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INVERSE TUNNELING ESTIMATES AND APPLICATIONS TO

THE STUDY OF SPECTRAL STATISTICS OF RANDOM

OPERATORS ON THE REAL LINE

FRÉDÉRIC KLOPP

Abstract. We present a proof of a Minami type estimate for one dimensional
random Schrödinger operators valid at all energies in the localization regime pro-
vided a Wegner estimate is known to hold. The Minami type estimate is then
applied to two models to obtain results on their spectral statistics.
The heuristics underlying our proof of Minami type estimates is that close by
eigenvalues of a one-dimensional Schrödinger operator correspond either to eigen-
functions that live far away from each other in space or they come from some
tunneling phenomena. In the second case, one can undo the tunneling and thus
construct quasi-modes that live far away from each other in space.

Résumé. Nous démontrons une inégalité de type Minami pour des opérateurs
de Schrödinger aléatoires uni-dimensionnel dans toute la région localisée si une
estimée deWegner est connue. Cette estimée de type de Minami est alors appliquée
pour obtenir les statistiques spectrales pour deux modèles.
L’heuristique qui guide ce travail est que des valeurs propres proches pour un
opérateur de Schrödinger sur un intervalle sont soient localisées loin l’une de l’autre
soit sont la conséquence d’un phénomène d’“effet tunnel”. Dans le second cas, on
peut, en “défaisant” cet effet tunnel construire des quasi-modes qui sont localisés
loin l’un de l’autre.

0. Introduction

Consider the following two random operators on the real line

• the Anderson model

(0.1) HA
ω = − d2

dx2
+W (·) +

∑

n∈Z

ωnV (· − n)

where
– W : R → R is a bounded, continuous, Z-periodic function;
– V : R → R is a bounded, continuous, compactly supported, non nega-

tive, not identically vanishing function;
– (ωn)n∈Z are bounded i.i.d random variables, the common distribution of

which admits a continuous density.
• the random displacement model

(0.2) HD
ω = − d2

dx2
+
∑

n∈Z

V (· − n− ωn)

where
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– V : R → R is a smooth, even function that has a fixed sign and is
compactly supported in (−r0, r0) for some 0 < r0 < 1/2;

– (ωn)n∈Z are bounded i.i.d random variables, the common distribution
of which admits a density supported in [−r, r] ⊂ [−1/2 + r0, 1/2 − r0],
that is continuously differentiable in [−r, r] and which support contains
{−r, r}.

Let • ∈ {A,D}. For L > 0, consider H•
ω,L the operator H•

ω restricted to the interval

[−L/2, L/2] with Dirichlet boundary conditions. The spectrum of this operator is
discrete and accumulates at +∞ ; we denote it by

E•
1(ω,L) < E•

2(ω,L) ≤ · · · ≤ E•
n(ω,L) ≤ · · ·

It is well known (see e.g. [36]) that, ω almost surely, the limit

(0.3) N•(E) = lim
L→+∞

#{n; E•
n(ω,L) ≤ E}
L

exists and is independent of ω. N• is the integrated density of states of the operator
H•

ω. This non decreasing function is the distribution function of a non negative
measure, say, dN• supported on Σ•, the almost sure spectrum of H•

ω.
Moreover, it is known that, under our assumptions, NA is Lipschitz continuous on
R (see [12]) and there exists ẼD ∈ (inf ΣD,+∞) such that, for any α ∈ (0, 1), ND is

Lipschitz continuous on (−∞, ẼD) (see Theorem 5.2 in section 5.2).
For a fixed energy E0, one defines the locally unfolded levels to be the points

ξ•n(E0, ω, L) = L [N•(E•
n(ω,L)) −N•(E0)].

Out of these points form the point process

Ξ•(ξ;E0, ω, L) =
∑

n≥1

δξ•n(E0,ω,L)(ξ),

The local level statistics are described by

Theorem 0.1. There exists an energy inf Σ• < E• ≤ Ẽ• and such that, if E0 ∈
(−∞, E•) ∩Σ• satisfies, for some ρ ∈ [1, 4/3), one has

(0.4) ∀a > b, ∃C > 0, ∃ε0 > 0,∀ε ∈ (0, ε0), |N•(E0 + aε)−N•(E0 + bε)| ≥ Cερ

then, when L → +∞, the point process Ξ(E0, ω, L) converges weakly to a Poisson
process on R with intensity the Lebesgue measure.

One easily checks that, if E0 is such that E 7→ N(E) is differentiable at E0 and
its derivative is positive, then (0.4) is satisfied. For both models, this is the case
for Lebesgue almost all points in [inf Σ•, E•) ∩ Σ•. To the best of our knowledge,
Theorem 0.1 gives the first instance of a model that is not of alloy type for which
local Poisson statistics have been proved.

As is to be expected from e.g. [35, 32, 18] and as we shall see in section 1, the local
Poisson statistics property holds over the localized region of the spectrum i.e. the
energy E• is the energy such that H•

ω is localized in (−∞, E•). In particular, the
conclusions of Theorem 0.1 also holds in any region of localization of H•

ω where a
Wegner type estimate is known to hold.
When • = A,, in section 5.1, extending the analysis done in [14], we show that the
localized region (in the sense of (Loc)) extends over the whole real axis. Thus, we
can take EA = +∞.
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When • = D, it was proved in [5] that the localization region also extends over
the whole real axis except for possibly a discrete set; here localization did not mean
(Loc) but a weaker statement, namely, that the spectrum is pure point associated
to exponentially decaying eigenvalues. The analysis in [5] works under assumptions
less restrictive than those made above. In section 5.2, extending the analysis done
in [30], we show that HD

ω satisfies (Loc) in some neighborhood of inf ΣD.
Note that, to obtain the local Poisson statistics near an energy E0, we do not require
the density of states, i.e. the derivative of N•, not to vanish at E0; we only require
that N• not be too flat near E0.
Following the ideas of [18, 28], using the Minami type estimates that we present in
section 1, we can obtain a host of other results on the asymptotics of the statistics of
the eigenvalues of the random operator H•

ω,L in the localized regime. We now give a
few of those.
Fix • ∈ {A,D}. For J = [a, b], a compact interval s.t. |N•(J)| := N•(b)−N•(a) > 0
and a fixed configuration ω, consider the point process

Ξ•
J(ω, t, L) =

∑

E•

n(ω,L)∈J

δ|N•(J)|L[N•

J (E
•

n(ω,L))−t]

under the uniform distribution in [0, 1] in t; here we have set

N•
J(·) :=

N•(·)−N•(a)

N•(b)−N•(a)
.

This process was introduced in [33, 34]; we refer to these papers for more references,
in particular, for references to the physics literature. The values (N•

J (E
•
n(ω,L)))n≥1

are called the J-unfolded eigenvalues of the operator H•
ω,L.

Following [28], one proves

Theorem 0.2. Fix J = [a, b] ⊂ (−∞, E•)∩Σ• a compact interval such that |N•(J)| >
0. Then, ω-almost surely, as L → +∞, the probability law of the point process
Ξ•
J(ω, ·, L) under the uniform distribution 1[0,1](t)dt converges to the law of the Pois-

son point process on the real line with intensity 1.

As is shown in [34], Theorem 0.2 implies the convergence of the unfolded level spac-
ings distributions for the levels in J . More precisely, define the n-th unfolded eigen-
value spacings

(0.5) δN•
n(ω,L) = L|N•(J)|(N•

J (En+1(ω,L))−N•(En(ω,L))) ≥ 0.

Define the empirical distribution of these spacings to be the random numbers, for
x ≥ 0

(0.6) DLS•(x;J, ω, L) =
#{j; E•

n(ω,L) ∈ J, δN•
n(ω,L) ≥ x}

N•(J, ω, L)

where N•(J, ω, L) := #{E•
n(ω,L) ∈ J} = |N•(J)|L(1 + o(1)) as L → +∞ (see

e.g. [19]).

Theorem 0.3. Under the assumptions of Theorem 0.2, ω-almost surely, as L →
+∞, DLS•(x;J, ω, L) converges uniformly to the distribution x 7→ e−x.

One can also obtain results for the eigenvalues themselves i.e. when they are not
unfolded; we refer to [18, 28] for more details.
Finally we turn to results on level spacings that are local in energy (in the sense
of Theorem 0.1). Fix E0 ∈ (−∞, E•) ∩ Σ•. Pick IL = [aL, bL], a small interval
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centered near 0. With the same notations as above (see (0.5)), define the empirical
distribution of these spacings to be the random numbers, for x ≥ 0

(0.7) DLS•(x; IL, ω, L) =
#{j; E•

j (ω,L)− E0 ∈ IL, δN
•
j (ω,L) ≥ x}

N•(E0 + IL, L, ω)
.

We prove

Theorem 0.4. Assume that E0 ∈ [inf Σ•, E•). Fix (IL)L a decreasing sequence of
intervals such that sup

IL

|x| →
L→+∞

0. Assume that, for some δ > 0 and ρ̃ ∈ [1, 4/3),

one has

N(E0 + IL) · |IL|−ρ̃ ≥ 1,(0.8)

and

L1−δ ·N(E0 + IL) →
L→+∞

+∞,
N(E0 + ILL+o(L)

)

N(E0 + ILL
)

→
L→+∞

1.(0.9)

Then, with probability 1, as L → +∞, DLS(x; IL, ω, L) converges uniformly to the
distribution x 7→ e−x, that is, with probability 1,

(0.10) sup
x≥0

∣

∣DLS(x; IL, ω, L)− e−x
∣

∣ →
L→+∞

0.

As condition (0.4), condition (0.8) is satisfied for ρ̃ = 1 for almost every E0 ∈
[inf Σ•, E•). Condition (0.9) on the intervals (IL)L ensures that they contain suffi-
ciently many eigenvalues for the empirical distribution to make sense and that this
number does not vary too wildly when one slightly changes the size of IL.
The main technical result of the present paper that we turn to below entail a number
of other consequences about the spectral statistics in the localized region. We refer
to [18, 28] for more such examples and more references.

1. The setting and the results

Let us now turn to the main result of this paper. It concerns random operators
on the real line and consist in Minami type estimates valid for all energies in the
localization region of general one dimensional random operators satisfying a Wegner
estimate. It can be summarized as follows:

• for one dimensional random Schrödinger operators, in the localization region,
a Wegner estimate implies a Minami estimate.

The statement does not depend on the specific form of the random potential.
Let us start with a description of our setting. From now on, on L2(R), we consider
random Schrödinger operators of the form

(1.1) Hωu = − d2

dx2
u+ qω u

where qω is an almost surely bounded Z
d-ergodic random potential.

Remark 1.1. The boundedness assumption may be relaxed so as to allow local
singularities and growth at infinity. We make it to keep our proofs as simple as
possible.
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It is well known (see e.g. [36]) that Hω then admits an integrated density of states,
say, N , and, an almost sure spectrum, say, Σ. We now fix I an open interval in Σ
and the subsequent assumptions and statements will be made on energies in I.
Let Hω(Λ) be the random Hamiltonian Hω restricted to the interval Λ := [0, L] with
periodic boundary conditions.
We now state our main assumptions and comment on the validity of these assump-

tions for the models HA,D
ω defined respectively in (0.1) and (0.2).

Our first assumption will be a independence assumption for local Hamiltonians that
are far away from each other, that is,

(IAD): There exists R0 > 0 such that for dist(Λ,Λ′) > R0, the random Hamil-
tonians Hω(Λ) and Hω(Λ

′) are independent.

Remark 1.2. This assumption may be relaxed to asking some control on the corre-
lations between the random Hamiltonians restricted to different cubes. To keep the
proofs as simple as possible, we assume (IAD).

Next, we assume that

(W): a Wegner type estimate holds i.e. there exists C > 0, s ∈ (0, 1] and ρ ≥ 1
such that, for J ⊂ I, and Λ, an interval in R, one has

(1.2) E [tr(1J (Hω(Λ)))] ≤ C|J |s|Λ|ρ.

Here, | · | denotes the length of the interval ·.

Remark 1.3. In many cases e.g. for the operators HA,D
ω , assumption (W ) is known

to hold for s = 1 and ρ = 1. In the case of HA
ω , we can take I = ΣA (see e.g. [12]).

For Anderson type Hamiltonians with single site potentials that are not of fixed sign,
Wegner estimates with arbitrary s ∈ (0, 1) and ρ = 1 have been proved near the
bottom of the spectrum and at spectral edges (see [27, 25]).
In the case of HD

ω , it holds for any s ∈ (0, 1) and ρ = 1 near the infimum of ΣD (see
section 5.2 and [30]).

The second assumption crucial to our study is the existence of a localization region
to which I belongs i.e. we assume

(Loc): for any ξ ∈ (0, 1), one has

(1.3) sup
L>0

suppf⊂I
|f |≤1

E

(

∑

n∈Z

e|n|
ξ ‖1[−1/2,1/2]f(Hω(ΛL))1[n−1/2,n+1/2]‖2

)

< +∞.

Here, the supremum is taken over all Borel functions f : R → C which satisfy
|g| ≤ 1 pointwise.

Remark 1.4. For the models HA,D
ω , the spectral theory has been studied under

various assumptions on V and (ωγ)γ (see e.g. [6, 13, 38, 22]). The existence of
a region of localized states is well known and, in many cases, this region extends
over the whole spectrum. In the case of HA

ω , in [14], this is proved under a more
restrictive support condition on V , namely, that the support of V is contained in
(−1/2, 1/2); that this condition can be removed is proved in section 5.1. Actually,
for this model we get a stronger form of (Loc), namely, for any I ⊂ R compact, there
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exists ξ = ξI > 0 such that

(1.4) sup
L>0

suppf⊂I
|f |≤1

E

(

∑

n∈Z

eξ|n| ‖1[−1/2,1/2]f(Hω(ΛL))1[n−1/2,n+1/2]‖2
)

< +∞.

In the case of model HD
ω , localization (in a sense weaker than assumption (Loc)

above) has been proved at all energies except possibly at a discrete set (see [5]). In
dimension d ≥ 2, localization at the bottom of the spectrum for HD

ω has been proved
in [30]. This proof does not work directly in dimension d = 1. In section 5.2, we
show prove that, under our assumptions, HD

ω satisfies (Loc) at the bottom of the
spectrum.
There are other randommodels for which localization (in a possibly weaker sense than
(Loc) above) has been proved e.g. the Russian model ([20]), the Bernoulli Anderson
model ([13, 4, 15]), the Poisson model ([40, 17]), more general displacement models
([5]), matrix valued models ([3]), etc. For many of these models, the validity of (W)
is still an open question.

1.1. A Minami type estimate in the localization region. Our main technical
result is the following Minami type estimate

Theorem 1.1. Assume (W) and (Loc). Fix J compact in I the region of localization.
Then, for η > 1, β > max(1 + 4s, ρ) and ρ′ > ρ (recall that ρ and s are defined in
(W)), there exists Lη,β,ρ′ > 0 and C = Cη,β,ρ′ > 0 s.t., for E ∈ J , L ≥ Lη,β,ρ′ and
ε ∈ (0, 1), one has

(1.5)
∑

k≥2

P
(

tr [1[E−ε,E+ε](Hω(ΛL))] ≥ k
)

≤ C

[

(

εs L ℓβ + e−ℓ/8
)2
eC εs Lℓρ

′

+ e−sℓ/9

]

.

where ℓ := (logL)η.

The estimate (1.5) only becomes useful when εsL is small; as ρ ≥ 1, this is also the
case for the Wegner type estimate (W). Note that, as s ≤ 1, εsL(logL)β is small only
when εL is small. Finally, note that, as ρ > 1, the factor (εsL(logL)β)2 is better i.e.
smaller than (εsLρ)2, the square of the upper bound obtained by the Wegner type
estimate (W). This improvement is a consequence of localization.
The estimate (1.5) is weaker than the Minami type estimate found in [32, 2, 21, 9]

which gives a bound on
∑

k≥2

k P
(

tr [1[E−ε,E+ε](Hω(ΛL))] ≥ k
)

. The estimate (1.5)

is nevertheless sufficient to repeat the analysis done in [18, 28]. In particular, it
is sufficient to obtain the description of the eigenvalues of Hω(ΛL) in terms of the
“approximated eigenvalues” i.e. the eigenvalues of Hω restricted to smaller cubes and
to compute the law of those approximated eigenvalues (see [18, Lemma 2.1, Theorem
1.15 and 1.16], [28]).
Let us now say a word how (1.5) can be used to apply the analysis done in [18, 28]
to the models HA

ω and HD
ω studied in the introduction.

One checks that Theorem 1.1 implies that, for any s′ ∈ (0, s) and η > 1, there exists
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Lη,s′ > 0 s.t., for E ∈ J , L ≥ Lη,s′ and ε ∈
(

0, L−1/s′
)

, one has

(1.6)
∑

k≥2

P
(

tr [1[E−ε,E+ε](Hω(ΛL))] ≥ k
)

≤ C
(

ε2s
′

L2 + e−(logL)η/8
)

.

The estimate (1.6) differs from the Minami estimate used in [18, 28] in three ways.
First, in [18, 28], it was assumed that s = 1 and ρ = 1 in (W) and (1.6). For
HA

ω and HD
ω , in (1.6), we have ρ = 1 but only have s′ < 1 even though arbitrary.

Second, we only have (1.6) under a smallness condition on ε (i.e. ε ≤ L−1/s′). Third,

in (1.6), there is an additional error term e−(logL)η/8. As already mentioned above, in
the analysis performed in [18, 28], the Minami type estimate is used in two ways: to
control the occurrence of two eigenvalues in a small interval for the operator restricted
to a given box and to control the law of approximated eigenvalues. For the first use,
the crucial thing is that if L is the size of the box and ε the size of the interval,
the bound in the Minami estimate should be very small (see [18, Theorem 1.15 and
1.16] and [28, section 3]). For the second use, the crucial thing is that the term given
by the Minami estimate should be smaller than than the main term giving the law
of these approximate eigenvalues which is of size εL (see [18, Lemma 2.1] and [28,
Lemma 2.2]). In this application, the box size L and ε in (1.6) are related by a power
law i.e. L = ε−κ for some κ < 1. So taking s′ sufficiently close to 1 (which, for HA

ω

and HD
ω is possible as s = 1 in (W)) guarantees that the condition ε ≤ L−1/s′ is

satisfied and, for L large,

ε2s
′

L2 + e−(logL)η/8 = o (εL)

Before explaining the heuristics guiding the proofs of Theorems 1.1, let us very briefly
describe some consequences for random operators. Essentially, all the conclusions
described for the models HA

ω and HD
ω in the introduction hold for any general one

dimensional random model satisfying the assumptions (IAD), (W) and (Loc). As
said in the introduction, following [18, 28], more results on the spectral statistics can
be obtained. As assumptions (IAD) and (Loc) have been proved for many models e.g.
the Poisson model (see [17, 16]), the Bernoulli Anderson model (see [4]) or general
Anderson models with non trivial distributions (see [15]), it remains to understand
Wegner type estimates (W) or replacements of such estimates for those models.

1.2. Inverse tunneling and the Minami type estimates. To the best of our
knowledge, up to the present work, the availability of decorrelation estimates of the
type (1.5) relied on the fact that the single site potential was rank one ([32, 2, 21, 9])
or had the effective weight of a rank one potential as was shown in [10] in the Lifshitz
tails regime. In the present paper, we exhibit a heuristic why such estimates should
hold quite generally and use it to develop a different approach. This approach makes
crucial use of localization to reduce the complexity of the problem i.e. to study the
random Hamiltonian restricted to some much smaller cube. Such ideas were already
used in [29] to study spectral correlations at distinct energies. We now turn to the
heuristic we referred to earlier. The basic mechanism at work in our heuristics is
what we call “inverse tunneling”. Let us explain this and therefore, first recall some
facts on tunneling.
Fix ℓ ∈ R and q : [0, ℓ] → R a real valued function bounded by Q > 0. On
[0, ℓ], consider the Dirichlet eigenvalue problem defined by the differential expression
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−u′′ + qu i.e. the eigenvalue problem

(1.7) − d2

dx2
u(x) + q(x)u(x) = Eu(x), u(0) = u(ℓ) = 0.

Tunneling estimates can be described as follows. Assume that the interval [0, ℓ] can
be split into two intervals, say, [0, ℓ′] and [ℓ′, ℓ], such that the Dirichlet eigenvalue
problem for each of those intervals share a common eigenvalue and such that the
associated eigenfunctions are “very” (typically exponentially) small near ℓ′ then the
eigenvalue problem (1.7) has two eigenvalues that are “very” close together. The
closeness of the eigenvalues and the smallness of the eigenfunctions are related; they
are in general measured in terms of some parameter e.g. a coupling constant in front
of the potential q, a semi-classical parameter in front of the kinetic energy −d2/dx2
or the length of the interval ℓ (see e.g. [31, 24, 7, 8]). The tunneling effect is well
illustrated by the double well problem (see e.g. [23]).
In the present paper, we discuss a converse to the above description i.e. we assume
that the eigenvalue problem (1.7) has two (or more) close together eigenvalues, say,

0 and E small associated respectively to u and v. Let ru :=
√

|u|2 + |u′|2 and

rv :=
√

|v|2 + |v′|2 be the Prüfer radii for u and v (see e.g. [41]). Then, either of two
things happen:

(1) no tunneling occurs i.e. ru ·rv is small on the whole interval [0, ℓ]. In this case,
the eigenfunctions u and v live in separate space regions and, thus, don’t see
each other.

(2) tunneling occurs i.e. ru · rv becomes large in some region of space. In the
connected components of such regions, u and v are roughly proportional.
Thus, we show that it is possible to construct linear combinations of u and v
that live in distinct space regions, that is, we undo the tunneling; these linear
combinations are not true eigenfunctions anymore but they almost satisfy the
eigenvalue equation as E is close to 0.

In both cases, we construct quasi-modes that live in distinct space regions (see sec-
tion 2.2). Thus, we derive (1.5) using the Wegner type estimate (W) in each of these
regions (see section 3). This yields Theorem 1.1.

1.3. Universal estimates. We now turn to deterministic estimates that are related
to our analysis of Minami estimates in one dimension. These estimates control the
minimal spacing between any two eigenvalues of a Schrödinger operator on [0, ℓ] (with
Robin boundary conditions). By extension, they also give an upper bound on the
maximal number of eigenvalues a Schrödinger operator of [0, ℓ] can put inside an
interval of size ε. Though we do not know any reference for such estimates, we are
convinced that they are well known to the specialists.
For the sake of simplicity, assume q : [0, ℓ] → R is bounded. On [0, ℓ], consider the
operator Hu = −u′′+qu with self-adjoint Robin boundary conditions at 0 and ℓ (i.e.
u(0) cosα+ u′(0) sinα = 0). Then, one has

Theorem 1.2. Fix J compact. There exists a constant C > 0 (depending only on
‖q‖ and J) such that, for ℓ ≥ 1, if ε ∈ (0, 1) is such that | log ε| ≥ Cℓ, then, for any
E ∈ J , the interval [E − ε,E + ε] contains at most a single eigenvalue of H.

One can generalize Theorem 1.2 to
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Theorem 1.3. Fix ν > 2 and J compact. There exists ℓ0 > 1 and C > 0 (depending
only on ‖q‖∞ and J) such that, for ℓ ≥ ℓ0, if ε ∈ (0, ℓ−ν) then, for E ∈ J , the number
of eigenvalues of H in the interval [E − ε,E + ε] is bounded by max(1, Cℓ/| log ε|).

These a-priori bounds prove that there is some repulsion between the level for arbi-
trary Schrödinger operators in dimension one. For random systems in the localized
phase, this repulsion takes place at a length scale of size e−Cℓ; it is much smaller
than the typical level spacings that is of size 1/ℓ.
Similar results hold for discrete operators (see e.g. [37]).

2. Inverse tunneling estimates

Fix ℓ ∈ R and q : [0, ℓ] → R a real valued function bounded by Q > 0. On [0, ℓ],
consider the Sturm-Liouville eigenvalue problem defined by

(2.1) (Hu)(x) := − d2

dx2
u(x) + q(x)u(x) = Eu(x), u(0) = 0 = u(ℓ).

Remark 2.1. Here, we use Dirichlet boundary conditions; the same analysis goes
through with general Robin boundary conditions.

For u, a solution to (2.1), define the Prüfer variables (see e.g. [41]) by

ru(x)

(

sin(ϕu(x))
cos(ϕu(x))

)

:=

(

u(x)
u′(x)

)

, ru(x) > 0, ϕu(x) ∈ R

Bu the Cauchy-Lipschitz Theorem, if u does not vanish identically, ru does not vanish.
ϕu is chosen so as to be continuous. If u is a solution to (2.1), then we set ϕu(0) = 0
and ϕu(ℓ) = kπ (for some k ∈ N

∗). Rewritten in terms of the Prüfer variables, the
eigenvalue equation in (2.1) becomes

ϕ′
u(x) = 1− (1 + (q(x)− E)) sin2(ϕu(x))(2.2)

r′u(x)

ru(x)
= (1 + (q(x)− E)) sin(ϕu(x)) cos(ϕu(x)).(2.3)

Let us now compare eigenfunctions associated to close by eigenvalues.

2.1. General estimates for eigenfunctions associated to close by eigenval-
ues. Consider now u and v two normalized eigenfunctions of the Sturm-Liouville
problem (2.1) associated to two consecutive eigenvalues, say, 0 and E. We assume
0 < E ≪ 1. Sturm’s oscillation theorem then guarantees that ϕu(x) < ϕv(x) for
x ∈ (0, ℓ) and ϕv(ℓ) = ϕu(ℓ) + π (see e.g. [41]). Define

(2.4) δϕ(x) = ϕv(x)− ϕu(x).

Thus, δϕ(0) = 0, δϕ(ℓ) = π and δϕ(x) ∈ (0, π) for x ∈ (0, ℓ).
The function δϕ satisfies the following differential equation

(δϕ)′(x) = (1 + q(x))[sin2(ϕv(x))− sin2(ϕu(x))]− E sin2(ϕv(x))

= (1 + q(x)) sin(δϕ(x)) sin(2ϕv(x)− δϕ(x)) − E sin2(ϕv(x)).
(2.5)

The first property we prove is that, on intervals where sin(δϕ(x)) is small, ru and rv
are essentially proportional to each other, that is,
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Lemma 2.1. Fix ε > 0. Assume that, for x ∈ [x−, x+], one has sin(δϕ(x)) ≤ ε.
Then, there exists λ > 0 such that, for x ∈ [x−, x+], one has

(2.6) e−[(Q+1)ε+E]ℓ ≤ rv(x)

ru(x)

1

λ
≤ e[(Q+1)ε+E]ℓ.

Proof. Comparing (2.3) for u and v yields

(2.7)

[

log

(

rv(x)

ru(x)

)]′

= (1 + q(x)) sin(δϕ(x)) cos(2ϕv(x)− δϕ(x)) − E sin(2ϕv(x))

As, for x ∈ [x−, x+] one has 0 ≤ sin(δϕ(x)) ≤ ε, (2.7) yields, for x ∈ [x−, x+],
∣

∣

∣

∣

[

log

(

rv(x)

ru(x)

)]′∣
∣

∣

∣

≤ (1 +Q)ε+ E.

Integrating this equation, for (x, y) ∈ [x−, x+]
2, one obtains

(2.8) e−[(Q+1)ε+E](y−x) rv(y)

ru(y)
≤ rv(x)

ru(x)
≤ e[(Q+1)ε+E](y−x) rv(y)

ru(y)
.

This in particular immediately yields (2.6) and completes the proof of Lemma 2.1. �

Next we prove that the Wronskian of u and v does not vary much on intervals
over which sin(δϕ(x)) is “large”, that is,

Lemma 2.2. Fix ε > 0 such that E < ε < 1. Assume that

• for x ∈ [x−, x+], one has sin(δϕ(x)) ≥ ε;
• sin(δϕ(x±)) = ε.

Then, for x ∈ [x−, x+], one has w(v, u)(x) > 0 and

max
x∈[x−,x+]



1− w(v, u)(x)

max
x∈[x−,x+]

w(v, u)(x)



 ≤ E

ε
(x+ − x−) ≤

Eℓ

ε
.

Proof. Consider the Wronskian of v and u, that is, w(v, u)(x) = u′(x)v(x)−v′(x)u(x).
As u and v are eigenfunctions for the same Sturm-Liouville problem for the eigenval-
ues 0 and E, w(v, u) satisfies the equation [w(v, u)]′ = Euv. Thus, for (x, y) ∈ [0, ℓ]2,
one has

w(v, u)(x) = ru(x)rv(x) sin(δϕ(x)),(2.9)

and

ru(x)rv(x) sin(δϕ(x)) − ru(y)rv(y) sin(δϕ(y))

= E

∫ x

y
ru(t)rv(t) sin(ϕu(t)) sin(ϕv(t))dt.

(2.10)

The positivity of w(v, u) is a direct consequence of (2.9) and the assumption on
[x−, x+].
As for x ∈ [x−, x+], one has sin(δϕ(x)) ≥ ε, using (2.9), for (x, y) ∈ [x−, x+]

2, one
can rewrite (2.10) as

w(v, u)(y) − w(v, u)(x) =
E

ε

∫ y

x
w(v, u)(t)g(t)dt where sup

t∈[x,y]
|g(t)| ≤ 1.
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Thus, for y such that w(v, u)(y) = max
x∈[x−,x+]

w(v, u)(x), we obtain

0 ≤ 1− w(v, u)(x)

max
x∈[x−,x+]

w(v, u)(x)
=
E

ε

∫ y

x

w(v, u)(t)

max
x∈[x−,x+]

w(v, u)(x)
g(t)dt ≤ E

ε
|y − x|

This completes the proof of Lemma 2.2. �

Next, we give another result showing that the Wronskian of u and v does not vary
much on intervals over which sin(δϕ(x)) is “large”, namely,

Lemma 2.3. Fix ε > 0 such that E < ε < 1. Assume that

• for x ∈ [x−, x+], one has sin(δϕ(x)) ≥ ε;
• sin(δϕ(x±)) = ε.

Then, for any a > 1,

• either ru(x+)rv(x+) + ru(x−)rv(x−) ≤ 2a ℓ(E/ε)2,
• or

1− 1

1 + a
≤ ru(x−)rv(x−)

ru(x+)rv(x+)
≤ 1 +

1

a
.

Proof. Recall that the system (u, v) is orthonormal in L2([0, ℓ]); thus, one has
∫ l

0
r2u(x) sin

2(ϕu(x))dx = 1 =

∫ l

0
r2v(x) sin

2(ϕv(x))dx,(2.11)

∫ l

0
ru(x)rv(x) sin(ϕu(x)) sin(ϕv(x))dx = 0.(2.12)

As w(v, u)(0) = w(v, u)(ℓ) = 0 , this and (2.10) implies that

(2.13) 0 < max
x∈[0,ℓ]

ru(x)rv(x) sin(δϕ(x)) ≤ E.

As for x ∈ [x−, x+], one has sin(δϕ(x)) ≥ ε/2, one obtains

(2.14) 0 < max
x∈[x−,x+]

ru(x)rv(x) ≤ 2E/ε.

Inserting this estimate into (2.10) for (x, y) = (x−, x+) and using the fact that
sin(δϕ(x−)) = ε = sin(δϕ(x+)), one obtains

|ru(x−)rv(x−)− ru(x+)rv(x+)| ≤ 2ℓ(E/ε)2.

This implies the alternative asserted by Lemma 2.3. �

2.2. An inverse ”splitting” result. We prove

Theorem 2.1. Fix S > 0 arbitrary and J ⊂ R a compact interval. There exists
ε0 > 0 and ℓ0 > 0 (depending only on ‖q‖∞, J and S) such that, for ℓ ≥ ℓ0 and
0 < εℓ4 ≤ ε0, for E ∈ J , if the operator H defined in (2.1) has two eigenvalues in
[E−ε,E+ε], then there exists two points x+ and x− in the lattice segment ε0Z∩ [0, ℓ]
satisfying S < x+ − x− < 2S such that, if H−, resp. H+, denotes the second
order differential operator H defined by (1.7) and Dirichlet boundary conditions on
[0, x−], resp. on [x+, ℓ], then H− and H+ each have an eigenvalue in the interval
[E − εℓ4/ε0, E + εℓ4/ε0].
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Theorem 2.1 is a consequence of Propositions 2.1 and 2.3 that are respectively proved
in sections 2.2.1 and 2.2.2. Let us now explain the ideas guiding the proof of Theo-
rem 2.1.
Up to a shift in energy and potential q, we may assume that E = 0 and that, changing
the notations, the eigenvalues considered in Theorem 2.1 are 0 and E > 0. All the
estimates we will prove only depend on ‖q‖∞ in this new setting, thus, only depend
on ‖q‖∞ and J in the old setting. Note that, in the new notations we have E ≤ ε.
Let u and v be the eigenfunctions associated respectively to 0 and E. The goal is
then to prove that we can find two independent linear combinations of u and v such
that

• they vanish at two points, say, x− and x+ satisfying the statement of Theo-
rem 2.1,

• in each of these intervals [0, x−] and [x+, ℓ], the masses of the combinations
are of size of order ℓ−α (for some α > 0).

Therefore, we consider two cases:

(1) if ru · rv becomes “large” over [0, ℓ] which we dub the “tunneling case”.
(2) if ru · rv stays “small” over [0, ℓ] which we dub the “non tunneling case”.

In the first case, u and v put mass at the same locations in [0, ℓ]. This is typically
what happens in a tunneling situation (see e.g. [31, 24, 7, 8]). In this case, there is a
strong “interaction” between u and v and the estimates obtained in section 2 enable
us to show that u and v are quite similar up to a phase change. Although they are
linearly independent (as they are eigenfunctions associated to distinct eigenvalues of
the same self-adjoint operator), they are similar in the sense that ru and rv are similar
(see Lemma 2.1). Their orthogonality comes mainly from the phase difference. We
analyze this phase difference to prove that the claims of Theorem 2.1 hold in this
case.
In the second case, u and v live “independent lives”; they are of course orthogonal
but |u| and |v| (actually, ru and rv too) are also almost orthogonal. So, u and v
roughly live on disjoint sets; this makes it quite simple to construct the functions
whose existence is claimed in Theorem 2.1: one just needs to restrict u and v to their
“essential supports”.

2.2.1. When there is tunneling. The case when there is tunneling can be described
by the fact that the function u and v are “large” at the same location or equivalently
by the fact that ru · rv becomes “large” at some point of the interval [0, ℓ]. Clearly,

as u and v are normalized, ru and rv need each to be at most only of size 1/
√
ℓ. So

one can say that ru · rv becomes “large” if and only if ru · rv & ℓ−1 somewhere in
[0, ℓ].
We prove

Proposition 2.1. Fix S > 0 arbitrary. There exists η0 > 0 (depending only on S
and ‖q‖∞) such that, for η ∈ (0, η0) and ℓ sufficiently large (depending only on η,
S and ‖q‖∞), if u and v are as in section 2, that is, eigenfunctions of H associated
respectively to the eigenvalues 0 and E, and, assume that Eℓ4 ≤ η4 and that one has

(2.15) ∃x0 ∈ [0, ℓ], ru(x0) · rv(x0) ≥
η

ℓ
,

then, there exists two points x+ and x− in the lattice segment ηZ ∩ [0, ℓ] satisfying

(2.16) | log(Eℓ2)|/C < x− < x+ < ℓ− | log(Eℓ2)|/C and S < x+ − x− < 2S
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such that, if H− (resp. H+) denotes the second order differential operator H defined
by (2.1) and Dirichlet boundary conditions on [0, x−] (resp. on [x+, ℓ]), then H− and
H+ have an eigenvalue in the interval [−Eℓ4η−4, Eℓ4η−4].

Proof. We keep the notations of section 2.1. By (6.2) for u and v, (2.15) implies that
there exists C > 0 (depending only on ‖q‖∞) such that

(2.17) ∀x ∈ [x0 − 1, x0 + 1] ∩ [0, ℓ] ru(x) · rv(x) ≥
η

Cℓ
,

Note that, by (2.15) and (2.13), one has

(2.18) ∀x ∈ [x0 − 1, x0 + 1] ∩ [0, ℓ], sin(δϕ(x)) . Eℓ/η.

For the sake of definiteness, we assume that

(2.19) ∀x ∈ [x0 − 1, x0 + 1] ∩ [0, ℓ], 0 ≤ δϕ(x) . Eℓ/η,

the case 0 ≤ π − δϕ(x) . Eℓ/η being dealt with in the same way.
As u and v are normalized and orthogonal to each other, one proves

Lemma 2.4. There exists C > 0 (depending only on ‖q‖∞) and x2 ∈ [0, ℓ] such that,
for x ∈ [x2 − 1, x2 + 1] ∩ [0, ℓ], one has

(2.20) ru(x) · rv(x) ≥
η

Cℓ2
and 0 ≤ π − δϕ(x) . Eℓ2/η.

Remark 2.2. When 0 ≤ π − δϕ(x) . Eℓ/η on [x0 − 1, x0 + 1] ∩ [0, ℓ], in (2.20), the
statement 0 ≤ π − δϕ(x) . Eℓ2/η is replaced with 0 ≤ δϕ(x) . Eℓ2/η.

Proof. Indeed, by (2.17) and (2.19), one has

(2.21)

∣

∣

∣

∣

∣

∫

[x0−1,x0+1]∩[0,ℓ]
ru(x)rv(x) sin

2(ϕu(x))dx

+

∫

[0,ℓ]\[x0−1,x0+1]
ru(x)rv(x) sin(ϕu(x)) sin(ϕv(x))dx

∣

∣

∣

∣

∣

.
Eℓ

η
.

Hence, by (6.3) in Lemma 6.1 and (2.17), as Eℓ4 ≤ η0, we get that, for some C > 0
(depending only on ‖q‖∞), one has

∫

[0,ℓ]\[x0−1,x0+1]
ru(x)rv(x) sin(ϕu(x)) sin(ϕv(x))dx ≤ − η

Cℓ

(

1− Cη2

ℓ2

)

. −η
ℓ

(2.22)

for ℓ sufficiently large.
Write

∫

[0,ℓ]\[x0−1,x0+1]
ru(x)rv(x) sin(ϕu(x)) sin(ϕv(x))dx

=

∫

x∈[0,ℓ]\[x0−1,x0+1]
ru(x)rv(x)≤η/ℓ2

ru(x)rv(x) sin(ϕu(x)) sin(ϕv(x))dx

+

∫

x∈[0,ℓ]\[x0−1,x0+1]
ru(x)rv(x)>η/ℓ2

ru(x)rv(x) sin(ϕu(x)) sin(ϕv(x))dx

(2.23)
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By (2.13), on the set {x ∈ [0, ℓ]; ru(x)rv(x) > η/ℓ2}, one has sin(δϕ(x)) ≤ Eℓ2/η.
Thus, as Eℓ4 ≤ η, (2.23) yields

∫

x∈[0,ℓ]\[x0−1,x0+1]
ru(x)rv(x)>η/ℓ2

sin(δϕ(x))≤Eℓ2/η

ru(x)rv(x) sin
2(ϕu(x)) cos(δϕ(x))dx ≤ − η

2Cℓ

(

1− Cη2

ℓ2

)

. −η
ℓ
.

(2.24)

This and (6.2) then proves Lemma 2.4. �

Clearly, by (2.19) and (2.20), one has [x0 − 1, x0 + 1] ∩ [x2 − 1, x2 + 1] = ∅. For the
sake of definiteness, assume that x0+1 < x2−1. By (2.19) and (2.22), as x 7→ δϕ(x)
is continuous, there exists x0 + 1 < x1 < x2 − 1 such that sin(δϕ(x1)) = 1, that is,
δϕ(x1) = π/2.
Fix now ε = η/(Cℓ2). By (2.18) and (2.20), there exists two intervals [x−0 , x

+
0 ] and

[x−2 , x
+
2 ] such that,

• [x0 − 1, x0 + 1] ∩ [0, ℓ] ⊂ [x−0 , x
+
0 ] ⊂ [0, ℓ];

• [x2 − 1, x2 + 1] ∩ [0, ℓ] ⊂ [x−2 , x
+
2 ] ⊂ [0, ℓ];

• for x ∈ [x−0 , x
+
0 ] ∪ [x−2 , x

+
2 ], one has sin(δϕ(x)) ≤ ε;

• sin(δϕ(x±0 )) = sin(δϕ(x±2 )) = ε.

As x0 + 1 < x2 − 1, one has 0 < x−0 < x+0 < x−2 < x+2 < ℓ. This also implies that
[x0, x0+1] ⊂ [0, ℓ] and [x2− 1, x2] ⊂ [0, ℓ]. Moreover, there exists a segment [x−1 , x

+
1 ]

such that

• x1 ∈ [x−1 , x
+
1 ] ⊂ [x+0 , x

−
2 ] ⊂ [0, ℓ] ,

• for x ∈ [x−1 , x
+
1 ], one has sin(δϕ(x)) ≥ ε and sin(δϕ(x±1 )) = ε.

As sin(δϕ(x1)) = 1, by Lemma 6.2, for some C > 0 (depending only on S and ‖q‖∞),
one has

(2.25) min
x∈[x1−2S,x1+2S]

sin(δϕ(x)) ≥ 1

C
.

Thus, for ℓ sufficiently large, as ε < 1/C, one has [x1 − 2S, x1 + 2S] ∈ [x−1 , x
+
1 ].

By Lemma 6.2, we know that

(2.26) C−1| log(Eℓ2)| ≤ x+0 − x−0 and C−1| log(Eℓ3)| ≤ x+2 − x−2

We apply Lemma 2.1 to [x−0 , x
+
0 ] and [x−2 , x

+
2 ]. Hence, for ℓ sufficiently large, (2.6)

implies that there exists λ0 > 0 and λ2 > 0 such that, for i ∈ {0, 2}, one has

(2.27)
λi

1 + Cη0/ℓ
≤ min

x∈[x−

i ,x+
i ]

(

ru(x)

rv(x)

)

≤ max
x∈[x−

i ,x+
i ]

(

ru(x)

rv(x)

)

≤ [1 +Cη0/ℓ]λi.

Moreover, as ru and rv are bounded by a constant depending only on ‖q‖∞, by (2.26),

(2.17) and (2.20), one has
η

Cℓ2
≤ λ0, λ2 ≤

Cℓ2

η
.

By Lemma 2.2, on [x−1 , x
+
1 ], one has

(2.28) w(u, v)(x) =M

(

1 +O

(

Eℓ

ε

))

where M := max
x∈[x−

1 ,x+
1 ]
w(u, v)(x).

We prove

Lemma 2.5. There exists η0 > 0 (depending only on ‖q‖∞) such that, for η ∈ (0, η0),
there exists (k−, k+) ∈ N

2 such that
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(1) 2S
3 < x1 − k−η <

3S
4 and 2S

3 < k+η − x1 <
3S
4 ;

(2) there exists λ± ∈ R s.t. for • ∈ {+,−}, one has
• either u(k•η) = λ•v(k•η) and

– |λ− − λ0| ≥ η0η,
– |λ+ + λ2| ≥ η0η.

• or v(k•η) = λ•u(k•η) and
– |λ− − 1/λ0| ≥ η0η,
– |λ+ + 1/λ2| ≥ η0η.

Proof. The proofs of the existence of k− and k+ being the same up to obvious mod-
ifications, we only give the details for k−.
By Lemma 6.3, there exists η0 > 0 (depending only on ‖q‖∞) such that, for η ∈
(0, η0), | sin(ϕu(x))| and | sin(ϕv(x))| can stay smaller than η only on intervals of
length less than η/η0. Thus, there exits η0 > 0 such that, for η ∈ (0, η0), one can
find an integer k such that

(2.29)
2S

3
< x1 − kη <

3S

4
and

| sin(ϕu(x))| ≥ η

| sin(ϕv(x))| ≥ η
for x ∈ [(k − 1)η, (k + 1)η].

This, in particular, implies that u(x) 6= 0 6= v(x) for x ∈ [(k − 1)η, (k + 1)η]. Note
also that, by (2.26) and (2.29), for ℓ large, one has kη ∈ [x1−2S, x1+2S] ⊂ [x−1 , x

+
1 ].

To fix ideas, assume moreover that ru(kη) ≥ rv(kη); the reverse case is treated
similarly interchanging u and v, and, λ0 and 1/λ0. This in particular implies that,
for some constant C > 0 (depending only on ‖q‖∞, see equation (2.7)), one has

(2.30) ru(x) ≥ rv(x)e
−Cη for x ∈ [(k − 1)η, (k + 1)η].

Assume that the first point of (2) in Lemma 2.5 does not hold i.e. assume now that

(2.31) ∃λ ∈ [λ0 − η0η, λ0 + η0η] such that u(kη) = λv(kη).

As v2 · (u/v)′ = w(u, v), we compute

u(kη + η)

v(kη + η)
=
u(kη)

v(kη)
+ η

∫ 1

0

w(u, v)(kη + ηt)

v2(kη + ηt)
dt

= λ+ η

∫ 1

0

w(u, v)(kη + ηt)

v2(kη + ηt)
dt.

Using successively

• the uniform estimate on the growth rate of rv given by equation (2.3),
• the estimate (2.28) on the Wronskian w(u, v),
• the assumption ru(kη) ≤ rv(kη),
• the bound (2.25),
• and, presumably, a reduction of the value η0,

we compute
∫ 1

0

w(u, v)(kη + ηt)

v2(kη + ηt)
dt ≥ 1

Cr2v(kη)

∫ 1

0
w(u, v)(kη + ηt)dt ≥ M

Cr2v(kη)

≥ M

Crv(kη)ru(kη)
≥ 1

C

M

w(u, v)(kη)
≥ 1

C
≥ 2η0.

Thus, one has

u(kη + η) = (λ+ δλ)v(kη + η) with λ+ δλ− λ0 ≥ δλ− |λ− λ0| ≥ ηη0
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and we set k− = k + 1.
If (2.31) does not hold, it suffices to set k− = k.
This completes the proof of Lemma 2.5. �

To complete the proof of Proposition 2.3, we check the assertion about H−; the one
about H+ is checked likewise except for the fact that ℓ has to be replaced by ℓ2,
compare (2.20) in Lemma 2.4 with (2.17).
The proof of Proposition 2.3 now depends on which of the alternatives of Lemma 2.5
is realized. First, assume that, in Lemma 2.5, it is the function u−λ−v that vanishes
at x− = k−η. So, the function u−λ−v satisfies Dirichlet boundary conditions on the
interval [0, x−]. One computes

‖(H− − E)(u− λ−v)‖L2([0,x−]) = E‖u‖L2([0,x−]) ≤ E.

Moreover, by the defining property of [x−0 , x
+
0 ] and Lemma 2.1, as |λ− − λ0| ≥ η0η,

using (2.27), for x ∈ [x−0 , x
+
0 ], one has

u(x)− λ−v(x) = ru(x) sin(ϕu(x)) − λ−rv(x) sin(ϕv(x))

= [ru(x)− λ−rv(x)] sin(ϕv(x)) +O(E|u′(x)|)
= [λ0 − λ−]v(x) +O(E|u′(x)|) +O(E2|u(x)|) +O(η0/ℓ|v(x)|)

Possibly reducing η0, one then computes

‖u− λ−v‖L2([0,x−]) ≥ η0(η − 1/ℓ)‖v‖L2([x0−1,x0+1]) − CEℓ ≥ η0η
3ℓ−2 − CEℓ.

Thus, we know that H− has an eigenvalue at distance at most Eℓ2/(2η0η
3) from E

if η0η
3ℓ−2 & E > 0.

When, in Lemma 2.5, it is the function v − λ−u that vanishes at x− = k−η, one
computes ‖H−(v−λ−u)‖L2([0,x−]) and the remaining part of the proof is unchanged.
This completes the proof of Proposition 2.1. �

When we use Theorem 2.1 to derive Theorem 1.1, it will be of importance to have
two points x− and x+ that are well separated from each other. But, minor changes
in the proof of Proposition 2.1 also yield the following result

Proposition 2.2. Fix S > 0 arbitrary. There exists η0 > 0 such that, for η ∈
(0, η0) and ℓ sufficiently large (depending only on η, S and ‖q‖∞), if u and v are as
section 2 and such that (2.15) is satisfied, then, there exists a points x in the lattice
ηZ satisfying

| log η|/C < x < ℓ− | log η|/C
such that, if H− (resp. H+) denotes the second order differential operator H defined
by (2.1) and Dirichlet boundary conditions on [0, x] (resp. on [x, ℓ]), then H− and
H+ have an eigenvalue in the interval [−Eℓ4η−4, Eℓ4η−4].

2.2.2. When there is no tunneling. The case when there is no tunneling can be de-
scribed by the fact that both function u and v are “large” only at distinct location
or equivalently by the fact that ru · rv stays small all over the interval [0, ℓ]. Clearly,

as u and v are normalized, ru and rv need each to be at most only of size 1/
√
ℓ. So

one can say that ru ·rv stays small if and only if ru ·rv ≪ ℓ−1 all over [0, ℓ]. We prove

Proposition 2.3. Fix S > 0 arbitrary. There exists η0 > 0 (depending only on
‖q‖∞) such that, for η ∈ (0, η0) and ℓ sufficiently large (depending only on η, S and
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‖q‖∞), if u and v are as section 2 that is, eigenfunctions of H associated respectively

to the eigenvalues 0 and E, and if Eℓ ≤ η1/4 and one has that

(2.32) ∀x ∈ [0, ℓ], ru(x) · rv(x) ≤
η

ℓ
,

then, there exists two points x+ and x− in the lattice ηZ satisfying

(2.33) | log η|/C < x− < x+ < ℓ− | log η|/C and S < x+ − x− < 2S

such that, if H− (resp. H+) denotes the second order differential operator H defined
by (2.1) and Dirichlet boundary conditions on [0, x−] (resp. on [x+, ℓ]), then H− and

H+ have an eigenvalue in the interval [−Eℓη−1/4, Eℓη−1/4].

Proof. As u and v are normalized, one can pick xu (resp. xv) s.t. ru(xu) ≥ ℓ−1/2

(resp. rv(xv) ≥ ℓ−1/2). Thus, by (2.32), one has ru(xv) ≤ ηℓ−1/2 and rv(xu) ≤
ηℓ−1/2. To fix ideas, assume xu < xv. Note that, as ru satisfies equation (2.3),
one has | log η|/C ≤ xv − xu (for some C depending only on ‖q‖∞). Hence, as
x 7→ (ru/rv)(x) is continuous, there exists xu < x0 < xv such that ru(x0) = rv(x0).
Define x± to be respectively the points in the lattice ηZ closest to x0 ± S/2. Then,
there exists C > 0 (depending only on S and ‖q‖∞) such that

(2.34)
1

C
≤ (ru/rv)(x±) ≤ C and | log η|/C ≤ inf(xv − x+, x− − xu).

We will start with H− on the interval [0, x−]; the case of H+ on the interval [x+, ℓ]
is dealt with in the same way.

Assume that | sin(ϕv(x−))| ≥ 4
√
η. Then, we pick λ =

u(x−)

v(x−)
and set w− = u − λv.

Thus, w vanishes at the points 0 and x− and, one computes

‖H−w−‖L2([0,x−]) ≤ Eλ ≤ E
4
√
η

and, using ru(xu) ≥ ℓ−1/2 and (6.1) in Lemma 6.1, for η sufficiently small

‖w‖2L2([0,x−]) =

∫ x−

0
(u(x) − λv(x))2dx

≥
∫ x−

0
u2(x)dx− 2λ

∫ x−

0
ru(x)rv(x)dx ≥ ℓ−1/C − η3/4ℓ−1 ≥ 1

2Cℓ

for η sufficiently small. Hence, as H− is self-adjoint, we have proved the statement
of Proposition 2.3 if | sin(ϕv(x−))| ≥ 4

√
η.

Assume now that | sin(ϕv(x−))| ≤ 4
√
η. Then, for η sufficiently small, point (2) of

Lemma 6.3 for ϕv guarantees that, for some x0 ∈ ηZ such that x− − 2 8
√
η ≤ x0 ≤

x− − 8
√
η, one has | sin(ϕv(x0))| ≥ 4

√
η. So, we can do the computations done above

replacing x− with x0.
To obtain the counterpart of this analysis for H+ on [x+, ℓ], we proceed as above
except for the fact that we set w+ = v − λ−1u where λ is chosen as before and
estimate ‖(H+ − E)w+‖L2([x+,ℓ]).
This completes the proof of Proposition 2.3. �

When we use Theorem 2.1 to derive Theorem 1.1, it will be of importance to have
two points x− and x+ that are well separated from each other. Sight changes in the
proof of Proposition 2.3 yield the following result
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Proposition 2.4. There exists η0 > 0 (depending only on ‖q‖∞) such that, for
η ∈ (0, η0) and ℓ sufficiently large, if u and v are as section 2 and if (2.32) is
satisfied, then, there exists a points x in the lattice ηZ satisfying

| log η|/C < x < ℓ− | log η|/C

such that, if H− (resp. H+) denotes the second order differential operator H defined
by (2.1) and Dirichlet boundary conditions on [0, x] (resp. on [x, ℓ]), then H− and

H+ have an eigenvalue in the interval [−Eℓη−1/4, Eℓη−1/4].

2.2.3. Completing the proof of Theorem 2.1. It suffices to pick η so small that both
Propositions 2.1 and 2.3 hold. Recall that there is a change of notations between
Theorem 2.1 and Propositions 2.1 - 2.3. In Theorem 2.1, E − ε (resp. E + ε) plays
the role that 0 (resp. E) plays in Propositions 2.1 and 2.3, 2ε that of E and ε0 that
of a power of η that is now fixed. �

3. The proof of Theorems 1.1

The basic idea of the proof follows the basic idea of [29] i.e. use localization to reduce
the complexity of the problem by reducing it to studying eigenvalues of Hω restricted
to cubes of size roughly (logL)1/ξ for ξ ∈ (0, 1).

3.1. Reduction to localization cubes. Pick J a compact interval where (Loc) is
satisfied. Thus, we know

Lemma 3.1 ([18]). Under assumption (W) and (Loc), for any ξ′ ∈ (0, 1) and ξ′′ ∈
(0, ξ′), for L ≥ 1 sufficiently large, with probability larger than 1− e−Lξ′′

, if

(1) ϕn,ω is a normalized eigenvector of Hω(ΛL) associated to En,ω ∈ J ,
(2) xn(ω) ∈ ΛL is a maximum of x 7→ ‖ϕn,ω‖2x =

∫

[x−1,x+1]∩ΛL
|ϕn,ω(y)|2dy in

ΛL,

then, for x ∈ ΛL, one has

(3.1) ‖ϕn,ω‖x ≤ e2L
ξ′′

e−|x−xn(ω)|ξ
′

.

So, with good probability, all the eigenfunctions essentially live in cubes of size of
order (logL)1/ξ

′

for any ξ′ ∈ (0, 1). Thus, they only see the configuration ω in such
cubes. To fix ideas, we define the center of localization of an eigenfunction ϕ as the
left most maximum of x 7→ ‖ϕ‖x.

Remark 3.1. When (Loc) takes the form (1.4), the estimate (3.1) can be replaced

with ‖ϕn,ω‖x ≤ e2L
ξ′

e−ξ|x−xn(ω)|.

We prove

Lemma 3.2. Assume (W) and (Loc). Fix J compact in
◦
I. Then, for any ξ ∈ (0, 1)

and ξ′ ∈ (0, ξ), there exists C = Cξ,ξ′ > 0 and Lξ,ξ′ > 0 s.t., for E ∈ J , L ≥ Lq,ξ and



INVERSE TUNNELING AND SPECTRAL STATISTICS 19

ε ∈ (0, 1), one has

(3.2)
∑

k≥2

P
(

tr [1[E−ε,E+ε](Hω(ΛL))] ≥ k
)

≤ e−sℓξ
′

/9 +
L2

ℓ
P2,9ℓ,ℓ (ε)

+

(

L

ℓ

)2
(

P1,3ℓ/2,4ℓ/3(ε) + e−ℓξ
′

/8
)2
eLP1,3ℓ/2,4ℓ/3(ε)/ℓ

where ℓ = (logL)1/ξ and, for j ≥ 1, one has set

(3.3) Pj,ℓ,ℓ′(ε) := sup
γ∈ℓ′Z∩[0,L]

P
(

tr [1[E−ε,E+ε](Hω(Λℓ(γ)))] ≥ j
)

.

Remark 3.2. When (Loc) takes the form (1.4), in Lemma 3.2, one can pick ℓ =
K logL with K sufficiently large.

Proof of Lemma 3.2. Pick E ∈ J . First, by standard bounds on the eigenvalue
counting function of −∆, there exists C > 0 depending only on J such that, for
ε ∈ (0, 1), one has

(3.4) tr [1[E−ε,E+ε](Hω(ΛL))] ≤ CL.

Pick ξ′ ∈ (ξ, 1) and ξ′′ ∈ (0, ξ). Let Zξ′,ξ′′ be the set of configurations ω defined by

Lemma 3.1 for the exponents ξ′ and ξ′′. It has probability at least 1− e−Lξ′′

. Thus,
by (3.4), we estimate, for L sufficiently large,

(3.5)
∑

k≥2

P
({

ω 6∈ Zξ′,ξ′′ ; tr [1[E−ε,E+ε](Hω(ΛL))] ≥ k
})

≤ CLe−Lξ′′ ≤ e−ℓξ
′

as ℓ = (logL)1/ξ.
Let us now estimate P(

{

ω ∈ Zξ′,ξ′′ ; tr [1[E−ε,E+ε](Hω(ΛL))] ≥ k
}

).
For ω ∈ Zξ′,ξ′′ , by Lemma 3.1, for each ϕ eigenfunction of Hω(ΛL) associated to
an eigenvalue E ∈ J , we define the center of localization associated to ϕ as in the
remarks following Lemma 3.1. We consider the events Ωb

ξ′,ξ′′ := Zξ′,ξ′′ \ Ωg
ξ′,ξ′′ and

Ωg
ξ′,ξ′′ :=











ω ∈ Zξ′,ξ′′ ;

no two centers of localization of eigenfunctions

associated to eigenvalues in [E − ε,E + ε]

are at a distance less than 4ℓ from each other











.

Note that, for ω ∈ Ωg
ξ′,ξ′′ , Hω(ΛL) has at most [L/(4ℓ)]+1 eigenvalues in [E−ε,E+ε];

here, [·] denotes the integer part of ·.
We prove

Lemma 3.3. Fix 0 < ξ′′ < ξ < ξ′ < 1. Then, there exists Lξ,ξ′,ξ′′ > 0 such that, for

ℓ = (logL)1/ξ, for L ≥ Lξ,ξ′,ξ′′ and k ≥ 2, one has

(3.6) P

({

ω ∈ Ωb
ξ′,ξ′′ ; tr [1[E−ε,E+ε](Hω(ΛL))] ≥ k

})

≤ L

ℓ
P2,9ℓ,ℓ (ε) + e−sℓξ

′

/9
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and, for k ≤ [L/(4ℓ)] + 1,

(3.7) P

({

ω ∈ Ωg
ξ′,ξ′′ ; tr [1[E−ε,E+ε](Hω(ΛL))] ≥ k

})

≤
(

[L/ℓ]

k

)

(

P1,3ℓ/2,4ℓ/3(ε) + e−ℓξ
′

/8
)k

where Pj,ℓ,ℓ′(ε) is defined in (3.3).

We postpone the proof of Lemma 3.3 to complete that of Lemma 3.2. We pick q ≥ 1
and sum (3.6) and (3.7) for k ≥ 2 to get, for some C > 0

1

C

∑

k≥2

P
(

tr [1[E−ε,E+ε](Hω(ΛL))] ≥ k
)

≤
(

L

ℓ

)2
(

P1,3ℓ/2,4ℓ/3(ε) + e−(| logL|)ξ
′/ξ/8

)2 (

1 + P1,3ℓ/2,4ℓ/3(ε) + e−(| logL|)ξ
′/ξ/8

)L/ℓ

+ e−sℓξ
′

/9 +
L2

ℓ
P2,9ℓ,ℓ (ε)

≤ C

(

(

L

ℓ

)2
(

P1,3ℓ/2,4ℓ/3(ε) + e−(| logL|)ξ
′/ξ/8

)2

eL P1,3ℓ/2,4ℓ/3(ε)/ℓ

+e−sℓξ
′

/9 +
L2

ℓ
P2,9ℓ,ℓ (ε)

)

.

Here, we have used the following bound, for (x, y) ∈ (R+)2 and m ≤ n integers,

(3.8)
n
∑

k=m

(

n

k

)

xkyn−k ≤
(

n

m

)

xm(x+ y)n−m.

This completes the proof of Lemma 3.2. �

Proof of Lemma 3.3. We will use

Lemma 3.4. For 0 < ξ′′ < ξ < ξ′ < 1, there exists Lξ,ξ′,ξ′′ > 0 such that for

ℓ = (logL)1/ξ and L ≥ Lξ,ξ′,ξ′′ and ω ∈ Zξ′,ξ′′, for any γ ∈ ΛL, if Hω(ΛL) has k
eigenvalues in [E − ε,E + ε] with localization center in Λ4ℓ/3(γ), then Hω(Λ3ℓ/2(γ))

has k eigenvalues in
[

E − ε− e−ℓξ
′

/8, E + ε− e−ℓξ
′

/8
]

.

We postpone the proof of Lemma 3.4 to complete that of Lemma 3.3. Pick k ≥ 2.

We first estimate P

({

ω ∈ Ωb
ξ′,ξ′′ ; tr [1[E−ε,E+ε](Hω(ΛL))] ≥ k

})

. Clearly, one has

P

({

ω ∈ Ωb
ξ′,ξ′′ ; tr [1[E−ε,E+ε](Hω(ΛL))] ≥ k

})

≤ P

({

ω ∈ Ωb
ξ′,ξ′′ ; tr [1[E−ε,E+ε](Hω(ΛL))] ≥ 2

})

.
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Thus, we take k = 2.
By the definition of Ωb

ξ′,ξ′′ and Lemma 3.4, one clearly has

P

({

ω ∈ Ωb
ξ′,ξ′′ ; tr [1[E−ε,E+ε](Hω(ΛL))] ≥ 2

})

≤ P

({

∃γ ∈ ℓZ ∩ [0, L]; tr [1
[E−ε−e−ℓξ

′
/8,E+ε+e−ℓξ

′
/8]
(Hω(Λ9ℓ(γ)))] ≥ 2

})

≤
∑

γ∈ℓZ∩[0,L]

P

({

tr [1
[E−ε−e−ℓξ

′
/8,E+ε+e−ℓξ

′
/8]

(Hω(Λ9ℓ(γ)))] ≥ 2
})

≤ L

ℓ
P2,9ℓ,ℓ

(

ε+ e−ℓξ
′

/8
)

≤ L

ℓ
P2,9ℓ,ℓ (ε) + e−sℓξ

′

/9

for L sufficiently large as ℓ = (logL)1/ξ and ξ′ > ξ; in the last step, we have used the
Wegner estimate (W). This completes the proof of (3.6).

Let us now estimate P

({

ω ∈ Ωg
ξ′,ξ′′ ; tr [1[E−ε,E+ε](Hω(ΛL))] ≥ k

})

. We cover the

cube ΛL by cubes (Λ4ℓ/3(γ))γ∈Γ i.e. ΛL = ∪γ∈ΓΛ4ℓ/3(γ) in such a way that [3L/(4ℓ)] ≤
#Γ ≤ [L/ℓ].
Assume now that ω ∈ Ωg

ξ′,ξ′′ is such that tr [1[E−ε,E+ε](Hω(ΛL))] ≥ k. Thus, the lo-

calization centers for any two eigenfunctions being at least 4ℓ away from each other,
by Lemma 3.4, we can find k points in Γ, say (γj)1≤j≤k such that

• for 1 ≤ j ≤ k, Hω(Λ3ℓ/2(γj)) has exactly one eigenvalue in the interval
[

E − ε− e−ℓξ
′

/8, E + ε+ e−ℓξ
′

/8
]

;

• for 1 ≤ j < j′ ≤ k, one has dist(Λ3ℓ/2(γj),Λ3ℓ/2(γj′)) > ℓ/2.

Hence, by (IAD), for ℓ sufficiently large, the operators (Hω(Λ3ℓ/2(γj)))1≤j≤k are
stochastically independent. Hence, we have the bound

P

({

ω ∈ Ωg
ξ′,ξ′′ ; tr [1[E−ε,E+ε](Hω(ΛL))] ≥ k

})

≤
(

#Γ

k

)

(

P1,3ℓ/2,4ℓ/3(ε) + e−(| logL|)ξ
′/ξ/8

)k

.

As [3L/(4ℓ)] ≤ #Γ ≤ [L/ℓ] and k ≤ [L/(4ℓ)], this completes the proof of (3.7) and,
thus, of Lemma 3.3. �

Proof of Lemma 3.4. Analogous results can be found in [29, 18].
If ϕ is an eigenfunction of Hω(ΛL) associated to e an eigenvalue in [E−ε,E+ε] that
has localization center in Λ4ℓ/3(γ), then, by (3.1) in Lemma 3.1, we have that, for χ
a smooth cut-off that is 1 on Λ10ℓ/9(γ) and vanishing outside Λ3ℓ/2(γ), one has, for
L sufficiently large,

∥

∥Hω(Λ3ℓ/2(γ))− e)(χϕ)
∥

∥ ≤ e2ℓ
ξ′′

e−(ℓ/6)ξ
′

≤ e−ℓξ
′

/8.

Recall that ξ′/ξ > 1. On the other hand, if one has k such eigenvalues, say, (ϕj)1≤j≤k,
then k ≤ CL and one computes the Gram matrix in the same way

((〈χϕj , χϕj′〉))1≤j,j′≤k = ((〈ϕj , ϕj′〉))1≤j,j′≤k +O
(

k2e−ℓξ
′

/8
)

= Idk +O
(

L2e−ℓξ
′

/8
)

.

as k is bounded by CL. This completes the proof of Lemma 3.4. �
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3.2. The proof of Theorem 1.1. We use Lemma 3.2. Recall that ℓ = (logL)1/ξ.
In (3.2), to estimate P1,3ℓ/2,4ℓ/3(2ε), we use the Wegner type estimate (W) and obtain

(3.9) P1,3ℓ/2,4ℓ/3(ε) ≤ Cεs(logL)ρ/ξ.

To estimate P2,9ℓ,ℓ(2ε), we use Theorem 2.1 and the Wegner type estimate (W).
The point (x±) are not known but we know that they belong to the lattice segment
ε0Z∩[0, ℓ] (independent of the potential qω) so there are at most (ℓ/ε0)

2 possible pairs
of points. We choose the constant S > R0 defined by (IAD); hence, as the points
x+ − x− ≥ S, the operators H− := HD

ω|[0,x−] and H+ := HD
ω|[x+,ℓ] are stochastically

independent. Thus, applying the Wegner type estimate (W) for the operators H±

and summing over the pairs of points in ε0Z ∩ [0, ℓ] yields

(3.10) P2,9ℓ,ℓ(2ε) ≤ C(logL)2/ξ
(

ε(logL)4/ξ
)2s

.

Plugging this and (3.9) into (3.2) yields (1.5) with

η := ξ′/ξ, β := max(1 + 4s, ρ)/ξ′ =
max(1 + 4s, ρ)

ηξ
and ρ′ := ρ/ξ′ =

ρ

ηξ
.

As ξ < ξ′ < 1 can be chosen arbitrary, this completes the proof of Theorem 1.1. �

4. Proofs of the universal estimates

We now prove Theorems 1.2 and 1.3. By a shift in energy, it suffices to prove the
results for E = 0 and see that the constants only depend on ‖q‖∞. From now on, we
assume the energy interval under consideration is centered at E = 0.

Proof of Theorem 1.2. Pick ε ∈ (0, 1). Assume H has at least two eigenvalues, say,

E and Ẽ in [−ε, ε]. By shifting the potential by a constant less than 1, without loss

of generality, we may assume that Ẽ = 0 and E > 0. Let v and w be the fundamental
solutions to the equation −u′′ + qu = 0 (i.e. v(0) = 1 = w′(0) and v′(0) = 0 = w(0))
and let S0(y, x) be the resolvent matrix associated to (v,w) i.e.

S0(y, x) =

(

v(y) w(y)
v′(y) w′(y)

)(

w′(x) −w(x)
−v′(x) v(x)

)

.

Clearly S0 solves

d

dy
S0(y, x) =

(

0 1
q(y) 0

)

S0(y, x), S0(x, x) =

(

1 0
0 1

)

.

Obviously, as q is bounded, for some C depending only on ‖q‖∞, one has

(4.1) ‖S0(y, x)‖ ≤ eC|y−x|.

Let u be a L2([0, ℓ])-normalized solution to Hu = Eu. Hence, we have

(4.2)

(

u(x)
u′(x)

)

= S0(x, 0)

(

u(0)
u′(0)

)

+

∫ x

0
S0(y, 0)B(y)dy

where

B(y) = E

(

0
u(x)

)

.

The eigenfunction, say, u0, associated to H and 0 can be written as
(

u0(x)
u′0(x)

)

= S0(x, 0)

(

u0(0)
u′0(0)

)

.
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As u and u0 satisfy the same boundary conditions, using (4.2), (4.1) and the nor-
malization of u, we get that, for some λ > 0, one has

(4.3)

∥

∥

∥

∥

(

u
u′

)

− λ

(

u0
u′0

)∥

∥

∥

∥

∞

≤ CεeCℓ.

If ε ∈ (0, 1) such that | log ε| ≥ Kℓ where K is taken such that, for ℓ ≥ 1, one has

Ce(C−K)ℓℓ < 1. By (4.3), as, on [0, ℓ], u and u0 are normalize and orthogonal to each
other, we get λ2+1 < 1 which is absurd. This completes the proof of Lemma 1.2. �

Proof of Theorem 1.3. Assume H has N +1 eigenvalues in [−ε, ε]. As q is bounded,
standard comparison with the Laplace operator H0 = −d2/dx2 implies that N ≤ Cℓ
for some C > 0 depending only ‖q‖∞.
As in the proof of Theorem 1.2, we may assume that the smallest one of them be 0,
thus, that the other be positive. Let (uj)0≤j≤N be the associated normalized eigen-
functions, u0 being the one associated to the eigenvalue 0.
Fix 1 ≤ ℓ̃ < ℓ to be chosen later. Partition the interval [0, ℓ] into A intervals of length

approximately ℓ̃ i.e. [0, ℓ] = ∪1≤α≤AIα where Iα = [xα, xα+1] and xα+1 − xα ≍ ℓ̃;

hence, A ≍ ℓ/ℓ̃.
As in Lemma 1.2, let (v,w) be the fundamental solutions to −u′′ + qu = 0. For-
mula (4.2) and (4.1) show that there exists constants ((λαj ))1≤j≤N

1≤α≤A
and ((βαj ))1≤j≤N

1≤α≤A
such that, for 0 ≤ j ≤ N and 1 ≤ α ≤ A, we have

(4.4) sup
x∈Iα

∣

∣

∣

∣

(

uj(x)
u′j(x)

)

− λαj

(

v(x)
v′(x)

)

+ βαj

(

w(x)
w′(x)

)
∣

∣

∣

∣

≤ CεeCℓ̃.

Let 〈·, ·〉 denote the standard scalar product on L2([0, ℓ]) and 〈·, ·〉α that on L2(Iα).
One has

(4.5) IdN+1 = ((〈ui, uj〉))0≤i≤N
0≤j≤N

=
A
∑

α=1

((〈ui, uj〉α))0≤i≤N
0≤j≤N

.

Using (4.4), we compute

(4.6) Mα := ((〈ui, uj〉α))0≤i≤N
0≤j≤N

=

4
∑

n=1

Mα,n + Sα

where

Mα,1 = 〈v, v〉α
((

λαi λ
α
j

))

0≤i≤N
0≤j≤N

, Mα,2 = 〈v,w〉α
((

λαi β
α
j

))

0≤i≤N
0≤j≤N

,(4.7)

Mα,3 = 〈w, v〉α
((

βαi λ
α
j

))

0≤i≤N
0≤j≤N

, Mα,4 = 〈w,w〉α
((

βαi β
α
j

))

0≤i≤N
0≤j≤N

,(4.8)

‖Sα‖ ≤ CεNeCℓ̃ℓ̃ ≤ Cε ℓ ℓ̃ eCℓ̃.(4.9)

Pick ℓ̃ = | log ε|/K for some K sufficiently large; as 0 < ε ≤ ℓ−ν with ν > 2, for ℓ
sufficiently large, by (4.9), one has

A
∑

α=1

‖Sα‖ ≤ Cεℓ2eCℓ̃ ≤ Cℓ2−ν(1−C/K) ≤ 1/2.

By (4.7) and (4.8), the matrices (Mα,n)α,n are all of rank at most 1. Hence, equa-
tion (4.5) implies that 4A ≥ N + 1 which yields N + 1 ≤ Cℓ/| log ε| for some C > 0.
This completes the proof of Theorem 1.3. �
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One can wonder whether the bounds given in Theorems 1.2 and 1.3 are optimal.
Examples build using semi-classical ideas show that the orders of magnitudes are.
The precise values of the constants depend on the details of the potential q.

5. Localization for the models HA
ω and HD

ω

In the present section, we establish that the models HA
ω and HD

ω satisfy (Loc) as
claimed in the introduction.

5.1. Localization for the model HA
ω . In the present section, we show how to

extend the results of [14] to our assumptions.
Let

H̃ω = − d2

dx2
+ W̃ (·) +

∑

n∈Z

ω̃nṼ (· − n)

where

• (ω̃n)n∈Z and Ṽ satisfy the assumptions that (ωn)n∈Z and V satisfy for HA
ω in

the introduction, section 0,
• Ṽ has its support in (−1/2, 1/2),

• W̃ is uniformly continuous on R.

Then, the main result of [14] can be rephrased in the following way: Hω satisfies
(Loc) (see (1.3)) for any compact interval I (see Lemma 2.1 and Proposition 2.2
in [14]).
Consider now HA

ω as defined in section 0. Let n0 ∈ N be such that suppV ⊂
(−n0/2, n0/2). Doing the change of variable x = n0y, we can rewrite

(5.1) HA
ω = n−2

0

(

− d2

dy2
+ W̃ (·) +

∑

n∈Z

ω̃nṼ (· − n)

)

where

• Ṽ (·) = n20V (n0 ·), thus, Ṽ has its support in (−1/2, 1/2),
• ω̃n = ωn·n0 for n ∈ Z,

• W̃ (·) = n20
∑

n∈Z\n0Z

ωnV (n0 · −n), thus, W̃ is uniformly continuous on R for

any realization (ωn)n∈Z\n0Z
(as the random variables are bounded).

So, for any realization (ωn)n∈Z\n0Z
, we know that HA

ω satisfies assumption (Loc) on
any compact interval I when the expectation is taken with respect to the random
variables (ωn)n∈n0Z. A priori, the constant in the right hand side of (1.3) may
depend on the realization (ωn)n∈Z\n0Z

. The proof of Theorem 1 in [14] shows that

this is not the case. More precisely, as W̃ stays uniformly bounded independently
of the realization (ωn)n∈Z\n0Z

, the estimates of the operator T1 and its continuity

with respect to the potential W̃ (W0 in [14]) yield that the right hand side of (1.3) is
bounded uniformly in (ωn)n∈Z\n0Z

. Thus, HA
ω satisfies (Loc) on any compact interval

I.

5.2. Localization for the model HD
ω . The purpose of this section is to prove

that, in the setting of the introduction, there exists ẼD > inf ΣD such that assump-
tion (1.3) is satisfied in (inf ΣD, ẼD] for HD

ω . Actually we will prove this under
assumptions weaker than those made in the introduction.
Consider the random displacement model (0.2) where
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• V : R → R is a smooth, even function that is compactly supported in
(−r0, r0) for some 0 < r0 < 1/2;

• (ωn)n∈Z are bounded i.i.d random variables, the common distribution of
which admits a density supported in [−r, r] ⊂ [−1/2 + r0, 1/2 − r0], that
is continuously differentiable in [−r, r] and which support contains {−r, r}.

For a ∈ [−r, r], consider H1(a) = −∆ + q(x − a) on L2(−1/2, 1/2) with Neumann
boundary condition and let E0(a) = inf σ(H1(a)) be the lowest eigenvalue of H1(a).
Note that, by symmetry of q, E0(a) is even.
We prove

Theorem 5.1. Assume that E0(a) does not vanish identically for a ∈ [−r, r].
Then, there exists δ > 0 such that Hω almost surely has pure point spectrum in I =
[E0, E0+δ] with exponentially decaying eigenfunctions. Moreover, Hω is dynamically
localized in I, in the sense that for every ζ < 1, (1.3) holds.

In [1], it is proved that if V has a fixed sign, then E0(a) does not vanish identically
for a ∈ [−r, r]. Thus, under our assumptions in the introduction, we obtain that
assumption (Loc) holds in some neighborhood of the bottom of the spectrum of HD

ω .
In [30], Theorem 5.1 was proved when d ≥ 2. Here, we are going to extend the ideas
used to prove it to the one-dimensional case.
The proof of Theorem 5.1 follows a well known strategy: to prove localization in some
energy region I, one only needs to prove that, in I, the operator satisfies a Wegner
estimate and the resolvent of its restriction to a finite cube satisfies a smallness
estimate with a good probability (see e.g. [26, Theorem 5.4]). This strategy is the
one followed in [30] that we also follow below.
For any s ∈ (0, 1) and ρ = 1, the Wegner estimate (W) for our model was proved
in [30, Theorem 4.1] under no restriction on the dimension. In dimension 1, the same
analysis can be improved to give

Theorem 5.2. There exists δ > 0 and C > 0 such that, for any L > 1 and any
interval I ⊂ [inf ΣD, inf ΣD + δ], one has

(5.2) E(trχI(H
D
ω,L)) ≤ C|I|L.

Thus, in [inf ΣD, inf ΣD+δ], the integrated density of states E 7→ ND(E) is Lipschitz
continuous.

To obtain (5.2), it suffices to follow the proof of [30, Theorem 4.1] and in [30, (53)] to
use the boundedness of the spectral shift function E 7→ ξ(E;−∆+V,−∆+V +V0) in
dimension 1 when V is bounded, and V0 is bounded and of compact support (see [11,
Remark 3.1]).
Recall thatN(E) = ND(E) denotes the integrated density of states ofHD

ω (see (0.3)).
The proof of the “smallness” of the resolvent usually relies on a so-called “Lifshitz
tail” estimate for N(E). Such an estimate says roughly that, at the bottom of the
spectrum (resp. at a so called fluctuational edge of the almost sure spectrum (see
e.g. [36])), the function E 7→ N(E) vanishes very quickly (resp. is very flat).
In dimension 1, in [1, Theorem 4.1], it was proved that such a quick vanishing of N
fails for displacement model HD

ω when the random variables (ωn)n∈Z have a Bernoulli
distribution supported in {−r, r}. It was also conjectured that, when this is not the
case, the integrated density of states should be infinitely flat at inf ΣD. This is not
the case. Indeed, we prove that, if we assume V to be as above and that
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• (ωn)n∈Z are i.i.d random variables supported in [−r, r] ⊂ [−1/2+r0, 1/2−r0]
which support contains {−r, r}.

then one has

Theorem 5.3. In the above setting assume that P(ω0 = r)P(ω0 = −r) > 0.
Then, there exists n ≥ 0 such that one has

(5.3) lim
E→inf ΣD

E>inf ΣD

N(E)

(E − inf ΣD)n
→ +∞.

Under the same conditions on V and (ωn)n∈Z, we also prove

Theorem 5.4. In the above setting assume that P(ω0 = r) + P(ω0 = −r) = 0.
Then, for any n ≥ 0, one has

(5.4) lim
E→inf ΣD

E>inf ΣD

N(E)

(E − inf ΣD)n
= 0.

Theorem 5.4 is not optimal: for it to be optimal, (5.4) should hold under the weaker
assumption P(ω0 = r)P(ω0 = −r) = 0.
Let us now complete the proof of Theorem 5.1 using Theorem 5.4. Clearly, under
the assumptions in the introduction i.e. when the random variables admit a density,
one has P(ω0 ∈ {−r, r}) = 0.
We will use the following classical two-sided bound on the integrated density of states
obtained using Dirichlet-Neumann bracketing (see e.g. [36, 39]): there exists C > 0
such that, for L ≥ 1, one has

(5.5)
1

L
P{ED,L(ω) ≤ E} ≤ N(E) ≤ C P{EN,L(ω) ≤ E}

where

• ED,L(ω) is the ground state of HD
ω,L with Dirichlet boundary conditions,

• EN,L(ω) is the ground state of HD
ω,L with Neumann boundary conditions,

• C is a constant depending only on ‖V ‖∞.

We now use it to obtain the initial length scale estimate needed in addition to the
Wegner estimate to apply [26, Theorem 5.4]. Indeed, by (5.4) and (5.5), for any

a > 0 and b ∈ (0, 1) there exists L̃ = L̃(a, b) such that, for all L ≥ L̃.

P(HD
ω,L (with Dirichlet b.c.) has an eigenvalue less than inf ΣD + L−b) ≤ L−a.

Using standard Combes-Thomas estimates (see e.g. [39]), this implies that there
exists C > 0 such that, with probability, as least 1− L−a, one has

sup
E≤inf ΣD+L−b/2

‖χx(H
D
ω,L − E)−1χy‖ ≤ e−L−b|x−y|/C

where χx = 1[x−1/2,x+1/2].
This estimate immediately yields that assumption (5.7) of [26, Theorem 5.4]) is satis-
fied in some neighborhood of inf ΣD for the modelHD

ω considered in the introduction.
Thus, we obtain Theorem 5.1.

Let us now return to Theorems 5.3 and 5.4. Before proving these results, let us give
a more precise result under a simple additional assumption on the random variables
(ωn)n∈Z. We prove
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Theorem 5.5. Assume that the common distribution of the displacements (ωn)n∈Z
satisfies P(ω0 = −r) + P(ω0 = r) = 0 and

(5.6) lim
ε→0+

log |log P(ω0 ∈ [−r,−r + ε]) + log P(ω0 ∈ [r − ε, r])|
log | log ε| = 1.

Then, one has

(5.7) lim
E→inf ΣD

E>inf ΣD

log | logN(E)|
log | log(E − inf ΣD)| = 2.

Up to terms of smaller order, the limit (5.7) should be interpreted as

N(E) ∼ e−C| log(E−inf ΣD)|2 ,

and assumption (5.6) as, for some n+ > n− > 0 and ε positive sufficiently small, one
has

(5.8) εn− ≤ P(ω0 ∈ [−r,−r + ε]) ≤ εn+ and εn− ≤ P(ω0 ∈ [r − ε, r]) ≤ εn+ .

When the common distribution of the (ωn)n∈Z is even, a lower bound for N(E) was
obtained in [1, section 4] (even though it was not stated explicitly); it was of size

e−C| log(E−inf ΣD)|3 .

Remark 5.1. In Theorems 5.4 and 5.5, the smoothness assumption on V can be
relaxed quite a bit (see e.g. [1]).

Let us now turn to the proof of Theorems 5.3, 5.4 and 5.5. For L > 0, consider
HD

ω,L the operator HD
ω restricted to the interval [−L + 1/2, L + 1/2]; the boundary

conditions will be made precise below.
Our main tools to prove Theorems 5.3, 5.4 and 5.5 are the two following lemmas

Lemma 5.1. There exists C > 1 > c > 0, τ ∈ (0, 1) and ε0 > 0 such that, for
ε ∈ (0, ε0) and L ≥ ε−1

0 , one has

(5.9) P{ED,L(ω) ≤ inf ΣD + C(ε+ τ2L)}
≥ [P (ω0 ∈ [−r,−r + cε]) P (ω0 ∈ [r − cε, r])]L .

and

Lemma 5.2. Set p := P(ω0 ∈ [−r, 0] ∈ (0, 1). Then, there exists C > 1 such, for
ε ∈ (0, 1) and L ≥ 1, one has

(5.10) P{EN,L(ω) ≤ inf ΣD + ε} ≤
L
∑

k=0

∑

K⊂{−L+1,··· ,L}
#K=k

PK,L(ε)

where

(5.11) PK,L(ε) :=

L
∑

m=0

∏

n∈K

P

(

ω0 ∈
[

−r,−r + CLeC|n−m|ε
])

∏

n 6∈K

P(ω0 ∈ [r − CLeC|n−m|ε, r]).
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Let us now show how these lemmas are used to prove Theorems 5.3, 5.4 and 5.5.
We start with Theorem 5.3 and the lower bound in Theorem 5.5. Pick ε positive
small and L such that

(5.12) L− 1 ≤ α| log ε| ≤ L.

where α > 0. If we pick α ≥ (2 log τ)−1 then τ2L ≤ ε. Under the assumptions
of Theorem 5.3, the bound (5.10) and the lower bound in (5.12) yield, for some
ν ∈ (0, 1),

N(inf ΣD + 2Cε) ≥ ν | log ε| = ε| log ν|.

One completes the proof of Theorem 5.3 by taking n > | log ν|.
The lower bound in (5.7) in Theorem 5.4 is obtained in the same way. For α in (5.12)
sufficiently large, we obtain that

log | logN(inf ΣD + 2Cε)|
≥ logL+ log |logP (ω0 ∈ [−r,−r + cε]) + log P (ω0 ∈ [r − cε, r])| .

Thus, assumption (5.6) and the bound (5.12) immediately yield the lower bound
in (5.7).
Let us now turn to the proof of Theorem 5.4 and the upper bound in Theorem 5.5.
We again pick ε positive small and L such that (5.12) be satisfied for some α > 0.
Now α is chosen so small that Cα < 1/4 where C is given by Lemma 5.2. Thus,

for ε small and (n,m) ∈ {−L + 1, · · · , L}2, one has CLeC|n−m|ε ≤ √
ε and (5.10)

becomes

(5.13) P{EN,L(ω) ≤ inf ΣD + ε}
≤ L2 2L

(

P
(

ω0 ∈
[

−r,−r +√
ε
])

+ P
(

ω0 ∈ [r −√
ε, r]

))2L

Under the assumptions of Theorem 5.3 or Theorem 5.5, for ε small, we get

log P{EN,L(ω) ≤ inf ΣD + ε}
≤ −α| log ε| log

(

P
(

ω0 ∈
[

−r,−r +√
ε
])

+ P
(

ω0 ∈ [r −√
ε, r]

))

.

This immediately gives (5.4) under the assumptions of Theorem 5.3 and the upper
bound in (5.7) under those of Theorem 5.5. Hence, the proofs of Theorem 5.3 and
Theorem 5.5 are complete.

The proof of Lemma 5.1. As V is smooth and compactly supported, we know that
there exists c ∈ (0, 1), such that for any admissible (ωn)−L+1≤n≤L and (ω′

n)−L+1≤n≤L,
one has

‖HD
ω,L −HD

ω′,L‖ = sup
[−L+1/2,L+1/2]

∣

∣

∣

∣

∣

∑

n∈Z

V (· − n− ωn)−
∑

n∈Z

V (· − n− ω′
n)

∣

∣

∣

∣

∣

≤ c−1 sup
−L+1≤n≤L

|ωn − ω′
n|.

(5.14)

Here, ‖·‖ denotes the operator norm and the estimate does not depend on the bound-
ary conditions used to define HD

ω′,L (provided we use the same boundary conditions

for HD
ω′,L and HD

ω,L).

Recall that, for a ∈ [−r, r], we have defined H1(a) = −∆+ q(x−a) on L2(−1/2, 1/2)
with Neumann boundary condition and E0(a) = inf σ(H1(a)) to be the lowest eigen-
value of H1(a). Let ψ0(a;x) be the associated positive ground state. Note that,
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by symmetry, one has ψ0(−a;x) = ψ0(a;−x). By [1, Lemma 3.2], we know that
ψ0(a;−1/2) 6= ψ0(a; 1/2) as a 7→ E0(a) is supposed not to be constant. For a = r,
assume that

0 <
ψ0(r;−1/2)

ψ0(r; 1/2)
:= τ < 1

If this is not the case, in the construction that follows, we invert the parts of r and
−r.
By the results of [1], we know that E(−r) = E(r) = inf ΣD.
Consider the event

ΩL,ε =

{

∀n ∈ {−L+ 1, 0}, |ωn + r| ≤ ε

∀n ∈ {1, L}, |ωn − r| ≤ ε

}

;

The (ωn)n∈Z being independent, the probability of this event is bounded from below

(5.15) P(ΩL,ε) ≥ [P(ω0 ∈ [−r,−r + ε])P(ω0 ∈ [r − ε, r])]L .

For the realization (ωr
n)−L+1≤n≤L defined by ωr

n = −r if n ∈ {−L+1, 0} and ωr
n = r

if n ∈ {1, L}, we know (see [1]) that ψωr ,L, the normalized positive ground state of

HD
ω,L with Neumann boundary conditions, is given by

ψωr ,L(x) =
1

C0

{

τ−n ψ0(r;n− x) if n ∈ {−L+ 1, 0}
τn−1 ψ0(r;x− n) if n ∈ {1, L} for − 1

2
≤ x− n ≤ 1

2

where

C2
0 =

L−1
∑

n=0

τ2n
∫ 1/2

−1/2
|ψ0(r;x)|2dx =

1− τ2L

1− τ2
> 1.

Here, we have used the symmetries of (a, x) 7→ ψ0(a;x) and the fact that it is
normalized.
Pick χ : (−L + 1/2, L + 1/2) → R

+ smooth such that 0 ≤ χ ≤ 1, χ ≡ 1 on
(−L + 1, L − 1) and it vanishes identically near L + 1/2 and −L + 1/2. Consider
the function φ = χψωr ,L. It satisfies Dirichlet boundary conditions at L + 1/2 and
−L + 1/2. Moreover, using (5.14), for ω ∈ Ωr,cε (recall that c is defined in (5.14)),

one computes that 1− τ2LC−2
0 ≤ ‖φ‖2 ≤ 1 and there exists C > 0 such that

(5.16) ‖(HD
ω,L − E0(r))φ‖2 ≤ C

(

τ2L + ε
)2 ≤ C2

(

τ2L + ε
)2 ‖φ‖2.

This and estimate (5.15) immediately yields (5.9) and completes the proof of Lem-
ma 5.1. �

The proof of Lemma 5.2. We are going to rely on the analysis done for the Lif-
shitz tails regime in [30, section 3]. Define the random variable ωe

0 and ω̃0 as
ωe
0 = r (1ω0>0 − 1ω0≤0) and ω̃0 = |ω0 − ωe

0| conditioned on ωe
0. Note that, under

the assumptions of Theorems 5.4 and 5.5, ω̃0 is not identically vanishing. In the
same way, for any n ∈ Z, define ωe

n and ω̃n. Then, though not stated directly in this
way, the following result is proved in [30, section 3]

Lemma 5.3 ([30]). There exists C > 0 such that

HD
ω,L − inf ΣD ≥ 1

C

(

HD
ωe,L − inf ΣD + Vω̃,L

)
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where

Vω̃,L(x) =

L
∑

n=−L+1

ω̃n1[−1/2,1/2](x− n).

Using this decomposition and recalling that p = P(ω0 ∈ [−r, 0] ∈ (0, 1), we can write

(5.17) P{EN,L(ω) ≤ inf ΣD + ε} ≤
L
∑

k=0

pk(1− p)L−k
∑

K⊂{−L+1,··· ,L}
#K=k

P̃K,L(ε)

where

P̃K,L(ε) = P

{

∃ϕ ∈ C1, ‖ϕ‖ = 1and ∃E ∈ [0, Cε] s.t.
(

HD
ωe,L − inf ΣD + Vω̃,L − E

)

ϕ = 0

∣

∣

∣

∣

ωe
n = −r for n ∈ K
ωe
n = r for n 6∈ K

}

.

Lemma 6.1 guarantees that there exists C > 0 (independent of L and the realization
ω) such that, if ϕ is a solution to (HD

ωe,L − inf ΣD + Vω̃,L − E)ϕ = 0,

∀(m,n) ∈ {−L+ 1, · · · , L},
∫ 1/2

−1/2
|ϕ(x− n)|2dx ≤ eC|m−n|

∫ 1/2

−1/2
|ϕ(x−m)|2dx.

If ϕ is normalized, we know that one has

∫ 1/2

−1/2
|ϕ(x − n)|2dx ≥ (2L)−1 for some

n ∈ {−L+ 1, · · · , L}.
As HD

ωe,L − inf ΣD ≥ 0, these two properties imply that

P̃K,L(ε) ≤
L
∑

m=−L+1

P

{

L
∑

n=−L+1

ω̃ne
−C|m−n| ≤ 2CLE

∣

∣

∣

∣

ωe
n = −r for n ∈ K
ωe
n = r for n 6∈ K

}

≤
L
∑

m=−L+1

∏

n∈K

P

(

ω0 ∈
[

−r,−r + 2CLeC|n−m|ε
]

|ωe
n = −r

)

∏

n 6∈K

P(ω0 ∈ [r − 2CLeC|n−m|ε, r]|ωe
n = r).

Using the definition of (ωe
n)n∈Z, we immediately obtain the bound (5.10) and thus

complete the proof of Lemma 5.2. �

6. Appendix

In this appendix, we collect various technical results that were used in our study.

6.1. Some results on differential equations. We recall some standard estimates
on ordinary differential equations that are immediate consequences of equations (2.2)
and (2.3), and, presumably well known (see e.g. [42, 14]). We use the notation of
section 2.
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Lemma 6.1. There exists a constant C > 0 (depending only on ‖q‖∞) such that,
for u a solution to Hu = 0 (see (2.1)), if I(x) := [x− 1/2, x + 1/2] ∩ [0, ℓ], one has

∀x ∈ [0, ℓ],
1

C

∫

I(x)
u2(y)dy ≤ r2u(x) ≤ C

∫

I(x)
u2(y)dy,(6.1)

∀x ∈ [0, ℓ], min
I(x)

ru ≤ max
I(x)

ru ≤ C min
I(x)

ru,(6.2)

∀x ∈ [0, ℓ], ‖ sin(ϕu(·))‖L2(I(x)) ≥
1

C
.(6.3)

Lemma 6.2. Let δϕ be a solution to the equation (2.5). There exists C > 0 (de-
pending only on ‖q‖∞) such that, for x0 ∈ [0, ℓ], one has

∀x ∈ [0, ℓ], | sin(δϕ(x))| ≤ [| sin(δϕ(x0))|+ Eℓ]eC|x−x0|.

Proof. Write s(x) = | sin(δϕ(t))| and note that, integrating equation (2.5) implies
that

s(x) ≤ s(x0) + Eℓ+ C

∫ x

x0

s(t)dt.

The statement of Lemma 6.2 then follows from Gronwall’s Lemma (see e.g. [41]). �

Lemma 6.3. There exists η0 > 0 depending only on ‖q‖∞ such that, for η ∈ (0, η0)
and ϕu, a solution to equation (2.2), one has

(1) if y < y′ are such that max
x∈[y,y′]

| sinϕu(x)| ≤ η, then |y − y′| ≤ η/η0;

(2) if | sin(ϕu(y))| ≤ η then, for 4η ≤ |x− y| ≤ √
η, one has

| sin(ϕu(y))| ≥ |x− y|/2.
(3) if y < y′ are such that

| sinϕu(y)| = | sinϕu(y
′)| = η and min

x∈[y,y′]
| sinϕu(x)| ≥ η

then |y − y′| ≥ (η0 − η)η0.

Proof. First, by equation (2.2), for some C > 0 depending only on ‖q‖∞, one has
|ϕ′

u(x)| ≤ C and, if | sin(ϕu(x))| ≤ η then 1−Cη2 ≤ | cosϕu(x)|ϕ′
u(x). Pick η0 ∈ (0, 1)

such that 1− Cη20 ≥ 1/2.
To prove point (1), consider y < y′ such that max

x∈[y,y′]
| sinϕu(x)| ≤ η. As η < η0 < 1,

cosϕu(x) does not change sign on [y, y′]. Thus, one computes

2η ≥ | sinϕu(y
′)− sinϕu(y)| =

∫ y′

y
| cosϕu(x)|ϕ′

u(x)dx ≥ |y − y′|/2.

This proves (1) possibly diminishing the value of η0.
To prove point (2), as by equation (2.2), for some C > 0 depending only on ‖q‖∞,
one has |ϕ′

u(x)| ≤ C, there exists η0 > 0 such that, for η ∈ (0, η0], if | sin(ϕu(y))| ≤ η,
one has | sin(ϕu(x))| ≤ η0 for |x− y| ≤ η0. Thus, at the possible cost of reducing η0,
x 7→ | cos(ϕu(x))| stays larger than 9/10 on [y−η0, y+η0], and, by equation (2.2), one
has d/dx[sin(ϕu(x))] ≥ 3/4 on [y−η0, y+η0]. This, the assumption | sin(ϕu(y))| ≤ η
and the Taylor formula immediately entail point (2).
To prove point (3), note that, as |ϕ′

u(x)| ≤ C, for y < z < y + (η0 − η)/C, one
has | sin(ϕu(z))| ≤ η0. Thus, x 7→ cosϕu(x) keeps a constant sign on the interval
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[y,min(y′, y+(η0−η)/C)]. Moreover, as min
x∈[y,y′]

| sinϕu(x)| ≥ η, so does x 7→ sinϕu(x)

and both signs are the same. Thus, for y < z < y + (η0 − η)/C, we know that

| sinϕu(z)| = | sinϕu(y)|+
∫ z

y
| cosϕu(x)|ϕ′

u(x)dx

≥ η +
√

1− (η′)2(z − y)/2 > η.

Hence, one has y′ > y + (η0 − η)/C. This proves (2) at the expense of possibly
changing η0 again. This completes the proof of Lemma 6.3. �
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