properads with target in curved coproperads. In the other way round, we extend the cobar construction of coaugmented coproperads to coaugmented curved coproperads. In the algebra case, the cobar construction generalizes the bar construction of curved algebras given in [START_REF] Polishchuk | Quadratic algebras[END_REF] and in [START_REF] Positsel | Nonhomogeneous quadratic duality and curvature[END_REF] to properads, though it is not immediate that our constructions are the same, as [START_REF] Polishchuk | Quadratic algebras[END_REF][START_REF] Positsel | Nonhomogeneous quadratic duality and curvature[END_REF] do not make use of coalgebras.

3.3.1. Semi-augmented dg properads. A semi-augmented dg properad, or sdg properad for short, (P, d P , ε) is a dg properad P whose underlying S-bimodule is endowed with an augmentation of S-bimodules ε : P ։ I, not necessarily dg or of properads, called semi-augmentation. In other words, ε is a retraction of S-bimodules of the unit e : I → P and we have an isomorphism e + inc : I ⊕ P ∼ = -→ P of S-bimodules, where P := ker ε and inc is the inclusion P P. We denote ρ := (e + inc) -1 |P : P ։ P. In the following, we do not write the inclusion inc in the formulae. The map γ := ρ • γ : P ⊠ P → P is not necessarily associative, even though the composition product γ : P ⊠ P → P is associative.

Remark.

The assumption for P to have a semi-augmentation ε is not restrictive since we are working over a field K and since we just need to fix a section of P(1, 1). When P(1, 1) = I, we choose the identity map. This is often the case, as it is for the operad encoding unital associative algebras (see Section 6).

We define on P the map d P := ρ • d P , which is a differential since d P is a differential and since the differential on I is 0. The differentials satisfy ρ • d P = d P • ρ. However, we have d P = d P in general.

A morphism between two sdg properads (P, d P , ε)

f -→ (P ′ , d P ′ , ε ′ ) is a morphism of dg proper- ads f : (P, d P ) → (P ′ , d P ′ ) such that ε ′ • f = ε. We define f := ρ ′ • f : P → P ′ and we remark that d P ′ • f = f • d P .
We denote by sdg prop. the category of semi-augmented dg properads.

3.3.2.

Coaugmented and conilpotent curved coproperads. When C is coaugmented, that is, C has a coaugmentation I C so that C ∼ = I ⊕ C as coproperads, we require that any twisting morphism α satisfies the compositions I C α -→ P and C α -→ P ε -→ I to be zero. We denote by coaug. curved coprop. the category of coaugmented curved coproperads and by conil. curved coprop. the category of conilpotent curved coproperads (see Section 3.1).

We construct a pair of functors B : sdg prop. ⇋ coaug. curved coprop. : Ω.

Let M be an S-bimodule. The notation F (M ), resp. F c (M ), stands for the free properad on M , resp. the cofree coproperad on M . A derivation on F (M ), resp. a coderivation on F c (M ), is characterized by its restriction on M , resp. by its image on M . The notation sM , resp. s -1 M , stands for the homological suspension, resp. the homological desuspension, of the S-bimodule M . We refer to [START_REF] Vallette | A Koszul duality for PROPs[END_REF] for more details.

3.3.3.

Curved bar construction of a sdg properad. The bar construction of the sdg properad (P, d P , ε) is given by the conilpotent curved coproperad BP := (F c (sP), d bar , θ bar ).

The predifferential is defined by d bar := d 1 + d 2 , where d 2 is the unique coderivation of degree -1 which extends the map

F c (sP) ։ F c (sP) (2) ∼ = s 2 (P ⊠ (1, 1) P) s -1 γ ---→ sP
where γ := ρ • γ : P ⊠ (1, 1) P → P and d 1 is the unique coderivation of degree -1 which extends the map

F c (sP) ։ sP ids⊗d P -----→ sP.
The curvature θ bar is the map of degree -2

F c (sP) ։ sP ⊕ F c (sP) (2) ∼ = sP ⊕ s 2 (P ⊠ (1, 1) P) s -1 dP +s -2 γ --------→ P ε -→ I.

Lemma. The predifferential and the curvature satisfy

a) d bar 2 = (θ bar ⊗ id -id ⊗ θ bar ) • ∆ (1, 1) ; b) θ bar • d bar = 0.
Proof. First we can restrict the proof of the equality a) and b) to

F c (sP) (≤3) since d bar 2 = 1 2 [d bar , d bar ] and (θ bar ⊗ id -id ⊗ θ bar ) • ∆ (1, 1) are coderivations (see Lemma 3.2.
2) and since θ bar is non zero only on F c (sP) (2) . The composite

F c (sP) (≤3) d bar |F c (sP) (≤2) -[(θ bar ⊗id-id⊗θ bar )•∆ (1, 1) ] |I⊗sP⊕sP⊗I -------------------------------------→ F c (sP) (≤2) ⊕ (I ⊗ sP ⊕ sP ⊗ I) (d bar |sP -θ bar )+γ |I⊗sP⊕sP⊗I -------------------→ I ⊕ sP equals to d bar 2 -(θ bar ⊗ id -id ⊗ θ bar ) • ∆ (1, 1) -θ bar • d bar |I⊕sP and to (d γ+dP ) 2 |I⊕sP
where d γ+dP is the unique coderivation of degree -1 on F c (sP) which extends the map

F c (sP) ։ F c (sP) (≤2) ∼ = sP ⊕ s 2 P ⊠ (1, 1) P ids⊗dP +s -1 γ ---------→ sP.
Moreover, since γ is associative and d P is a compatible differential, we have d γ+dP 2 = 0. Thus

d bar 2 -(θ bar ⊗ id -id ⊗ θ bar ) • ∆ (1, 1) -θ bar • d bar = 0,
that is, due to the degree

d bar 2 = (θ bar ⊗ id -id ⊗ θ bar ) • ∆ (1, 1) θ bar • d bar = 0.
3.3.5. Lemma. The bar construction is a functor B : sdg prop. → conil. curved coprop.. Proof. Let f : (P, d P , ε) → (P ′ , d P ′ , ε ′ ) be a morphism of sdg properads. It induces a morphism of dg S-bimodules f : P → P ′ . The map F c ( f ) : F c (sP) → F c (sP ′ ) is a map of coproperads by construction. The morphism f commutes with γ P and γ P ′ , thus F c ( f ) commutes with the predifferentials. For a similar reason θ ′ bar • F c ( f ) = θ bar .

3.3.6. Cobar construction of a coaugmented curved coproperad. The cobar construction of the coaugmented curved coproperad (C, d C , θ) is given by the sdg properad

ΩC := (F (s -1 C), d := d 0 + d 1 -d 2 , ε).
The term d 0 is the unique derivation of degree -1 which extends the map

s -1 C sθ -→ I F (s -1 C).
The term d 1 is the unique derivation of degree -1 which extends the map

s -1 C id s -1 ⊗d C ------→ s -1 C F (s -1 C).
The term d 2 is the unique derivation of degree -1 which extends the infinitesimal decomposition map of C, up to desuspension:

s -1 C s -1 ∆ (1,1) ------→ s -2 F c (C) (2) ∼ = F (s -1 C) (2) F (s -1 C).
The semi-augmentation ε is the natural projection

F (s -1 C) = I ⊕ s -1 C ⊕ • • • ։ I.
It is an augmentation of properads but it is not an augmentation of dg properads in general.

3.3.7. Lemma. The derivation d on F (s -1 C) satisfies d 2 = 0.
Proof. First of all, if we define the weight on C by C (0) = I, C (1) = C and C (n) = 0 when n = 0, 1 and extend it to F (s -1 C), we get that the map d 0 is of weight -1, the map d 1 is of weight 0 and the map d 2 is of weight 1. Thus, the term d 2 split in the following way

d 2 = d 0 2 weight=-2 + d 0 d 1 + d 1 d 0 weight=-1 + d 1 2 -d 0 d 2 -d 2 d 0 weight=0 -(d 1 d 2 + d 2 d 1 ) weight=1 + d 2 2 weight=2
. 3.3.8. Lemma. The cobar construction is a functor Ω : coaug. curved coprop. → sdg prop..

So

Proof. Let f : (C, d C , θ) → (C ′ , d C ′ , θ ′ ) be a morphism between coaugmented curved copr- operads. The map F (f ) : F (s -1 C) → F (s -1 C ′ ) is a map of properads by construction and d ′ 2 • F (f ) = F (f ) • d 2 since f is a morphism of coproperads. The equality d C ′ • f = f • d C implies d ′ 1 • F (f ) = F (f ) • d 1 , the equality θ ′ • f = θ implies d ′ 0 • F (f ) = F (f ) • d 0 and then F (f ) commutes with the differential.
3.4. Bar-cobar adjunction. The cobar construction on conilpotent curved coproperads and the bar construction on dg properads represent the bifunctor of curved twisting morphisms and form a pair of adjoint functors. The counit of adjunction provides a cofibrant replacement functor for dg properads. Proof. We make the first bijection explicit. A morphism of sdg properads f α : F (s -1 C) → P is uniquely determined by a map sα : s -1 C → P of degree 0 such that s 

Moreover, f α commutes with the differentials if and only if the following diagram commutes

s -1 C sα / / d0+d1-d2 P dP / / P F (s -1 C) F (sα) / / F (P), γ O O
where γ is induced by γ. We have

d P • (sα) = s(d P • α) γ • F (sα) • d 0 = e • (sθ) = s(e • θ) γ • F (sα) • d 1 = sα • (id s -1 ⊗ d C ) = -s(α • d C ) γ • F (sα) • d 2 = γ • (sα ⊠ (1, 1) sα) • s -1 ∆ (1, 1) = s(γ • (α ⊠ (1, 1) α) • ∆ (1, 1) ).
Thus the commutativity of the previous diagram is equivalent to the equality

e • θ -α • d -γ • (α ⊠ (1, 1) α) • ∆ (1, 1) = d P • α, that is ∂(α) + α ⋆ α = Θ.
We now make the second bijection explicit. A morphism of coaugmented coproperads g α : C → F c (sP) is uniquely determined by a map sα : C → sP which sends I to 0, that is by a map α :

C → P of degree -1 satisfying I C α -→ P and C α -→ P ε -→ I are zero.
Moreover, g α commutes with the predifferential and with the curvature if and only if the following diagrams commute

C sα+(sα⊗sα)•∆ (1, 1) / / dC sP ⊕ sP ⊠ (1, 1) sP d bar =d1+d2 and C sα / / sP C θ gα / / BP θ bar }} } } } } } } I. Since α ⋆ α = -(s -1 inc) • d 2 • (sα ⊗ sα) • ∆ (1, 1) + e • θ bar • g α , the commutativity of the diagrams gives ∂(α) + α ⋆ α = Θ.
Moreover, the projections of the curved Maurer-Cartan equation on P and on I give the two commutative diagrams. This concludes the proof.

Examples.

• To the identity morphism id BP : BP → BP of coaugmented curved coproperads corresponds the curved twisting morphism π : BP → P defined by F c (sP) ։ sP ∼ = P P. • To the identity morphism id ΩC : ΩC → ΩC of properads corresponds the curved twisting morphism ι :

C → ΩC defined by C → C ∼ = s -1 C F (sC).
3.4.2. Lemma. For any conilpotent curved coproperad C and for any sdg properad P, every curved twisting morphism α : C → P factors through the universal curved twisting morphisms π and ι:

ΩC fα ! ! g g g g C α / / ι = = { { { { { { { { gα ! ! f f f f P BP, π = = { { { { { { { {
where f α is a morphism of sdg properads and g α is a morphism of conilpotent curved coproperads.

Proof. The dashed arrows are just the images of α by the two bijections of Proposition 3.4.1.

3.4.3. Weight filtration. We say that a dg S-bimodule M is weight filtered differential graded, or wfdg for short, when it is endowed with a filtration of dg S-bimodules F ω M , ω ∈ N. When M is a (co)properad, we assume that the (co)product preserves the filtration. In the weight filtered setting, we only consider those twisting morphisms that preserve the filtration. A wfdg properad P is called connected when F 0 P = I (= Im(e)).

We endow any free properad F (V ) with a weight grading given by the number of generators. This induces a weight filtration on any properad F (V )/(R) defined by generators and relations. Sub-coproperads of F c (V ) are also weight filtered by the number of generators. When P is a wfdg properad, BP comes equipped with a weight filtration. An element in BP is a connected graph whose vertices are labelled by elements µ i of P. It is in the component of weight ω of BP if there exist ω i such that any µ i is in the component of weight ω i of P and ω i ≤ ω. Similarly, we endow ΩC with a weight filtering when C is weight filtered.

The curved twisting morphism π preserves the weight filtration.

3.4.4. Theorem. Let (P, d P , ε) be a connected wfdg semi-augmented properad. The counit of the bar-cobar adjunction is a quasi-isomorphism of wfdg semi-augmented properads, that is the bar-cobar construction ΩBP is a resolution of P ΩBP ∼ -→ P.

When P is concentrated in non-negative degree, the bar-cobar construction is a cofibrant properad for the model category defined in Appendix A of [START_REF] Merkulov | Deformation theory of representation of prop(erad)s ii[END_REF].

Proof. We work in the model category defined in Appendix A of [START_REF] Merkulov | Deformation theory of representation of prop(erad)s ii[END_REF]. Since ΩBP is quasifree, the remark after Corollary 40 of [START_REF] Merkulov | Deformation theory of representation of prop(erad)s ii[END_REF] gives that ΩBP is cofibrant when we assume that P is non-negatively homologically graded.

As explained in the previous section, ΩBP = (F (s

-1 F (sP)), d = d 0 + d 1 -d 2 )
is weight filtered by F p when P is weight filtered. We have

d 0 : F p → F p-1 and d 1 : F p → F p and d 2 : F p → F p ,
where d 0 is induced by θ bar , d 1 is induced by d bar and d 2 is induced by the coproduct on F c (sP). So F p is a filtration of chain complexes, it is exhaustive and bounded below and we can apply the classical theorem of convergence of spectral sequences (cf. Theorem 5.5.1 of [START_REF] Weibel | An introduction to homological algebra[END_REF]) to obtain

E • p,q ⇒ H p+q (ΩBP).
We endow P with a filtration F ′ p induced by the weight. This is a filtration of chain complexes since d P preserves the weight filtration. The filtration F ′ p is exhaustive and bounded below so we can apply the classical theorem of convergence of spectral sequences (cf. Theorem 5.5.1 of [START_REF] Weibel | An introduction to homological algebra[END_REF]) to obtain E ′ • p,q ⇒ H p+q (P). The counit of the bar-cobar adjunction preserves the filtration and induces a map of spectral sequences

E • p,q → E ′ • p,q . Moreover, E 0 •,• = ΩB(grP).
The graded properad grP associated to the filtration F ′ p on P is always augmented and connected (in the sense of [START_REF] Vallette | A Koszul duality for PROPs[END_REF], that is grP is weight graded and grP (0) = I). However, it is not reduced, that is P(0, n) and P(m, 0) can be non zero. Theorem 5.8 of [START_REF] Vallette | A Koszul duality for PROPs[END_REF] applies to reduced properads for which the author provides a canonical writing of an element in P ⊠ P in order to define a contracting homotopy. Such a canonical writing is not possible for non reduced properads. However, it is possible to define a contracting homotopy by means of a sum over all the possibilities. This works for non reduced properads (over a field of characteristic 0) and Theorem 5.8 of [START_REF] Vallette | A Koszul duality for PROPs[END_REF] extends to non reduced properads. So we get that E 1 p,q = gr (p) (H p+q (grP)). Thus the counit of the bar-cobar adjunction induces an isomorphism of spectral sequences E • p,q → E ′ • p,q when • ≥ 1. Since E ′ • p,q ⇒ H p+q (P), the same is true for E • p,q and the morphism ΩBP ∼ -→ P is a quasi-isomorphism.

Remarks.

(1) In [START_REF] Positselski | Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence[END_REF], Positselski defined a bar construction and a cobar construction between curved dg algebras and curved dg coalgebras. The curvatures on both sides encode the default of augmentation or of coaugmentation. In this paper, we are interested only in the default of augmentation and the picture becomes asymmetric. When we reduce our bar construction and our cobar construction to semi-augmented algebras and curved coalgebras, we recover the particular case of [START_REF] Positselski | Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence[END_REF] where the curved coalgebras are coaugmented. (2) In [START_REF] Nicolás | The bar derived category of a curved dg algebra[END_REF], Nicolàs proved a similar bar-cobar adjunction on the level of algebras and coalgebras. But the picture is dual. The bar construction goes from curved associative algebras to conilpotent graded-augmented coalgebras (see [START_REF] Nicolás | The bar derived category of a curved dg algebra[END_REF] for the precise definitions) and the cobar construction goes the other way around. In his case, the curvature does not control the default of augmentation with respect to the composition product and with respect to the dg setting, but only with respect to the dg setting. In the spirit of [START_REF] Nicolás | The bar derived category of a curved dg algebra[END_REF], we should say the dual statement: the default of augmentation with respect to the dg setting measures the curvature.

3.4.5. Homotopy Frobenius algebras. A unital and counital Frobenius algebra is a quintuple (A, µ, ∆, e, η) where A is a vector space, µ : A⊗A → A is a commutative and associative product, ∆ : A → A ⊗ A is a cocommutative and coassociative coproduct, e : K → A is a unit for the product and η : A → K is a counit for the coproduct such that the product µ = c c and the coproduct ∆ = c c satisfy the Frobenius relation

c c = c c c c = c c c c .
In operadic terms, we get that A is an algebra over the properad ucF rob :=

F ( • , • , c c , c c )/( c c c -c c c c c , c c c c c - c c c , • c c -|, c c • -|, • c c -|, • c c -|, c c - c c c c, c c c c -c c c c ).
This properad is not augmented but Theorem 3.4.4 applies and we get as a corollary:

3.4.6. Theorem. The bar-cobar resolution on ucF rob is a cofibrant resolution of the properad ucF rob, that is

ΩB ucF rob ∼ -→ ucF rob.
We define a ucF rob-algebra up to homotopy as an algebra over this resolution. As proved in [START_REF] Abrams | Two-dimensional topological quantum field theories and Frobenius algebras[END_REF][START_REF] Kock | Frobenius algebras and 2D topological quantum field theories[END_REF], the datum of a 2-dimensional topological quantum field theory, 2d-TQFT for short is equivalent to a unital and counital Frobenius algebra structure. Therefore, we should be able to use this to study 2d-TQFT with homotopy methods.

There is an interesting application in differential geometry. With the present resolution of ucF rob and with the methods of [START_REF] Wilson | Free frobenius algebra on the differential forms of a manifold[END_REF], one endows the differential forms Ω dR (M ) on a closed, oriented manifold M with a structure of ucF rob-algebra up to homotopy, which induces the ucF rob-algebra structure on the cohomology H • (M ).

Curved Koszul duality theory

We extend the Koszul duality theory for homogeneous quadratic properads [START_REF] Vallette | A Koszul duality for PROPs[END_REF] and quadraticlinear properads [START_REF] Gàlvez-Carrillo | Homotopy Batalin-Vilkovisky algebras[END_REF] to inhomogeneous quadratic properads with a quadratic, linear and constant presentation. When the properad is inhomogeneous quadratic, it is not necessarily augmented. Therefore we introduce a Koszul dual coproperad endowed with a curvature, which measures this failure. As explained in Section 2, an associative algebra is a particular kind of properad. Hence this section applies to associative algebras as well to recover the construction given by [START_REF] Positsel | Nonhomogeneous quadratic duality and curvature[END_REF] and [START_REF] Polishchuk | Quadratic algebras[END_REF]. However, the presentation given here is slightly different and more general: it works without any finiteness assumption. We end the section with a Poincaré-Birkhoff-Witt theorem for properads. 4.1. Inhomogeneous quadratic properad. An inhomogeneous quadratic properad is a properad P which admits a presentation of the form P = F (V )/(R), where V is a degree graded S-bimodule and (R) is the ideal generated by a degree graded S-bimodule R ⊂ I ⊕ V ⊕ F (V ) (2) . The superscript (2) indicates the weight degree. We require that R is a direct sum of (homological) degree homogeneous subspaces. Thus the properad P is degree graded and has a weight filtration induced by the S-bimodule of generators V . We assume further that the following conditions hold:

(I) The space of generators is minimal, that is R ∩ {I ⊕ V } = {0}. (II) The space of relations is maximal, that is (R) ∩ {I ⊕ V ⊕ F (V ) (2) } = R.
Let q : F (V ) ։ F (V ) (2) be the canonical projection and let qR ⊂ F (V ) (2) be the image under q of R. We consider the quadratic properad qP := F (V )/(qR). Since R ∩ {I ⊕ V } = {0}, there exists a map ϕ : qR → I ⊕ V such that R is the graph of ϕ:

R = {X -ϕ(X), X ∈ qR} = {X -ϕ 1 (X) + ϕ 0 (X), X ∈ qR, ϕ 1 (X) ∈ V, ϕ 0 (X) ∈ K}.
The weight grading on the free properad F (V ) induces the following filtration on P

F p := π ⊕ ω≤p F (V ) (ω) ,
where π stands for the canonical projection F (V ) ։ P. We denote the associated graded properad by gr(P). The relations qR hold in gr(P). Therefore, there exists an epimorphism of graded properads p : qP ։ gr(P).

We assume throughout that every inhomogeneous quadratic properad is semi-augmented in the sense of Section 3.3.1. We recall that sV stands for the homological suspension of V , and that the Koszul dual coproperad of the homogeneous quadratic properad qP is the coproperad cogenerated by sV with corelations in s 2 qR (see Section 2.2 of [START_REF] Vallette | Manin products, Koszul duality, Loday algebras and Deligne conjecture[END_REF]) denoted:

qP ¡ := C(sV, s 2 qR) = I ⊕ sV ⊕ s 2 qR ⊕ • • • .
It is a subcoproperad of the cofree coproperad F c (sV ) on sV . In the cofree coproperad F c (V ), the weight of an element corresponds to the number of generating elements from V used to write it. There exists a unique coderivation d : qP ¡ → F c (sV ) of degree -1 (see Section 3.2 in [START_REF] Merkulov | Deformation theory of representation of prop(erad)s i[END_REF]) which extends the map

qP ¡ ։ s 2 qR s -1 ϕ1 ----→ sV.
Moreover, we denote by θ : qP ¡ → I the map of degree -2

qP ¡ ։ s 2 qR s -2 ϕ0
----→ I.

4.1.1. Lemma. Let P = F (V )/(R) be an inhomogeneous quadratic properad. Condition (II) implies that:

• The coderivation d on F c (sV ) restricts to a coderivation d P ¡ of degree -1 on the subcoproperad qP ¡ = C(sV, s 2 qR);

• The coderivation d P ¡ satisfies d P ¡ 2 = (θ ⊗ id qP ¡ -id qP ¡ ⊗ θ) • ∆ (1,1) ; • The coderivation d P ¡ satisfies θ • d P ¡ = 0.
Proof. We define the map

ψ : qR ⊗ V ⊕ V ⊗ qR → F (V ) (≤3) r ⊗ v + v ′ ⊗ r ′ → (r + ϕ 1 (r) -ϕ 0 (r)) ⊗ v + v ′ ⊗ (r + ϕ 1 (r) -ϕ 0 (r)).
Since any kind of tree in F (V ) (3) has one of the forms

c c c c c c , c c c c c c , ``Ó Ó Ó Ó Ó Ó , an element in qP ¡ (3) has two decompositions by ∆ (1, 1) in s 2 qR ⊗ sV ⊕ sV ⊗ s 2 qR ∼ = s 3 (qR ⊗ V ⊕ V ⊗ qR).
Moreover, the two decompositions give the same image with an opposite sign (Koszul sign rule) under ψ. Therefore ψ • (s

-3 ∆ (1, 1) )(qP ¡ (3) ) ⊂ {R ⊗ V ⊕ V ⊗ R} ∩ {I ⊕ V ⊕ V ⊗2 }. Condition (II) implies in particular {R ⊗ V + V ⊗ R} ∩ {I ⊕ V ⊕ V ⊗2 } ⊂ R.
Projecting on each direct summand, we can rewrite this inclusion as the system of equations

(1) (s -1 ϕ 1 ⊗ id sV + id sV ⊗ s -1 ϕ 1 ) • ∆ (1,1) (qP ¡(3) ) ⊂ qP ¡(2) (projection on V ⊗2 ); (2) s -1 ϕ 1 • (s -1 ϕ 1 ⊗ id sV + id sV ⊗ s -1 ϕ 1 ) -(s -2 ϕ 0 ⊗ id sV -id sV ⊗ s -2 ϕ 0 ) • ∆ (1,1) |qP ¡(3) = 0 (projection on V ); (3) s -2 ϕ 0 • (s -1 ϕ 1 ⊗ id sV + id sV ⊗ s -1 ϕ 1 ) • ∆ (1,1) |qP ¡(3) = 0 (projection on I).
By the universal property which defines qP ¡ = C(sV, s 2 qR), it is enough to check that d(qP ¡ (3) ) ⊂ qP ¡(2) to restrict d to a coderivation of degree -1 on qP ¡ , this is exactly the meaning of equation (1). The equation (2) corresponds to the second point of the lemma restricted to qP ¡ (3) . The equality extends to qP ¡ since d P ¡ 2 = 1 2 [d P ¡ , d P ¡ ] and (θ⊗id qP ¡ -id qP ¡ ⊗θ)•∆ (1,1) are coderivations (see Lemma 3.2.2). The equation (3) corresponds to the third point of the lemma since θ is zero outside of qP ¡ (2) . 4.2. Koszul dual coproperad. Let P be an inhomogeneous quadratic properad with a quadratic, linear and constant presentation P = F (V )/(R) (such that Conditions (I) and (II) hold). The Koszul dual coproperad of P is the weight graded curved coproperad

P ¡ := (qP ¡ , d P ¡ , θ).

Koszul properad.

A properad is called a Koszul properad if it admits an inhomogeneous quadratic presentation P = F (V )/(R) such that Conditions (I) and (II) hold and such that its associated quadratic properad qP := F (V )/(qR) is Koszul in the classical sense.

Since the underlying S-bimodule of P ¡ is I ⊕ sV ⊕ s 2 qR ⊕ • • • , we define the map of coproperads g κ : P ¡ F c (sV ) BP. This map commutes with the predifferentials and with the curvatures, hence it is a morphism of curved coproperads. So by Lemma 3.4.2, there is a curved twisting morphism κ : P ¡ BP π -→ P. It is explicitly equal to P ¡ ։ sV s -1 --→ V P. By Theorem 3.4.1, we also obtain a map of dg properads ΩP ¡ ։ ΩBP → P. 4.3.1. Theorem. Let P be a Koszul properad. The cobar construction on the Koszul dual curved coproperad P ¡ is a cofibrant resolution of P:

ΩP ¡ ∼ -→ P.
Proof. We work in the model category defined in the Appendix A of [START_REF] Merkulov | Deformation theory of representation of prop(erad)s ii[END_REF]. Since we are working in the non-negatively graded case and ΩP ¡ is quasi-free, the remark after Corollary 40 gives that ΩP ¡ is cofibrant.

Let C := s -1 qP ¡ be the desuspension of the augmentation coideal of the coproperad qP ¡ . So, the underlying S-bimodule of ΩP ¡ is F (C). Let us consider the new "homological" degree induced by the weight of elements of qP ¡ , given by the weight in F c (V ), minus 1. As in the proof of the Appendix A of [START_REF] Gàlvez-Carrillo | Homotopy Batalin-Vilkovisky algebras[END_REF], Theorem 30, we call this grading the syzygy degree. Therefore, the syzygy degree of an element in F (C) is given by the sum of the weight of the elements which label its vertices minus the numbers of vertices. Since the weight of an element in C is greater than 1, the syzygy degree on F (C) is non-negative. The term d 0 , induced by θ, the term d 1 , induced by d P ¡ and the term d 2 , induced by the infinitesimal decomposition map on C, lower the syzygy degree by 1. Hence, we get a well-defined non-negatively graded chain complex. We endow ΩP ¡ = F (C) with a filtration given by the total weight, that is the weight of an element in F (C) is the sum of the weight of the elements which label the vertices. We have

d 0 : F p → F p-2 and d 1 : F p → F p-1 and d 2 : F p → F p .
This filtration is exhaustive and bounded below so we can apply the classical theorem of convergence of spectral sequences (cf. Theorem 5.5.1 of [START_REF] Weibel | An introduction to homological algebra[END_REF]) to obtain that E • p, q ⇒ H p+q (ΩP ¡ ). The filtration F p induces a filtration F p on the homology of ΩP ¡ such that

E ∞ p, q ∼ = F p (H p+q (ΩP ¡ ))/F p-1 (H p+q (ΩP ¡ )) =: gr (p) (H p+q (ΩP ¡ )). Moreover, we have E 0 p, q = F p (F (C) p+q )/F p-1 (F (C) p+q ) = F (C) (p)
p+q , that is the elements of syzygy degree equal to p+q and of weight p. The differential d 0 on the first term of the spectral sequence is given by d 2 . Hence, since qP is Koszul and concentrated in syzygy degree 0, we have E 1 p, q = qP (p) p+q (Theorem 7.6 of [START_REF] Vallette | A Koszul duality for PROPs[END_REF] by means of the extension seen in the proof of Theorem 3.4.4 applies), concentrated in the line p + q = 0 and the spectral sequence collapses at rank 1. We have

E 1 p, -p = qP (p) ∼ = E ∞ p, -p ∼ = gr (p) (H 0 (ΩP ¡ )) E 1 p, q = 0 = E ∞ p, q ∼ = gr (p) (H p+q (ΩP ¡ )) when p + q = 0.
For the syzygy degree, we have

H 0 (ΩP ¡ ) ∼ = F (V )/Im(d 0 + d 1 -d 2 ) ∼ = P.
So, the quotient gr (p) (H 0 (ΩP ¡ )) is equal to gr (p) (P). Finally, the morphism ΩP ¡ ∼ -→ P is a quasi-isomorphism. 4.3.2. Theorem (Poincaré-Birkhoff-Witt theorem). When P is a Koszul properad, the natural epimorphism of properads qP ։ grP is an isomorphism of bigraded properads, with respect to the weight grading and the homological degree. Therefore, the following S-bimodules, graded by the homological degree, are isomorphic:

P ∼ = gr(P) ∼ = qP.
Proof. It is a direct corollary of the previous proof.

To show Condition (II), that is (R) ∩ {I ⊕ V ⊕ F (V ) (2) } = R, can be difficult. The following proposition shows that we do not have to compute the full (R) but only the part {R ⊗ V + V ⊗ R}.

Proposition. A properad P is Koszul if and only if it admits a presentation

P = F (V )/(R) such that R ⊂ I ⊕ V ⊕ F (V ) (2) satisfying the following conditions (I) R ∩ {I ⊕ V } = {0}; (II') {R ⊗ V + V ⊗ R} ∩ {V ⊕ F (V ) (2) } ⊂ R;
(III) the associated quadratic properad qP := F (V )/(qR) is Koszul in the classical sense.

Proof. Definition 4.3 always implies conditions (I), (II') and (III). First, we have to remark that the property (II') instead of (II) is enough to show Lemma 4.1.1 and to define P ¡ . Moreover, Theorem 4.3.1 and Theorem 4.3.2 are still true. Then we can apply the Poincaré-Birkhoff-Witt Theorem which gives in weight 2 that qR = q((R) ∩ {I ⊕ V ⊕ F (V ) (2) }). This last equality is equivalent to (II) under the condition (I). 4.3.4. Coloured properad. Following the ideas of van der Laan in [van03], we can extend this curved Koszul duality to coloured properads. Martin Doubek told us that our construction applies to the coloured operad Iso encoding chain complexes isomorphisms to recover the resolution given by Markl in [START_REF] Markl | Ideal perturbation lemma[END_REF]. Thanks to this resolution, Markl defines a notion of strong homotopy equivalence and proves a relax version of the perturbation lemma, that he calls Ideal Perturbation Lemma.

Resolution of algebras

We now give a resolution of a semi-augmented dg properad (P, d P , ε) as a P-bimodule. In the operadic case, this provides functorial cofibrant resolutions for P-algebras. We use such resolutions to define a cohomology theory associated to unital associative algebras in the next section.

Resolutions of properads as bimodule.

We generalize the resolution given by the bar construction with coefficients to properads (not necessarily augmented). Moreover, for an inhomogeneous properad which is Koszul, we get a smaller resolution of it called the Koszul complex. 

:= d M ⊠ id N + id M ⊠ ′ d N .
5.1.2. Twisted composite product. In this section, we study the free dg P-bimodules over a curved coproperad (C, d C , θ). To any map α : C → P of degree -n, we associate the unique derivation (see Section 3.2 of [START_REF] Merkulov | Deformation theory of representation of prop(erad)s ii[END_REF] for precise definitions) of left P-modules d l α : P ⊠ C → P ⊠ C of degree -n which extends the map

C ∆ (1, 1) ----→ C ⊠ (1, 1) C α⊗idC ----→ P ⊠ (1, 1) C.
By symmetry, we define also the derivation of right P-modules d r α : C ⊠ P → C ⊠ P of degree -n. We endow the free P-bimodule P ⊠ C ⊠ P with the following derivation of P-bimodules:

d α := d P⊠C⊠P -d l α ⊠ id P + id P ⊠ ′ d r α ,
where d P⊠C⊠P := d P ⊠ id C⊠P + (id P ⊠ ′ d C ) ⊠ id P + id P⊠C ⊠ ′ d P with (id P ⊠ ′ d C ) ⊠ id P = id P ⊠ ′ (d C ⊠ id P ) by associativity of the composite product.

5.1.3. Lemma. On the P-bimodule P ⊠ C ⊠ P, the derivation d α satisfies

d α 2 = -d l ∂(α)+α⋆α-Θ ⊠ id P + id P ⊠ ′ d r ∂(α)+α⋆α-Θ .
Thus, when α ∈ Tw(C, P), we have d α 2 = 0 and the derivation d α defines a differential on the chain complex

P ⊠ α C ⊠ α P := (P ⊠ C ⊠ P, d α = d P⊠C⊠P -d l α ⊠ id P + id P ⊠ ′ d r α ).
Proof. We do the computation for d P = 0, the general case follows immediately. We have

d α 2 = ((id P ⊠ ′ d C ) ⊠ id P -d l α ⊠ id P + id P ⊠ ′ d r α ) 2 = (id P ⊠ ′ d 2 C ) ⊠ id P + (d l α ) 2 ⊠ id P + id P ⊠ ′ (d r α ) 2 -((id P ⊠ ′ d C ) • d l α + d l α • (id P ⊠ ′ d C )) ⊠ id P + id P ⊠ ′ ((d C ⊠ id P ) • d r α + d r α • (d C ⊠ id P )) -(d l α ⊠ id P ) • (id P ⊠ ′ d r α ) -(id P ⊠ ′ d r α ) • (d l α ⊠ id P ). Since d C 2 = (θ ⊗ id C -id C ⊗ θ) • ∆ (1, 1) , we have (id P ⊠ ′ d C 2 ) ⊠ id P = d l Θ ⊠ id P -id P ⊠ ′ d r Θ .
Moreover, the associativity of γ and the coassociativity of ∆ (1, 1) give (d l α ) 2 = -d l α⋆α and (d r α ) 2 = d r α⋆α where the sign is given by the Koszul sign rule and the fact that α has degree -1. Then (id

P ⊠ ′ d C ) • d l α + d l α • (id P ⊠ ′ d C ) = d l α•dC and (d C ⊠ id P ) • d r α + d r α • (d C ⊠ id P ) = d r α•dC since d C is a coderivation. Finally, (d l α ⊠ id P ) • (id P ⊠ ′ d r α ) + (id P ⊠ ′ d r α )
• (d l α ⊠ id P ) = 0 since α has degree -1. This gives the result. 5.1.4. Koszul morphism. A curved twisting morphism α : (C, d C , θ) → (P, d P , ε) is called a Koszul morphism when the map ξ defined by P ⊠ α C ⊠ α P ։ P ⊠ I ⊠ P ∼ = P ⊠ P γ -→ P is a resolution of P, that is ξ : P ⊠ α C ⊠ α P ∼ -→ P.

5.1.5. Proposition. Let P be a wfdg semi-augmented properad. The curved twisting morphism π : BP → P is a curved Koszul morphism, that is, the twisted composite product P ⊠ π BP ⊠ π P is a resolution of the properad P called the augmented bar resolution

ξ : P ⊠ π BP ⊠ π P ∼ -→ P.
Proof. The method is the same as in the proof of Theorem 3.4.4. The weight filtration on P induces a filtration on BP given by the total weight. This gives a filtration F p by the weight on P ⊠ π BP ⊠ π P and a filtration F ′ p by the weight on P. These filtrations are filtrations of chain complexes since the differentials either preserve or decrease the weight. The filtrations are exhaustive and bounded below and the map ξ preserves the filtrations. We apply the classical theorem of convergence of spectral sequences (cf. Theorem 5.5.1 of [START_REF] Weibel | An introduction to homological algebra[END_REF]) to obtain

E • p,q ⇒ H p+q (P ⊠ π BP ⊠ π P) E ′ • p,q ⇒ H p+q (P). Since the differential of E 0
•,• is the weight preserving part of the differential of P ⊠ π BP ⊠ π P, the isomorphism of graded vector spaces E 0 •,• ∼ = grP ⊠ π B(grP) ⊠ π grP is an isomorphism of dg modules. Since grP is an augmented properad, we can apply Theorem 4.17 of [START_REF] Vallette | A Koszul duality for PROPs[END_REF] (we use the same trick as in the proof of Theorem 3.4.4 for the fact that the properad is non reduced a priori) to grP with R = grP to get that E 1 p,q = H p+q (gr (p) P) = E ′ 1 p,q . Then E r p,q and E ′ r p,q coincide for r ≥ 1 and ξ induces an isomorphism between E ∞ p,q and E ′ ∞ p,q ∼ = gr (p) H p+q (P). This concludes the proof.

Let P be an inhomogeneous properad, P ¡ its Koszul dual cooperad and κ : P ¡ → P the associated curved twisting morphism. The chain complex P ⊠ κ P ¡ ⊠ κ P is called the total Koszul complex.

5.1.6. Proposition. Let P be an inhomogeneous properad and P ¡ be its Koszul dual coproperad. When P is Koszul, the curved twisting morphism κ : P ¡ → P is a curved Koszul morphism, that is, the total Koszul complex P ⊠ κ P ¡ ⊠ κ P is a resolution of the properad P

ξ : P ⊠ κ P ¡ ⊠ κ P ∼ -→ P.
Proof. The proof is similar to the proof of Proposition 5.1.5. The differences are the following. Since P is Koszul, the Poincaré-Birkhoff-Witt Theorem 4.3.2 gives E 0

•,• = grP ⊠ κ qP ¡ ⊠ κ grP ∼ = qP ⊠ κ qP ¡ ⊠ κ qP. So the Koszul criterion (Theorem 7.8 of [START_REF] Vallette | A Koszul duality for PROPs[END_REF] with the trick of the proof of Theorem 3.4.4 for the non reduced case) and the comparison Lemma (Theorem 5.4 of [START_REF] Vallette | A Koszul duality for PROPs[END_REF]) with L = qP ⊠ κ qP ¡ ⊠ κ qP, L ′ = qP, P ′ = qP, M = qP ⊠ κ qP ¡ and M ′ = I, and the Poincaré-Birkhoff-Witt Theorem 4.3.2 apply to give that E 1 p,q = H p+q (qP (p) ) ∼ = H p+q (gr (p) P). 5.2. Resolution of algebras. From now on, we consider only operads and cooperads since there is in general no notion of free algebra over a properad. In this section, we use the resolutions of P as a P-bimodule of the previous section to provide functorial resolutions for algebras over P as, for example, for unital associative algebras (see Section 6). 

d C 2 = (θ • id C ) • ∆ C ,
where the • inside the parentheses is the operadic composition product and the • outside the parentheses is the composition of morphisms.

A morphism of (C,

d C , θ)-coalgebras f : (C, ∆ C , d C ) → (C ′ , ∆ C ′ , d C ′ ) is a morphism f : C → C ′ of C-
coalgebras which commutes with the predifferentials d C and d C ′ . 5.2.2. Relative composition product. Let (P, d P , ε) be a sdg operad. A right P-module (L, ρ) is an S-module endowed with a map ρ : L • P → L compatible with the product and the unit of the operad. We define similarly the notion of left P-module. We define the relative composite product L • P R of a right P-module (L, ρ) and a left P-module (R, λ) by the coequalizer diagram

L • P • R ρ•idR / / idL•λ / / L • R / / / / L • P R ,
where in the above line all • are the operadic composition product. These definitions extend to the dg setting. For a P-algebra (A, γ A ), we define on C(A) = (C • P) • P A the maps

d 1 : C(A) dC•idA+idC • ′ dA -----------→ C(A) d 2 := d r α • P id A : C(A) ∆ (1) •idA ------→ C • (1) C(A) (idC⊗α)•idA --------→ C • P(A) idC •γA ----→ C(A),
where Here,∆ (1) corresponds to the infinitesimal decomposition map ∆ (1,1) and C • (1) C corresponds to C ⊠ (1,1) C when we restrict to cooperads.) 5.2.4. Lemma. Since α is a curved twisting morphism, we have

(C • P) • A d r α •idA -----(C • P) • A ։ C(A) factors through C(A) to give d r α • P id A since γ A is a dg map. (
(d 1 + d 2 ) 2 = (θ • id C(A) ) • ∆ C(A) . Proof. We compute            d 1 2 = d C 2 • id A = ((θ ⊗ id C -id C ⊗ θ) • ∆ (1) ) • id A = (θ • id C(A) ) • (∆ (1) • id A ) -d r Θ • P id A = (θ • id C(A) ) • ∆ C(A) -d r Θ • P id A (θ is non-zero only on P(1)) d 2 2 = d r α⋆α • P id A d 1 d 2 + d 2 d 1 = d r ∂(α) • P id A . Thus (d 1 + d 2 ) 2 = d r ∂(α)+α⋆α-Θ • P id A + (θ • id C(A) ) • ∆ C(A)
and we get the result since α is a curved twisting morphism. -----------→ P(C)

The bar construction on

A is the (C, d C , θ)-coalgebra B α A := (C(A), d := d 1 + d 2 ).
d 2 : P(C) idP • ′ ∆C ------→ P • (1) C(C) (idP ⊗α)•idC --------→ P • P(C) γ•idC ----→ P(C).
5.2.6. Lemma. Since α is a curved twisting morphism, we have

(d 1 -d 2 ) 2 = 0. Proof. We compute    d 1 2 = id P • ′ d C 2 = id P • ′ ((θ • id C ) • ∆ C ) d 2 2 = -(γ • id C ) • (id P • (α ⋆ α) • id C ) • (id P • ′ ∆ C ) -d 1 d 2 -d 2 d 1 = -(γ • id C ) • (id P • ∂(α) • id C ) • (id P • ′ ∆ C ). Thus (d 1 -d 2 ) 2 = -(γ • id C ) • (id P • (∂(α) + α ⋆ α -Θ) • id C ) • (id P • ′ ∆ C ) = 0 since α is a curved twisting morphism.
The cobar construction on C is the dg P-algebra Ω α C := (P(C), d ΩαC := d 1d 2 ). 5.2.7. The bar-cobar resolution. The bar-cobar construction on a P-algebra provides a functorial cofibrant resolution of any P-algebra when the curved twisting morphism α is Koszul. 5.2.8. Proposition. Let α : (C, d C , θ) → (P, d P , ε) be a curved Koszul morphism between a curved cooperad (C, d C , θ) and a sdg operad (P, d P , ε) which are bounded below. Then the barcobar resolution Ω α B α A is a resolution of the P-algebra A, that is,

Ω α B α A = P • α C • α A ∼ -→ A.

Moreover when A is bounded below, it is a cofibrant resolution.

Proof. There is a model category structure on the category of right P-modules given in Proposition 14.1.A of [START_REF] Fresse | Modules over operads and functors[END_REF]. The cofibrant objects are described in Proposition 14.2.2 of [START_REF] Fresse | Modules over operads and functors[END_REF] and since the cooperad C and the operad P are bounded below, the right P-module P • α C • α P is cofibrant. Finally, Theorem 15.1.A of [START_REF] Fresse | Modules over operads and functors[END_REF] gives that

P • α C • α A ∼ = (P • α C • α P) • P A ∼ -→ P • P A ∼ = A is a resolution.
In the (semi-)model category structure on P-algebras defined in [START_REF] Fresse | Modules over operads and functors[END_REF], cofibrant P-algebras are retracts of quasi-free P-algebras endowed with a good filtration (Proposition 12.3.8 in [START_REF] Fresse | Modules over operads and functors[END_REF]). This is the case here since the chain complexes are bounded below. 5.2.9. Theorem. Let (P, d P , ε) be a sdg operad. The curved Koszul morphism π : BP → P gives a resolution

Ω π B π A = P • π BP • π A ∼ -→ A,
which is cofibrant when A is bounded below. When P is a Koszul operad, the total Koszul complex gives a smaller resolution

Ω κ B κ A = P • κ P ¡ • κ A ∼ -→ A,
which is cofibrant when A is bounded below.

Proof. It is a direct corollary of Proposition 5.2.8 and Propositions 5.1.5 and 5.1.6.

Homotopy and cohomology theories for unital associative algebras

In this section we describe a simple resolution of the operad which encodes unital associative algebras, uAs, obtained by the methods described in section 4. In fact, many of the theorems in this section can be generalized in a straightforward way to any (inhomogeneous) Koszul properad. Algebras over the resolution uA ∞ are called homotopy unital A ∞ -algebras, or uA ∞ -algebras, for short. We use some nice properties of our resolution to prove that uA ∞ -algebras may be replaced up to equivalence by strictly unital associative algebras. Using our explicit transfer formulae, we show that a unital associative algebra may be transferred to homology as a strictly unital A ∞algebra (see Definition 6.5.1). This gives a proof that one may always choose a minimal model for a uA ∞ -algebra which is actually a strictly unital A ∞ -algebra. In this sense, it is "enough" to resolve only the associative relation of uAs, obtaining the operad A ∞ , and then adjoin a unit, giving the operad which encodes strictly unital A ∞ -algebras. As a corollary of our discussion, we provide sufficient conditions so that: "When trying to find resolutions of algebraic structures with units, it is 'good enough' to resolve the structure (without its units) first, and then append the units to that resolution." The notion of uA ∞ -algebras is exactly the notion of "A ∞ -algebras with a homotopy unit" of [START_REF] Fukaya | Lagrangian Intersection and Floer Theory: Anomaly and Obstruction[END_REF]. Concerning the notion of ∞-morphism and the nice properties of uA ∞ -algebras, we still have to compare them with the theory presented in [START_REF] Fukaya | Lagrangian Intersection and Floer Theory: Anomaly and Obstruction[END_REF].

6.1. Homotopy unital associative algebras. We give a presentation for the operad encoding unital associative algebras. This presentation is an inhomogeneous quadratic presentation and we can apply the theory of the previous sections to compute its Koszul dual cooperad, and hence an explicit resolution.

We use the notation n := {1, . . . , n}. The symbol µ stands for an element in a cooperad and the symbol µ stands for an element in an operad. 6.1.1. The operad encoding unital associative algebras. We denote by uAs the operad whose representations in the category of dg modules are precisely differential graded unital associative algebras. We consider the following presentation

uAs = F ( • , c c ) /( c c c -c c c c c , • c c -|, c c • -|).
Remark. We fix this presentation to make our computations of the Koszul dual, uAs ¡ and ultimately uA ∞ . Note that this presentation for uAs is an inhomogeneous quadratic presentation (see 4.1 for a definition).

To make the Koszul dual cooperad, uAs ¡ of uAs explicit, we compute its associated quadratic operad:

quAs ¡ = F ( • , c c )/( c c c -c c c c c , • c c , c c • ) = • ⊕ As.
Let's take a moment to explain the notation on the right-hand side of the equation above.

6.1.2. Definition. Let P, Q be augmented operads. Then the direct sum operad P ⊕ Q is defined to be F P, Q / (R P , R Q , R PQ ), where R P , R Q are the relations in P, Q respectively, and R PQ is the collection of all compositions of a pair of elements, one in P, one in Q.

Remark. The direct sum operad is the product in the category of augmented operads. 6.1.3. Proposition. If P and Q are both quadratic augmented operads, then P ⊕ Q is a quadratic augmented operad.

Proof. For any two presented operads,

P = F (V 1 ) / (R 1 ) , Q = F (V 2 ) / (R 2 ), the direct sum operad P ⊕ Q is naturally presented by F (V 1 , V 2 ) / (R 1 , R 2 , R V1V2 ). If (V 1 , R 1
) and (V 2 , R 2 ) are both quadratic presentations, then so is the natural presentation for P ⊕ Q.

We will make use of the identification quAs ¡ = • ⊕ As to compute the Koszul dual cooperad of quAs ¡ (see 6.1.4). Before we compute the resulting cooperad, quAs ¡ , we first describe it.

Linearly, we have an isomorphism quAs ¡ ∼ = K µ S n n≥1,S⊂n . The element µ S n ∈ quAs ¡ corresponds to a (co)operation with n -|S| inputs: however, we draw this operation as a corolla with n leaves, and a cork covering each of the leaves in the set S. For example, µ {1,4} 5 corresponds to • y yc c

• o o. We point out here that the space of n-to-1 operations is infinite dimensional for every n ≥ 0. To see this, note that every n-to-1 corolla is an n-ary operation, and by adding a corked leaf, we get a new n-to-1 operation. Continuing to add corked leaves gives infinitely many new n-ary operations.

Also notice that µ ∅ n = y yc c o o for n ≥ 1 spans the subcooperad corresponding to As ¡ and µ

∅ 1 = |, µ {1} 1 = • spans the subcooperad corresponding to • ¡ (with µ ∅
1 corresponding to the identity cooperation in both cases).

Using this basis, the infinitesimal decomposition ∆ (1) is given by summing over all possible (nontrivial) ways to split the corolla into two, preserving the number of leaves and the number and positions of the corks. Pictorially:

• s s s u u u • j j j j j → Σ ± s s s • u u u • s s s u u u . For example, ∆ (1) t t • t t = t t • t t - • t t t t t t t t - t t t t • t t t t .
We compute the Koszul dual cooperad, quAs ¡ by the following proposition. 6.1.4. Proposition. Let P = F (V )/(R) be a quadratic operad where V is finite-dimensional. Then by Proposition 6.1.3 the operad • ⊕P is given by ( • ⊕P)(0) := (K• • )⊕P(0) and ( • ⊕P)(n) := P(n) for all n = 0 and endowed with the operadic structure given by the (trivial) structure on • , the structure on P, and trivial composition between • and P. The Koszul dual cooperad of • ⊕ P is given by the coaugmented cooperad

( • ⊕ P) ¡ ∼ = K • {µ S , where µ ∈ P ¡ (n), S ⊂ n and |µ S | = |µ| + |S|}.
The set S is the set of the positions of the "corks" • . Let ξ ∈ P ¡ (n) such that ∆ (1) (ξ) = (µ; id, . . . , id p , ν, id, . . . , id r ), where µ ∈ P ¡ (m), ν ∈ P ¡ (q), p + 1 + r = m and p + q + r = n.

Then the infinitesimal decomposition map on ξ S ∈ ( • ⊕ P) ¡ , where S ⊂ n, is given by

∆ (1) (ξ S ) = (-1) ǫ (µ S1 ; id, . . . , id p-|S ′ 1 | , ν S2 , id, . . . , id r-|S ′′ 1 |
),

where ǫ = |ν||S 1 | + |S 2 ||S ′′ 1 |, µ S1 ∈ P ¡ (m -|S 1 |), ν S2 ∈ P ¡ (q -|S 2 |) and    S ′ 1 ⊂ p S 2 ⊂ q S ′′ 1 ⊂ {p + 2, . . . , p + 1 + r} such that S = S ′ 1 ⊔ (S 2 + p) ⊔ (S ′′ 1 + q -1) and S 1 = S ′ 1 ⊔ S ′′ 1 . Proof. The operad • ⊕ P is a quadratic operad given by F ( • ⊕ V )/(R ⊕ V ⊗ • ) where V ⊗ • := {µ {k} , with µ ∈ V (n) and {k} ⊂ n}.
We follow Appendix B of [START_REF] Loday | Dialgebras. In Dialgebras and related operads[END_REF] defining P ! := F (V ∨ )/(R ⊥ ), where V ∨ := V * ⊗ (sgn) with the signature representation (sgn) and R ⊥ is the orthogonal space for the natural pairing -, -:

V ∨ ⊗ V → K. Since (V ⊗ • ) ⊥ = F (2) (V ∨ ), we get ( • ⊕ P) ! = F ( • ∨ ⊕ V ∨ )/(R ⊥ ∩ F (2) (V ∨ )) ∼ = {µ S
, where µ ∈ P ! (n) and S ⊂ n} and the composition is induced, up to signs, by the composition on P ! .

Following [LV], we have P ¡ := S -1 c ⊗ H (P ! ) * where S -1 c is the operadic desuspension. Then the Koszul dual cooperad of • ⊕ P is equal to ( • ⊕ P) ¡ ∼ = {µ S , where µ ∈ P ¡ (n), S ⊂ n and |µ S | = |µ| + |S|} and the (infinitesimal) cocomposition is given, up to signs, by the (infinitesimal) cocomposition of P ¡ . To compute the signs, we recall that the corks • have degree -1 and we apply the Koszul rule. The sign (-1) |ν||S1| in the formula of the proposition comes from the fact that ν passes through the corks indexed by S 1 and the sign (-1) |S2||S ′′ 1 | comes from the fact that the corks indexed by S 2 pass through the corks indexed by S ′′ 1 . 6.1.5. Corollary. The Koszul dual cooperad associated to quAs is equal to

quAs ¡ = ( • ⊕ As) ¡ ∼ = K µ S n ,
where

µ n ∈ As ¡ (n), S ⊂ n, so µ S n ∈ uAs ¡ (n -|S|) and |µ S n | = n -1 + |S|.
The infinitesimal decomposition map is given by

∆ (1) (µ S n ) = p+q+r=n p+1+r=m (-1) (q+1)(r+|S1|)+|S2||S ′′ 1 | (µ S1 m ; id, . . . , id p-|S ′ 1 | , µ S2 q , id, . . . , id r-|S ′′ 1 | ),
where

   S ′ 1 ⊂ p S 2 ⊂ q S ′′ 1 ⊂ {p + 2, . . . , p + 1 + r} such that S = S ′ 1 ⊔ (S 2 + p) ⊔ (S ′′ 1 + q -1) and S 1 = S ′ 1 ⊔ S ′′ 1 .
Moreover, the coproduct is given by

∆(µ S n ) = i1-|T1|+•••+i m-|T | -|T m-|T | |=n-|S| (-1) ǫ (µ T m ; µ T1 i1 , . . . , µ T m-|T | i m-|T | ), where T ⊂ m T j ⊂ i j such that T = R 0 ⊔ . . . ⊔ R m-|T | and S = R 0 ⊔ (T 1 + |R 0 |) ⊔ (R 1 + i 1 ) ⊔ . . . ⊔ (T m-|T | + |R 0 | + • • • + |R m-|T |-1 | + i 1 + • • • + i m-|T |-1 ) ⊔ (R m-|T | + i 1 + • • • + i m-|T | )
and where

ǫ := |T |(n -m) + m-|T | j=1 (i j -1)(k -j + |T 1 | + • • • + |T j-1 |) + |R j |(|T 1 | + • • • + |T j |) .
Proof. Provided that the degree of µ n ∈ As ¡ (n) is n -1 and provided the formula for the coproduct in As ¡ given in [LV], chapter 8, where we include the decomposition involving

µ m = | or µ q = |, ∆ (1) (µ n ) = p+q+r=n p+1+r=m
(-1) (q+1)r (µ m ; id, . . . , id p , µ q , id, . . . , id r ), Proposition 6.1.4 gives the description of quAs ¡ and of the infinitesimal decomposition map. The coproduct is given in the same way as explained in the proof of Proposition 6.1.4 thanks to the coproduct in As ¡ given in [LV] by

∆(µ n ) = i1+•••+im=n (-1) ǫ ′ (µ m ; µ i1 , . . . , µ im ),
where ǫ ′ := m j=1 (i j -1)(kj). 6.1.6. Proposition. The operad quAs is Koszul, that is

quAs • κ quAs ¡ ∼ -→ I.
Proof. We remark that quAs

• κ quAs ¡ ∼ = • ⊕    S⊆n (As • κ As ¡ )(n)    n≥1 . Since • c c = 0 = c c •
in quAs, the differential on (As • κ As ¡ )(n) is given by the usual differential on As • κ As ¡ except for d(

• ) = • . Moreover, we know that (As

• κ As ¡ )(n) ∼ -→ I(n). Thus quAs • κ quAs ¡ ∼ -→ I.
6.1.7. Lemma. The curved cooperad uAs ¡ is equal to the curved cooperad

uAs ¡ = (quAs ¡ , ∆ quAs ¡ , 0, θ) ,
where ∆ quAs ¡ was made explicit in Corollary 6.1.5 and

θ(µ S n ) = -1 • | if n = 2 and, S = {1} or S = {2} 0 otherwise .
Proof. For the definitions given in 4.1, we remark that the space of generators defining uAs satisfies Conditions (I) and (II) of Section 4.1. According to the definition 4.2, we just have to compute the predifferential d uAs ¡ and its curvature θ. Since the relations in uAs have no linear terms, the predifferential d uAs ¡ = 0. To compute θ, we find the elements of weight 2, which correspond to the relations in quAs. We identify each cooperation with the corresponding leading quadratic term of a relation in uAs, and then assign to that operation the opposite of the corresponding constant term of the relation:

c c c -c c c c c ←→ c c → 0 • c c ←→ • c c → -1 • | c c • ←→ c c • → -1 • | 6.1.8.
Theorem. The cobar construction on the Koszul dual curved cooperad associated to uAs provides a cofibrant resolution of uAs uA ∞ := ΩuAs ¡ ∼ -→ uAs.

Proof. By Proposition 6.1.6, quAs is Koszul, and then Theorem 4.3.1 gives the result.

We now make the operad uA ∞ more explicit. The underlying operad of the dg operad Ω uAs ¡ is the free operad F s -1 quAs ¡ = F s -1 µ S n , n ≥ 2, S ⊂ n and n = 1, S = {1}, giving a free generating set for Ω uAs ¡ . As a derivation of the composition structure, the differential d = d 0 + 0d 2 is completely determined by its action on the generators:

(1)

                 • c c → • c c -| c c • → • c c -| • y yc c • o o → Σ(-1) ǫ c c • c c
• where the last line means: for (n, S) = (2, {1}) and (n, S) = (2, {2}), have

d(µ S n ) = p+q+r=n p+1+r=m (-1) q(r+|S1|)+|S2||S ′ 1 |+p+1 (µ S1 m ; id, . . . , id p-|S ′ 1 | , µ S2 q , id, . . . , id r-|S ′′ 1 | ),
Remark. On the right-hand side of equation ( 1), the two-level trees now represent the compositions in the free operad.

We obtain the following description for a uA ∞ -algebra structure.

6.1.9. Proposition. A uA ∞ -algebra structure on a dg module (A, d A ) is given by a collection of maps, µ {1} 1 , {µ S n } n≥2, S⊂n where each µ S n is a map A ⊗(n-|S|) → A of degree n + |S| -2 which together satisfy the following identities:

∂(µ {1} 2 ) = µ ∅ 2 • (µ {1} 1 , -) -id A ∂(µ {2} 2 ) = µ ∅ 2 • (-, µ {1} 
1 )id A and for (n, S) = (2, {1}) and (n, S) = (2, {2})

∂(µ S n ) = p+q+r=n p+1+r=m (-1) q(r+|S1|)+|S2||S ′ 1 |+p+1 µ S1 m • (id, . . . , id p-|S ′ 1 | , µ S2 q , id, . . . , id r-|S ′′ 1 |
).

Proof. Since uA ∞ is a quasi-free operad, a map µ A : uA ∞ (A) → A of degree 0 is determined by a collection of maps,

µ {1} 1 , {µ S n } n≥2, S⊂n where each µ S n is a map A ⊗(n-|S|) → A of degree n + |S| -2, defined by: µ S n (a 1 ⊗ • • • ⊗ a n-|S| ) := µ A (µ S n ⊗ a 1 ⊗ • • • ⊗ a n-|S|
). The fact that the map µ A is a dg map gives the uA ∞ relations among the µ S n . Remark. This notion of uA ∞ -algebra corresponds to the notion of homotopy unit for an A ∞algebra given in [START_REF] Fukaya | Lagrangian Intersection and Floer Theory: Anomaly and Obstruction[END_REF]. 6.2. Infinity-morphisms. Following the classical case, we describe the infinity-morphisms of algebras over the Koszul resolution of a Koszul inhomogeneous quadratic operad. We give explicit formulae for infinity-morphism of uA ∞ -algebras.

Unless we indicate otherwise, for the rest of this section, P will denote a Koszul inhomogeneous quadratic operad, P ¡ its curved Koszul dual cooperad and P ∞ := ΩP ¡ denotes the Koszul resolution of P (see Section 4).

+ i1-|T1|+•••+i m-|T | -|T m-|T | |=n-|S| -ǫ(-1) (m+|T |-1)(n-m+|S|-|T |) µ T m (B) • f T1 i1 , . . . , f T m-|T | i m-|T | ,
where

   S ′ 1 ⊂ p S 2 ⊂ q S ′′ 1 ⊂ {p + 2, . . . , p + 1 + r} such that S = S ′ 1 ⊔ (S 2 + p) ⊔ (S ′′ 1 + q -1) and S 1 = S ′ 1 ⊔ S ′′ 1 , where T ⊂ m T j ⊂ i j such that T = R 0 ⊔ . . . ⊔ R m-|T | and S = R 0 ⊔ (T 1 + |R 0 |) ⊔ (R 1 + i 1 ) ⊔ . . . ⊔ (T m-|T | + |R 0 | + • • • + |R m-|T |-1 | + i 1 + • • • + i m-|T |-1 ) ⊔ (R m-|T | + i 1 + • • • + i m-|T | )
and where ǫ :

= |T |(n -m) + m-|T | j=1 (i j -1)(k -j + |T 1 | + • • • + |T j-1 |) + |R j |(|T 1 | + • • • + |T j |) .
Proof. An ∞-morphism A B is a uAs ¡ -coalgebra morphism F : uAs ¡ (A) → uAs ¡ (B). Such a morphism is completely determined by its image on the cogenerators of uAs ¡ (B), that is by a map f : uAs ¡ (A) → B (of degree 0), or equivalently by a collection of maps {f S n : A ⊗(n-|S|) → B} n≥1, S⊂n of degree n + |S| -1. The fact that F commutes with the predifferential is equivalent to the following commutative diagram

uAs ¡ (A) ∆•idA / / d1+d2 uAs ¡ • uAs ¡ (A) id•f / / uAs ¡ (B) dB +d |B 2 uAs ¡ (A) f / / B.
Making this diagram explicit gives exactly the formulae of the Proposition.

Example. For n = 1 and S = {1}, the formula gives

∂ f {1} 1 • = µ {1} 1 (A) • f ∅ 1 -µ {1} 1 (B) • , that is, the element f {1} 1
bounds the failure of f ∅ 1 to preserve the unit. Remark. In [START_REF]Homotopy unital A∞-algebras[END_REF], Lyubashenko proposes a definition for ∞-morphism between uA ∞ -algebras as a resolution of bimodule. It would be interesting to compare his definition with our definition.

Before we end the section, we use the results above to give the following definition. 6.2.5. Definition. A ∞-morphism of P ∞ -algebras F : A B is a quasi-isomorphism if the chain map f ∅ 1 : A → B induces an isomorphism in homology. 6.3. Rectification. We now prove that for every uA ∞ -algebra A there is a universal ∞-quasimorphism I A between A and a uAs-algebra. This universal morphism takes the form of the unit of an adjunction. We make use of the bar and cobar constructions of algebras over Koszul operads (Sections 5.2.3, 5.2.5) for uA ∞ -algebras and uAs-algebras.

The twisting morphisms ι : uAs ¡ → ΩuAs ¡ = uA ∞ and κ : uAs ¡ → uAs are defined in Section 3.4 and 4.3. 6.3.1. Lemma. Let A be uA ∞ -algebra. The morphism of dg S-modules A Ω κ B ι A is a quasiisomorphism.

Proof. We endow uAs • κ uAs ¡ • ι ΩuAs ¡ with a filtration F p given by

F p (uAs • uAs ¡ • ΩuAs ¡ ) = ω+m≤p (uAs • uAs ¡ ) (ω) • (ΩuAs ¡ ) m .
Moreover we endow ΩuAs ¡ with a filtration given by the homological degree, so that the morphism ΩuAs ¡ uAs • κ uAs ¡ • ι ΩuAs ¡ preserves the filtrations. Since the weight on uAs • κ uAs ¡ is nonnegative and ΩuAs ¡ is non-negatively graded, the filtrations are bounded below. Moreover, the filtrations are exhaustive. Thus, we can apply the classical theorem of convergence of spectral sequences (cf. Theorem 5.5.1 of [START_REF] Weibel | An introduction to homological algebra[END_REF]) to obtain

E • p,q ⇒ H p+q (uAs • κ uAs ¡ • ι ΩuAs ¡
) and E ′ • p,q ⇒ H p+q (ΩuAs ¡ ) and an induced morphism between the spectral sequences. The differential on E 0 p,q coincides with the differential on quAs • quAs ¡ , so Proposition 6.1.6 shows that E 1 p,q ∼ = E ′ 1 p,q . It follows that E r p,q ∼ = E ′ r p,q for all r ≥ 1 and we get that ΩuAs ¡ ∼ -→ uAs

• κ uAs ¡ • ι ΩuAs ¡ . We have Ω κ B ι A ∼ = (uAs • κ uAs ¡ • ι uA ∞ ) • uA∞ A. The short exact sequence (uAs • κ uAs ¡ • ι uA ∞ ) • uA ∞ • A → (uAs • κ uAs ¡ • ι uA ∞ ) • A → (uAs • κ uAs ¡ • ι uA ∞ ) • uA∞ A
induces a long exact sequence in homology. Since we work over a field of characteristic 0, the ring K[S n ] is semi-simple by Maschke's theorem, that is every K[S n ]-module is projective. So the Künneth formula implies that H • ((uAs

• κ uAs ¡ • ι uA ∞ ) • uA ∞ • A) ∼ = H • (uA ∞ ) • H • (uA ∞ ) • H • (A) and H • ((uAs • κ uAs ¡ • ι uA ∞ ) • A) ∼ = H • (uA ∞ ) • H • (A). Finally, this gives that H • ((uAs • κ uAs ¡ • ι uA ∞ ) • uA∞ A) ∼ = H • (uA ∞ ) • H•(uA∞) H • (A) ∼ = H • (A).
6.3.2. Theorem (Universal rectification). Let A be a uA ∞ -algebra. There is a dg uAs-algebra, Ω κ B ι A and an ∞-quasi-isomorphism I A : A ∼ Ω κ B ι A so that for any dg uAs-algebra B and any ∞-morphism F : A B, there is a unique dg uAs-algebras map f : Ω κ B ι A → B so that F = f • I A , that is the following diagram commutes:

Ω κ B ι A f # # q q q q q A F / / IA O O B Proof.
The map I A is defined by i S n (a 1 , . . . , a n-|S| ) = µ S n (a 1 , . . . , a n-|S| ) ∈ B ι A ֒→ Ω κ B ι A. By direct computation, this map is a ∞-morphism between the uA ∞ -algebras A and Ω κ B ι A. To see that this map is a quasi-isomorphism, observe that i ∅ 1 is equal to the inclusion map in Lemma 6.3.1. To define the map f , we note that the ∞-morphism of uA ∞ -algebras F is determined by the collection of maps f S n , or by the collection of elements {f S n (a 1 , . . . , a n-|S| )} in B. We define the module map B ι A → B by µ S n (a 1 , . . . , a n-|S| ) → f S n (a 1 , . . . , a n-|S| ). This map is a dg module map if and only if F is a ∞-morphism. Since the uAs-algebra Ω κ B ι A is freely generated by {µ S n (a 1 , . . . , a n-|S| )}, we define the map f to be the lift of the above dg map to a uAs-algebras map Ω κ B ι A → B. By construction we have f

• I A = F .
Let us interpret the result above in terms of the categories of algebras. Since we have an operad map uA ∞ ։ uAs, we have an inclusion functor (one-to-one on objects and on morphisms) uAs-alg ֒→ uA ∞ -alg, which we denote by i. Denote by R the assignment that takes each uA ∞algebra A to the uAs-algebra R(A) = Ω κ B ι (A). Because the arrow A IA --→ iR(A) is universal, R can be extended to morphisms so that it becomes a functor from uA ∞ -alg → uAs-alg:

R(A) R(F ) / / R(B) A O O F / / B.

O O

We summarize in the following proposition.

6.3.3. Proposition. The functor i, the object-assignment R, and the universal morphisms A IA --→ iR(A) determine the extension of R to a functor R : uA ∞ -alg → uAs-alg so that I : id → iR is the unit of an adjunction:

uA ∞ -alg R / / uAs-alg i o o .
Proof. See Mac Lane [START_REF] Maclane | Categories for the working mathematician[END_REF] chapter 4, theorem 1.

It is tempting to try to put a model category structure on the right-hand side so that this pair of functors becomes some kind of Quillen equivalence, as Lefevre-Hasegawa [START_REF] Lefevre-Hasegawa | Sur les A-infini catégories[END_REF] did for A ∞ -algebras and As-algebras. (Actually, A ∞ -algebras are not quite a model category, see the referenced paper for more details). Instead we observe that each functor takes quasi-isomorphisms to quasi-isomorphisms, and so each functor induces a functor between the homotopy categories (localizations of each category by its quasi-isomorphisms). We claim these induced functors are an adjoint-equivalence of the homotopy categories. 6.4. Transfer formulae. In this section we provide formulae, based on labelled trees, for the pullback of a uA ∞ -structure along a strong deformation retract.

For this entire section, suppose V, A are chain complexes, and

V i / / A h | | p o o ,
is a strong deformation retract, i.e., p and i are chain maps, where p • i = id V and d A h + hd A = id A -i • p. Moreover, suppose A is a uA ∞ -algebra, with structure map µ A .

6.4.1. Definition. Let n ≥ 2, S ⊂ n, we define the set T S n be the set of planar, rooted trees, with n leaves, and a cork above each ith leaf if i ∈ S which is labelled by either the word "connected" or "disconnected." We define

T ∅ 1 = { | } and T {1} 1 = { •connected }.
6.4.2. Definition. Let T ∈ T S n , and let v be any internal vertex in T . We denote by in(v) the ordered (left-to-right) set of incoming edges to the vertex v. For each element i ∈ in(v), we define l i and c i as follows:

(1) l i is the total number of leaves without connected corks in the tree T whose (unique) path to the root passes through edge i (2) c i is the total number of incoming edges to v without connected corks to the right of edge i.

6.4.3. Definition. For any T ∈ T S n and any internal vertex v ∈ T , we define ǫ

(v) = 1≤i<j≤|in(v)| (l i + 1) l j + i∈in(v) with a connected cork on it c i .
For any tree T ∈ T S n , we set (2) ǫ(T ) = internal vertices v∈T ǫ(v).

6.4.4. Definition. Let g structure : T S n → Hom(V ⊗(n-|S|) , V ) be the set map that takes an element T ∈ T S n and assigns to each vertex v the operation µ

S(v) in(v) (A)
where S(v) are the positions of the connected corks, the operation µ 1 1 to each disconnected cork, the homotopy h to each internal edge (that is not the outgoing edge of a connected cork), and the map i to each leaf without a cork above it, and the map p to the root of the tree. After this assignment, one composes the operations as indicated by internal edges to arrive at an operation V ⊗(in(v)-|S|) → V . Let g morphism : T S n → Hom(V ⊗(n-|S|) , A) be the set map that takes an element T ∈ T S n and assigns to the tree the same element as g structure (T ), but with the homotopy h assigned to the root, rather than the map p.

Examples. Let T be the element of T {1,4} 5 that looks like

T = disconnected • Õ Õ Õ Õ W W W W W connected • Õ Õ Õ Õ Õ `v3 Ò Ò Ò Ò Ò v4 W W W W W v2 Ò Ò Ò Ò Ò V V V V V Ö Ö Ö Ö Ö v1 .
The sign (-1) ǫ(T ) for this tree is given by

ǫ(T ) = ǫ(v 1 ) + ǫ(v 2 ) + ǫ(v 3 ) + ǫ(v 4 ) = [(1 + 1) • 1 + (1 + 1) • 3 + (1 + 1) • 3 + 0] + [(1 + 1) • 2 + 0] + [(1 + 1) • 1 + 0] + [(1 + 1) • 1 + 1] = 14 + 4 + 2 + 3 = 23 ≡ 1 mod 2.
The operation assigned to the tree T, g structure (T ), is given by the following composition of operations:

g structure (T ) = i i i h A • i W W W W Õ Õ Õ Õ A Õ Õ Õ Õ h Õ Õ Õ W W W W W • Õ Õ Õ Õ `ÕÕ Õ Õ A W W W W A Ò Ò Ò Ò h W W W h Ò Ò Ò V V V V Ö Ö Ö Ö A .
p while the morphism assigned to the tree T, morphism (T ) is given by: give V the structure of a uA ∞ -algebra. Moreover, the maps defined by

g morphism (T ) = i i i h A • i W W W W Õ Õ Õ Õ A Õ Õ Õ Õ h Õ Õ Õ W W W W W • Õ Õ Õ Õ `ÕÕ Õ Õ A W W W W A Ò Ò Ò Ò h W W W h Ò Ò Ò V V V V Ö Ö Ö Ö A . h 6 
(4) i S n := T ∈T S n (-1) ǫ(T ) g morphism (T ) .
provide a ∞-quasi-isomorphism of uA ∞ -algebras I : V ∼ A.

Proof. A combinatorial argument similar to the argument for transferring A ∞ -structures [START_REF] Markl | Transfering A∞ (strongly homotopy associative) structures[END_REF] will suffice.

Examples. For small values of n, the transferred structure is given by

µ {1} 1 (V ) := p • µ {1} 1 (A) = A • p µ ∅ 2 (V ) := p • µ ∅ 2 (A) • i ⊗2 = i i X X X Ô Ô Ô A p µ {1} 2 (V ) := i A • h X X X X X X Ô Ô Ô A p - i • W W W W W Õ Õ Õ Õ A p i {2} 2 (V ) := i A • h Ô Ô Ô X X X Ô Ô Ô A h + i W W W W Õ Õ Õ Õ Õ • A h
For the reader familiar with transfer of A ∞ -structures, restricting attention to the operations µ ∅ n (V ) recovers the familiar transfer formulae [Kad83, Mer99, KS06, Mar06, LV].

Remark. Though our signs differ from [START_REF] Markl | Transfering A∞ (strongly homotopy associative) structures[END_REF], we use his ideas to develop a coherent sign convention for our transfer formulae. The reader should note that our function ǫ(v) differs from the θ(v) in [START_REF] Markl | Transfering A∞ (strongly homotopy associative) structures[END_REF] even on the operations µ ∅ n (V ), in small ways, such as right-to-left orientation of trees instead of left-to-right. Instead we choose our signs to agree with [START_REF] Stasheff | Homotopy associativity of H-spaces. I[END_REF][START_REF] Loday | Algebraic operads[END_REF] when restricted to the classical A ∞ operations. 6.5. Comparing unital-(associative-infinity) and (unital-associative)-infinity. In previous sections, we have developed the definition of the operad uA ∞ whose algebras are homotopy unital A ∞ -algebras. There have been several definitions of homotopy unital A ∞ -algebras [FOOO09, KS06, Lyu02], and these notions have been compared in [START_REF] Lyubashenko | Unital A infinity categories[END_REF]. There is also a definition of strictly unital A ∞ -algebras [KS06, FOOO09]-we will refer to these as suA ∞ -algebras throughout this section-they may be thought of as unital-(associative-infinity) algebras as opposed to our (unital-associative)-infinity algebras. We will compare uA ∞ -algebras to suA ∞algebras. This comparison includes Theorem 6.5.3, which states that every uA ∞ -algebra has an equivalent unital-A ∞ -structure on its homology. We demonstrate that this theorem is fairly general, and applies to many algebraic structures with units, including unital commutative associative algebras, unital Batalin-Vilkovisky algebras, and co-algebraic versions of these structures.

First we define suA ∞ -algebras and their ∞-morphisms. 6.5.1. Definition. An suA ∞ -algebra (A, {µ n } n≥1 , e) is an A ∞ -algebra (A, {µ n } n≥1 ) with e ∈ A such that d A (e) = 0 and e is a left and right unit for µ 2 , and e annihilates µ n for n ≥ 3 [START_REF] Kontsevich | Notes on A∞-algebras, A∞-categories and non-commutative geometry[END_REF].

Remarks.

(1) There exists a dg-operad whose algebras are precisely suA ∞ -algebras, and we denote it by suA ∞ . Furthermore, the operad suA ∞ is the quotient of uA ∞ by the ideal generated by µ S n n≥2, |S|≥1 . A quick computation yields that this map is a quasiisomorphism.

(2) The operad suA ∞ is not cofibrant. If it were, the lifting property would imply that it is a retract of uA ∞ by the quotient map uA ∞ ∼ -→ suA ∞ , which a computation shows is impossible.

We now describe a diagram of categories of algebras. We will use the following notation

• As-alg: the category of associative algebras with algebra homomorphisms • uAs-alg: the category of unital associative algebras with algebra homomorphisms that preserve the unit • ∞-A ∞ -alg: the category of A ∞ -algebras with ∞-morphisms • ∞-uA ∞ -alg: the category of uA ∞ algebras with ∞-morphisms • suA ∞ -alg: the category of suA ∞ -algebras with the A ∞ ∞-morphisms for which f 1 preserves the unit and f n annihilates it (for n ≥ 2) First, we have the following diagram of operads:

uAs suA ∞ ∼ o o o o uA ∞ ∼ o o o o As O O O O A ∞ ∼ o o o o O O O O
On the categories of algebras, the diagram becomes:

uAs-alg / / suA ∞ -alg / / ∞-uA ∞ -alg As-alg / / ∞-A ∞ -alg
We proved earlier (Section 6.3) that the first of the following composition of horizontal inclusions

uAs-alg → ∞-uA ∞ -alg, As-alg → ∞-A ∞ -alg
has a left-adjoint, Ω ι B κ , which we called the universal rectification (it is known that the second has a similarly defined left-adjoint). Each of the inclusions, uAs-alg → As-alg, su-A ∞ -alg → A ∞ -alg has a left-adjoint as well, given by adjoining an element u and extending the product(s) to make u a strict unit (with appropriate annihilation conditions, in the case of suA ∞ -algebras).

We now analyze the relationship between uA ∞ and suA ∞ via our transfer formulae.

6.5.2. Theorem. Let V i / / A h | | p o o
, be a strong deformation retract, and

{ • A , c c A } a strict
uAs-structure on A. Suppose further that h • A = 0. Then the operations µ S n (V ) given by the transfer formulae (see definition in Proposition 6.4.5) have the property that µ S n (V ) = 0 whenever n ≥ 2 and |S| ≥ 1. Furthermore, the uA ∞ -morphism structure J on the chain map i has the property that whenever |S| ≥ 1, J S n = 0, even when n = 1. In particular this means that the transferred uA ∞ structure is an suA ∞ -algebra, and the uA ∞ -∞ quasi-isomorphism is an suA ∞ -∞ quasi-isomorphism.

Proof. For n ≥ 2, |S| ≥ 1, each summand in µ S n (V ) contains as some part of the diagram (of compositions) the following composite:

A • h = h( • A ) = 0,
so each of those operations is itself 0. The same fact gives the result for J, along with the fact that

J {1} 1 = A • h = 0.
The vanishing of these higher operations and morphisms implies that the transferred uA ∞ structure and morphism are strictly-unital, because the operad suA ∞ is the quotient of uA ∞ by precisely these operations.

Remark. We point out that since we are working over a field, and d( • A ) = 0, it is always possible to choose a strong deformation retract between V and A so that h

• A = 0 (provided, of course, V is equivalent to A).
The following corollary of Theorem 6.5.2 is an analogue of Theorem 5.4.2' in [START_REF] Fukaya | Lagrangian Intersection and Floer Theory: Anomaly and Obstruction[END_REF], which they prove in both the filtered and unfiltered setting. 6.5.3. Corollary. Let A be a uA ∞ -algebra. Then there exists a uAs-algebra R, and an suA ∞algebra structure on H • (A) so that A ∼ -→ R and H • (A) ∼ -→ R. That is, for an arbitrary uA ∞algebra A, there is a minimal model for A which is an suA ∞ -algebra.

Proof. By Theorem 6.3.2, we have I A : A ∼ Ω κ B ι A = R(A). Note that in particular, H • (A) ≃ i H • (R(A)). We will denote both by H. In what follows, we prove an analogous theorem for a wide class of properads P. First, we must say what we mean by a "unital version" of P. 6.5.4. Definition. Let P = F (V )/(R) be an inhomogeneous quadratic properad. We say an inhomogeneous quadratic properad uP = F ( • ⊕ V )/(R ⊕ R ′ ) is a unital version of P if and only if

• the map of operads P → uP induced by the inclusion V → • ⊕ V is injective,

• the induced map qP → quP together with the inclusion • quP gives an isomorphism of operads • ⊕ qP ≃ quP, • the inhomogeneous quadratic relations associated to a single composition of the cork with an operation in P has only the leading quadratic term and a constant term.

Remark. The name "unital version" for uP is not always appropriate. For example, if we take for P the operad Lie, then the operad cLie, which governs Lie algebras with a designated central element, is a unital version of Lie as in the above (where the constant term is taken to be zero), though of course a central element is far from what we typically think of as a unit.

Suppose uP is a unital version of P, and that both are inhomogeneous Koszul properads. Then ΩuP ¡ =: uP ∞ ∼ -→ uP, and by Proposition 6.1.4, the underlying coproperad of uP ¡ is isomorphic to • ¡ * qP ¡ . This observation allows us to define "strictly-unital P ∞ -algebras," or suP ∞ -algebras, as we defined suA ∞ : we can identify the "unital homotopies" as those made of a (co)operation µ α ∈ qP ¡ with some configuration S of corks above the leaves. 6.5.5. Definition. Suppose uP is a unital version of P, and that both are inhomogeneous Koszul properads. We define the properad suP ∞ as the quotient of uP ∞ by the (differential) properadic ideal generated by the operations µ S α : for µ α ∈ qP ¡ and S = ∅ . That is, we quotient by all the "unital relations" and "unital homotopies."

Remark. Though it looks like we only quotient by unital homotopies in the above, taking the differential ideal generated by the unital homotopies means we also quotient by the image under d uP∞ of the unital homotopies with weight 2, which are precisely the unital relations.

If uP is a unital version of P, and both are inhomogeneous Koszul properads, the quotient map suP ∞ ։ uP is a quasi-isomorphism. In general, however, the operad suP ∞ is not cofibrant. Even so, we have the following transfer theorem for suP ∞ -algebras. 6.5.6. Theorem. Let uP be a unital version of P, and suppose both are inhomogeneous Koszul.

Then given any uP-algebra A and a strong deformation retract

V i / / A h | | p o o
, where the homotopy h satisfies h( • A ) = 0, the transferred (uP) ∞ -algebra is an suP ∞ -algebra structure, and the uP ∞ ∞-morphism structure on J is an suP ∞ ∞-morphism.

6.5.7. Corollary. Suppose we have properads P, uP as in Theorem 6.5.6, and suppose A is a uPalgebra. Then there is an suP ∞ -algebra structure on the homology of A and an suP ∞ ∞-quasi isomorphism H ∼ A.

Proof. It is a corollary of the proof for uAs, given the universal rectification and transfer formulae for arbitrary Koszul inhomogeneous quadratic properads uP (which are not made explicit in this paper).

6.5.8. Corollary. In the following list of pairs, (P, uP), uP is a unital model for P and both are inhomogeneous Koszul. In particular, each uP-algebra structure may be transferred to an equivalent suP ∞ structure on homology in the above sense.

(1) (Com, uCom), where uCom is the operad governing unital commutative associative algebras, (2) (Lie, cLie), where cLie is the operad governing Lie algebras with a designated central element, (3) (Gerst, uGerst), where uGerst is the operad governing unital Gerstenhaber algebras, ie, Gerstenhaber algebras with a unit for the commutative associative product which is annihilated by the bracket, (4) (BV, uBV), where uBV is the operad governing unital BV-algebras, ie, BV algebras with a unit for the commutative associative product which is annihilated by the bracket and the delta operator (see [START_REF] Gàlvez-Carrillo | Homotopy Batalin-Vilkovisky algebras[END_REF] for a treatment of BV as an inhomogeneous Koszul operad).

Remark.

(1) Though we have spoken only about units, counits may be treated similarly.

(2) Treating ucF rob, the properad governing Frobenius algebras with unit and counit, would be interesting to the authors.

6.6. Cohomology theory for unital associative algebra. In this section, we define the André-Quillen cohomology theory for unital associative algebras following the general definition of [START_REF] Millès | André-Quillen cohomology of algebras over an operad[END_REF].

We prove that the cohomology can be written as an Ext-functor and we compare this definition to the Hochschild cohomology theory.

6.6.1. André-Quillen cohomology theory. We consider now the operad P = uAs and the curved cooperad C = uAs ¡ = (quAs ¡ , 0, θ). The Koszul morphism between uAs and uAs ¡ is given by κ : uAs ¡ ։ • ⊕ c c uAs.

Let A be a uAs-algebra. Following Sections 1 and 2 of [START_REF] Millès | André-Quillen cohomology of algebras over an operad[END_REF], we use the cofibrant resolution n is in uAs ¡ (n -|S|). Following the end of Section 2 of [START_REF] Millès | André-Quillen cohomology of algebras over an operad[END_REF], we compute the differential on A ⊗ uAs uAs ¡ (A), which is given by d ϕ := d A⊗ uAs uAs ¡ (A)δ l ϕ + δ r ϕ . The differential d A⊗ uAs uAs ¡ (A) depends only on d A (since d uAs = 0, d uAs ¡ = 0), the map ϕ : uAs ¡ (A) ։ A is the projection and the terms δ l ϕ and δ r ϕ are given by the following proposition. 6.6.2. Proposition. We have

δ l ϕ (a ⊗ (µ S n ⊗ b 1 • • • b n-|S| ) ⊗ c) := ǫ 1 a • b 1 ⊗ (µ S-1 n-1 ⊗ b 2 • • • b n-|S| ) ⊗ c + (-1) n ǫ n-|S| a ⊗ (µ S n-1 ⊗ b 1 • • • b n-|S|-1 ) ⊗ b n-|S| • c,
where ǫ i := (-1) |a|+|bi|(n-2+|S|+|b1|+•••+|bi-1|) if i / ∈ S, 0 otherwise, and

δ r ϕ (a ⊗ (µ S n ⊗ b 1 • • • b n-|S| ) ⊗ c) := (δ • + δ γ )(a ⊗ (µ S n ⊗ b 1 • • • b n-|S| ) ⊗ c) = - S=S1⊔{u}⊔S ′ 1 (-1) |a|+n+|S1| a ⊗ (µ S\u n ⊗ b 1 • • • 1 A • • • b n-|S| ) ⊗ c - {t, t+1}⊔S=S2⊔{t, t+1}⊔S ′ 2 (-1) |a|+t+|S| a ⊗ (µ S2⊔{S ′ 2 -1} n-1 ⊗ b 1 • • • b t • b t+1 • • • b n-|S| ) ⊗ c,
where max S 1 < u < min S ′ 1 and max S 2 < t < t + 1 < min S ′ 2 and δ • holds for the first sum and δ γ for the second. Moreover, d ϕ ( • ) = 0.

Proof. The differential on the cotangent complex is given following the end of Sections 2 of [START_REF] Millès | André-Quillen cohomology of algebras over an operad[END_REF]. We make the computations explicit thanks to the infinitesimal decomposition map of uAs ¡ , described in Corollary 6.1.5. 6.6.4. Ext-functor and comparison with the Hochschild cohomology theory. To a unital associative algebra, we can associate two abelian groups: the Hochschild cohomology groups of A (as defined in [START_REF] Hochschild | On the cohomology groups of an associative algebra[END_REF], or [START_REF] Loday | Cyclic homology[END_REF], chap. 1, for a modern reference), that is, the André-Quillen cohomology groups of the associative algebra A (forgetting the unit), or the André-Quillen cohomology groups of A seen as a unital associative algebra (previous section). We show that the cohomology groups coincide. 6.6.5. Theorem. Let A be a uAs-algebra and let M be a unital A-bimodule. We have H • uAs (A, M ) ∼ = Ext • A⊗ uAs K (Ω uAs (A), M ), where Ω uAs (A) is the unital A-bimodule of Kähler differential forms (see [START_REF] Millès | André-Quillen cohomology of algebras over an operad[END_REF] for more details).
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  , we have to show that each group of terms is equal to zero. The term d 2 0 is zero because im(d 0 ) ⊂ I, and any derivation annihilates I. The sum d 0 d 1 + d 1 d 0 is zero since θ • d C = 0 and d C is zero on I and by the Koszul sign rule. The equality d 2 C = (θ ⊗ id Cid C ⊗ θ) • ∆ (1,1) and the Koszul sign rule give d 1 2d 0 d 2d 2 d 0 = 0. The equality d 1 d 2 + d 2 d 1 = 0 is due to the fact that d C is a coderivation. Finally d 2 2 = 0 by "coassociativity" of ∆ (1,1) and by the Koszul sign rule.

  3.4.1. Theorem. For any conilpotent curved coproperad C and for any sdg properad P, there is are natural correspondences Hom sdg prop. (ΩC, P) ∼ = Tw(C, P) ∼ = Hom coaug. curved coprop. (C, BP).

  -1 C sα -→ P ε -→ I is 0, or equivalently, by a map α : C → P of degree -1 satisfying I C α -→ P and C α -→ P ε -→ I are zero (condition for twisting morphisms when C is coaugmented, see 3.3.2).

5.1. 1 .

 1 Dg composite product. Let (M, d M ) and (N, d N ) be two dg S-bimodules. Recall from [MV07] the differential on the monoidal product ⊠ of two S-bimodules. Let id M ⊠ ′ d N : M ⊠ N → M ⊠ N be the morphism of S-bimodules defined by (id M ⊠ ′ d N )(ρ(m 1 , . . . , m b )σ(n 1 , . . . , n a )ω) := a j=1 ±ρ(m 1 , . . . , m b )σ(n 1 , . . . , d N (n j ), . . . , n a )ω and let d M ⊠ id N : M ⊠ N → M ⊠ N be the morphism of S-bimodules defined by (d M ⊠ id N )(ρ(m 1 , . . . , m b )σ(n 1 , . . . , n a )ω) := b i=1 ±ρ(m 1 , . . . , d M (m i ), . . . , m b )σ(n 1 , . . . , n a )ω. This gives a differential on M ⊠ N by d M⊠N

5.2. 1 .

 1 Coalgebra over a curved cooperad. Let (C, d C , θ) be a curved cooperad. A (C, d C , θ)coalgebra is a triple (C, ∆ C , d C ) where (C, ∆) is a C-coalgebra, and a coderivation d C : C → C of degree -1 such that:

5.2. 3 .

 3 Bar construction of P-algebras. To any curved twisting morphism α : C → P from a curved cooperad (C, d C , θ) to an operad (P, d P , ε), we associate a functor B α : dg (P, d P , ε)-algebras → (C, d C , θ)-coalgebras.

  5.2.5. Cobar construction of a C-coalgebra. Similarly to the previous section, to any curved twisting morphism α : (C, d C , θ) → (P, d P , ε), we associate a functor Ω α : (C, d C , θ)-coalgebras → dg (P, d P , ε)-algebras. For any (C, d C , θ)-coalgebra (C, ∆ C , d C ), we define on P(C) the maps d 1 : P(C) dP •idC +idP • ′ dC

  .4.5. Proposition. The maps defined by ǫ(T ) g structure (T ) .

  Since there exist strong deformation retractsH i / / R(A) h y y p o owhere h annihilates the unit, transferring the uAs structure on Ω κ B ι A along any such strong deformation retract, by Theorem 6.5.2, gives an equivalent suA ∞ -algebra structure on H.

Ω

  κ B κ A = uAs • κ uAs ¡ (A) ∼ -→ Aof Section 5 to compute the André-Quillen cohomology of A thanks to the cotangent complexA ⊗ uAs uAs ¡ (A) ∼ = A uAs ¡ (A) A dd dd d ∼ = A ⊗ uAs ¡ (A) ⊗ A.We denote an element inA ⊗ uAs uAs ¡ (A) by a ⊗ (µ S n ⊗ b 1 • • • b n-|S| ) ⊗ c, where a, b t and c are in A and where µ S

  6.6.3. Proposition. The André-Quillen cohomology groups of a uAs-algebra A with coefficients in a unital A-bimodule M are given byH • uAs (A, M ) := H • (Hom A-bimod. (A ⊗ uAs uAs ¡ (A), M ), ∂), where ∂(f ) := d M • f -(-1) |f | f • d ϕ and A-bimod.is the category of unital A-bimodules.
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Let A be a P ∞ -algebra, and denote its structure map by µ A ∈ Hom dg op (P ∞ , End A ). Then by the bar-cobar adjunction 3.4.1, we have Hom dg operads (ΩP ¡ , End A ) ∼ = Tw(P ¡ , End A ).

By classical Hom-tensor duality, we have the bijection Hom S-Mod (P ¡ , End A ) ∼ = Hom dg mod (P ¡ (A), A) µ A -→ d µA .

We recall the classical lemma, that we can find for example in [LV].

6.2.1. Lemma. A coderivation of P ¡ (A) is completely characterized by its corestriction to the cogenerators Hom mod. (P ¡ (A), A) ∼ = Coder(P ¡ (A))

We call a curved codifferential any coderivation D of degree -1 which satisfies

We have the following extension of a classical result about codifferentials: 6.2.2. Lemma. A P ∞ -algebra structure on A is equivalent to a codifferential on P ¡ (A)

µA is a coderivation. The construction here is the same as the construction in Section 5.2.3 with

According to the proof of Lemma 5.2.4, we only have to remark that D r ∂(µA

and 0 is sent to 0 by reversing the bijection in the Hom-tensor duality, we get the result. 6.2.3. Infinity-morphism of P ∞ -algebras. Let A and B be two P ∞ -algebras, with structure maps µ A and µ B . A ∞-morphism A B of P ∞ -algebras is a dg P ¡ -coalgebra map

This description of ∞-morphisms makes it clear that P ∞ -algebras, ∞-morphisms, and composition given by composition of dg P ¡ -coalgebra maps forms a category.

A uAs ¡ -coalgebras map F : uAs ¡ (A) → uAs ¡ (B) is characterized by its corestriction to B, that is F is determined by a collection of maps f S n : A ⊗(n-|S|) → B. The fact that F commutes with the differentials is equivalent to a family of equations on the f S n . Pictorially, the collection of maps f S n satisfy:

6.2.4. Proposition. Let A, B be two uA ∞ -algebras, and let µ S n (A), µ S n (B) be the respective structure maps. An ∞-morphism between A and B is a collection of maps

Similarly to the case of Hochschild cohomology theory, we define the map

It satisfies dh + hd = id on A ⊗ uAs ¡ (A) ⊗ A. Thus the chain complex

is acyclic since we derive the left-adjoint functor of Kähler differential forms to obtain the cotangent complex, and the cohomology is an Ext-functor.

We use this theorem to compare this cohomology theory to the Hochschild cohomology theory.

6.6.6. Proposition. There is a quasi-isomorphism of unital A-bimodules

Proof. First, we endowed A⊗uAs ¡ (A)⊗A with a filtration given by the number of corks, denoted by

We have d A⊗ uAs uAs ¡ (A) :

Thus the filtration is a filtration of chain complexes. It is bounded below and exhaustive so we can apply the classical theorem of convergence of spectral sequences (cf. Theorem 5.5.1 of [START_REF] Weibel | An introduction to homological algebra[END_REF]) and we obtain a spectral sequence

There is an inclusion of chain complexes i :

where the last isomorphism is only of vector spaces. The projection p : ⊕ p, q E 0 p,q

where C ≥1 is given by elements with at least one cork, is a chain complexes map. We define the map h by

With these definitions, we have p • i = id A⊗uAs ¡ (A)⊗A and id ⊕p, q E 0 p,qi • p = dh + hd. Hence, we have a deformation retract

and the inclusion i is a quasi-isomorphism. It follows that E 1 p,q = 0 when p = 0 and the spectral sequence collapses. Considering the filtration F ′ p (A ⊗ As ¡ (A) ⊗ A) = A ⊗ As ¡ (A) ⊗ A for all p ≥ 0 (bounded below and exhaustive), the inclusion induces a map of spectral sequences which is a quasi-isomorphism on the E 1 -pages and higher. Since E ′ • p,q converges to H p+q (A ⊗ As ¡ (A) ⊗ A) and E • p,q converges to H p+q (A ⊗ uAs ¡ (A) ⊗ A), we get the proposition. 6.6.7. Corollary. Let A be a unital associative algebra. For • ≥ 1, we have H • uAs (A, M ) ∼ = HH •+1 (A, M ). Proof. The cohomology of uAs-algebras is given by the Ext-functor Ext • A⊗ uAs K (Ω uAs (A), M ) (Theorem 6.6.5) and we have the projective resolution A ⊗ uAs ¡ (A) ⊗ A ∼ -→ Ω uAs (A). By Proposition 6.6.6, the projective (quasi-free) A-bimodule A ⊗ As ¡ (A) ⊗ A is also a projective resolution of Ω uAs (A) and computes the Hochschild cohomology (see the definition 1.1.3 in [START_REF] Loday | Cyclic homology[END_REF]).