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Abstract

At each point of a Poisson point process of intensity λ in the hyperbolic place,

center a ball of bounded random radius. Consider the probability Pr that from

a fixed point, there is some direction in which one can reach distance r without

hitting any ball. It is known [1] that if λ is strictly smaller than a critical

intensity λgv then Pr does not go to 0 as r → ∞. The main result in this note

shows that in the case λ = λgv, the probability of reaching distance larger than

r decays essentially polynomial, while if λ > λgv, the decay is exponential.

We also extend these results to various related models and we finally obtain

asymptotic results in several situations.

1. Introduction

Let X be a homogeneous Poisson point process with intensity λ ∈ (0,∞) in the

hyperbolic plane H
2. At each point of X, center a ball of a bounded random radius,

independently for all points. Fix a base-point o ∈ H
2. In [1], it was shown that there

is a critical intensity λgv ∈ (0,∞), such that if λ < λgv, then with positive probability

∗ Postal address: The Weizmann Institute of Science, Faculty of Mathematics and Computer Science,

POB 26, Rehovot 76100, Israel. E-mail: johan.tykesson@gmail.com. Research supported by a post-

doctoral grant of the Swedish Research Council.
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there is some geodesic ray, starting at o, such that it does not hit any of the balls.

In other words, if you stand at o, then with positive probability you have visibility

to infinity inside the complement of the balls in some direction. Of course, such a

direction much be exceptional, since in a given direction, you will hit infinitely many

balls with probability one.

In [1] it was also shown that as soon as λ ≥ λgv, with probability one, there is no

direction in which you can see to infinity. In other words, the set of visible points

from o are with probability 1 within some finite random distance. In this note we

mainly investigate the probability that there is some direction in which you can see

to a distance larger than r inside the complement of the balls, when λ ≥ λgv. In this

region, the probability to see distance larger than r in some direction goes to 0 as r

approaches infinity, and here we are interested in what the decay looks like for large r.

We will see that at the critical value, this decay is essentially polynomial while above

criticality, the decay is essentially exponential which is different from the decay for the

visibility in a fixed direction. This also differs from the Euclidean case, where Calka

et. al. [3] showed that for every λ > 0, one has exponential decay and the same decay

as for the visibility in a fixed direction. We also generalize these results to visibility

outside a Poisson process on the space of lines in H
2. Indeed, Benjamini et al. [1]

extended a previous work due to S. Porret-Blanc [9] to show that there is a critical

intensity for the visibility to infinity in a Poisson line process in H
2. The decay of the

distribution tail of the total visibility differs from the Euclidean case which has been

studied before [2].

The rest of the paper is organized as follows. In Section 2 we introduce the model

of main interest more carefully and state the main result, Theorem 2. In Section 3 we

give the proof of Theorem 2. We then discuss some extensions of the main results to

other models, in particular the line process model in Section 4. Section 5 provides the

behaviour of the total visibility near the critical point and for small intensity. In the

last section, we show an asymptotic result when the size of the balls goes to zero and

the intensity increases accordingly.
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2. Notation and main results

Before turning to our results, we introduce the model more carefully. We will work

in the Poincaré disc model of H
2. This is the unit disc {z ∈ C : |z| < 1} equipped

with the metric

ds2 = 4
dx2 + dy2

(1 − (x2 + y2))2
.

Möbius transforms are isometries of H
2, see (44) below. The associated area measure

µ is isometry-invariant:

µ(dx, dy) =
4

(1 − (x2 + y2))2
dxdy.

For more information about hyperbolic geometry, we refer to [7]. Let us now describe

the bounded radius version of the Poisson-Boolean model of continuum percolation.

We consider a homogeneous Poisson point process X in H
2, i.e. with intensity measure

λµ where λ ∈ (0,∞). Let C ∈ (0,∞) and suppose R is a random variable with

R ∈ (0, C] a.s. Let

C :=
⋃

x∈X

B(x, Rx)

denote the occupied set, where B(x, r) denotes the closed ball of radius r centered at

x and {Rx}x∈X is a collection of i.i.d. random variables with the same distribution as

R. Let

W := H2 \ C.

W will be called the vacant set. It is well known that both C and W satisfy the

property of positive correlations, see Theorem 2.2 in [8]. For W, this means that for

any pair f and g of bounded increasing functions of W, we have E[f(W)g(W)] ≥
E[f(W)]E[g(W)], and the definition for C is analogous.

This model has been extensively studied in Euclidean space, see in particular [4]

and [8]. Aspects of the model have also been recently studied in hyperbolic space, see

[11] and [1]. We will soon mention some of the results in [1], but first we introduce

some notation.

For a set A ⊂ H
2, let AR denote the closed R-neighborhood of A:

AR = {x : d(x, A) ≤ R}.
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With c and c′ we denote positive constants and their values may change from place

to place, which may only depend on λ, the law of R, and the parameter ǫ which is

introduced in Section 3. If they depend on some other parameter, this is indicated.

With Θ(g) we denote a quantity which takes its values between cg and c′g. In addition,

we define Θ̃(g) in the same way as Θ(g), but with condition that c and c′ may not

depend on λ.

Let Lr(θ) be the geodesic line segment started at 0 of length r such that its

continuation hits ∂H
2 at the point eiθ. For θ ∈ [0, 2π), the visibility in direction θ

is defined as

V (θ) = inf{r ≥ 0 : Lr(θ) ∩ C 6= ∅}.

The total visibility is defined to be

V = sup
θ∈[0,2π)

V (θ).

Let f(r) = fλ,R(r) be the probability that a line segment of length r is contained in

W. Lemma 3.4 in [1] says that there is a unique α ≥ 0 such that

f(r) = Θ(e−αr), r ≥ 0. (1)

The constant α depends on the law of R and on λ and it can be computed explicitly,

we will come back to this later. One of the main results in [1] was the following:

Theorem 1. For the total visibility V the following holds:





P[V = ∞] = 0, α ≥ 1

P[V = ∞] > 0, α < 1
(2)

We remark that in [1], Theorem (1) was formulated in a much more general form.

For example, visibility inside C was also dealt with.

In [1], the decay of P[V ≥ r] as r → ∞ in the case α ≥ 1 was not studied. One of

the main results in this note provides upper and lower bounds as follows:

Theorem 2. For all r large enough,





P[V ≥ r] = Θ(1/r), α = 1

P[V ≥ r] = Θ(e−(α−1)r), α > 1.
(3)
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2.1. The value of α

If R is non-random, then Lemma 4.2 in [1] says that α = 2λ sinh(R). We can easily

generalize this to the case when R is random. For the convenience of the reader, we

include the proof. For this particular result, we do not need the R to be bounded.

Lemma 1. If R is random with E[eR] < ∞, then the value of α is given by

α = 2λE[sinh(R)].

Proof. Let γ : R → H
2 be a line parameterized by arclength and let r > 0. Let

X̃ ⊂ X be the set of Poisson points x ∈ X for which B(x, Rx) ∩ γ[0, r] 6= ∅. If a

Poisson point is at distance t from γ[0, r], the probability that its corresponding ball

intersects γ[0, r] is equal to P[R ≥ t]. Therefore, X̃ is a non-homogeneous Poisson

point process with intensity function Λ(x) = λP[R ≥ d(x, γ[0, r])]. That is, for any

measurable A ⊂ H
2,

P[|X̃ ∩ A| = k] = e−
R

A
Λ(x) dµ(x)

(∫
A

Λ(x) dx
)k

k!
. (4)

Observe that γ[0, r] ⊂ W if and only if X̃ = ∅. Consequently, using Fubini,

f(r) = P[|X̃| = 0] = e−
R

H2 Λ(x) dµ(x) = e−λ
R

H2 P[R≥d(x,γ[0,r])] dµ(x)

= e−λ
R

H2

R

1{R≥d(x,γ[0,r])} dP dµ(x) = e−λ
R R

H2 1{R≥d(x,γ[0,r])} dµ(x) dP

= e−λ
R

µ(γ[0,r]R) dP = e−λE[µ(γ[0,r]R)] = e−λE[2π(cosh(R)−1)+2r sinh(R)],

and the result follows. In the last equality, we used the calculation in the proof of

Lemma 4.2 in [1].

3. Proof of Theorem 2

We now turn to the proof of Theorem 2. First we introduce some additional notation.

For ǫ, δ ∈ [0, 2π) let Yr(ǫ, δ) be the set {θ ∈ [ǫ, δ] : Lr(θ) ⊂ W}. Note that a.s., Yr(ǫ, δ)

is a union of intervals. Let yr(ǫ, δ) := length(Yr(ǫ, δ)). Also put Yr(ǫ) = Yr(0, ǫ),

yr(ǫ) = yr(0, ǫ), Yr := Yr(2π) and yr := yr(2π). Recall that f(r) is the probability

that a line segment of length r is contained in W. Since the law of W is invariant

under isometries of H
2, we have f(r) = P[θ ∈ Yr], for every θ ∈ [0, 2π). For x, y ∈ H

2,

let [x, y] be the line-segment between x and y and for s > 0 let [x, y]s be the union of
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all line-segments with one end-point in B(x, s) and the other end-point in B(y, s). Let

Q(x, y, s) be the event that [x, y]s ⊂ W.

Clearly,

f(d(x, y)) ≥ P[Q(x, y, s)]. (5)

However, from Lemma 3.3 in [1], we have that there exists some c1 > 0 such that for

all small enough s and all x, y ∈ H
2,

P[Q(x, y, s)] ≥ c1f(d(x, y)). (6)

If R is fixed and one considers only intensities λ within some compact interval, then

c1 can be chosen to be the same for all those values of λ, and we will make use of this

later. In fact, Lemma 3.3 in [1] states relation (6) for a larger class of random sets. We

can remove the condition that s is small enough, as we will see in the next lemma.

Lemma 2. For any s ∈ (o,∞) there is c(s) > 0 such that for all x, y ∈ H
2,

f(d(x, y)) ≤ c(s)P[Q(x, y, s)]. (7)

Proof. First we fix s′ > 0 so small that (6) holds with s′ in place of s. Let s ∈ (s′,∞).

Let γ be a line parameterized by arc-length. Fix r > 0 large, and let

t1 := inf{t : d(γ(t), ∂[γ(0), γ(r)]s) < s′},

From Lemma 3.2 in [1], we get that for each s > 0, there is some c′(s) < ∞ which

is independent of r such that t1 < c′(s). In particular, t1 does not diverge with r.

Observe that by definition of t1,

Q(γ(0), γ(r), s)

⊃ Q(γ(0), γ(t1), s) ∩ Q(γ(t1), γ(r − t1), s
′) ∩ Q(γ(r − t1), γ(r), s). (8)

By positive correlations and invariance, we get that

P[Q(γ(0), γ(r), s)] ≥ P[Q(γ(0), γ(t1), s)]
2P[Q(γ(t1), γ(r − t1), s

′)]. (9)

We have

P[Q(γ(t1), γ(r − t1), s
′)] ≥ P[Q(γ(0), γ(r), s′)]

(6)

≥ c1f(r) (10)



Visibility in hyperbolic plane 7

and

P[Q(γ(0), γ(t1), s)]
2 ≥ P[Q(γ(0), γ(c′(s)), s)]2. (11)

We now deduce (7) with c(s) = c1P[Q(γ(0), γ(c′(s)), s)]2 from (9), (10) and (11).

Equations (7) and (5) together imply that for all x, y ∈ H
2,

P[Q(x, y, s)] = Θ(f(d(x, y))), (12)

where the implied constants in this case are allowed to depend on s. Theorem 2 is

equivalent to the following estimate:

P[Yr 6= ∅] =





Θ
(
e−(α−1)r

)
, α > 1

Θ
(
r−1
)

α = 1
(13)

Recall that in [1], it is shown that in the case α < 1, there is positive probability that

there are infinite rays contained in W emanating from 0, so that P[Yr 6= ∅] does not

converge to 0. We will make further remarks about the region α < 1 later. Observe

that by Fubini, we have

E[yr(ǫ)] = ǫP[0 ∈ Yr] = ǫ f(r) (14)

and

E[yr(ǫ)
2] =

∫ ǫ

0

∫ ǫ

0

P[θ ∈ Yr, θ
′ ∈ Yr] dθ dθ′. (15)

Moreover, by invariance it follows that

P[θ ∈ Yr, θ
′ ∈ Yr] = P[0 ∈ Yr, |θ − θ′| ∈ Yr].

Therefore, we have

ǫ

2

∫ ǫ/2

0

P[0 ∈ Yr, θ ∈ Yr] dθ ≤
∫ ǫ

0

∫ ǫ

0

P[θ ∈ Yr, θ
′ ∈ Yr] dθ dθ′

≤ 2 ǫ

∫ ǫ

0

P[0 ∈ Yr, θ ∈ Yr] dθ. (16)

Denote by J(r, θ) the set Lr(0) ∪ Lr(θ). Note that

P[0 ∈ Yr, θ ∈ Yr] = e−λE[area(J(r,θ)R)].
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Since the area of J(r, θ)R is increasing in θ on [0, π], it follows that P[0 ∈ Yr, θ ∈ Yr]

is decreasing in θ on [0, π] and therefore we have

∫ ǫ/2

0

P[0 ∈ Yr, θ ∈ Yr] dθ ≥ 1

2

∫ ǫ

0

P[0 ∈ Yr, θ ∈ Yr] dθ. (17)

Observe that up to a set of measure 0, the events {yr > 0} and {Yr 6= ∅} are the same.

The following lemma is the key ingredient for the proof of Theorem 2.

Lemma 3. For every r > 0 and every ǫ ∈ (0, π/2),

E[yr(ǫ)]
2

E[yr(ǫ)2]
≤ P[Yr(ǫ) 6= ∅] ≤ 4

E[yr(ǫ)]
2

E[yr(ǫ)2]
. (18)

For the proof of Lemma 3 we will use some techniques from [5] and [6].

Proof. The lower bound is of course the usual second moment method, so it remains

to show the upper bound. The first part of the proof of the upper bound follows the

method in the proof of the Lemma on page 146 of [6]. Fix some ǫ ∈ (0, π/2). Let

A = A(r, ǫ) be the event that Yr(ǫ) 6= ∅. First we show that

E[yr(2ǫ)] ≥ P[A]E[yr(ǫ)|0 ∈ Yr(ǫ)], (19)

and then we deduce (18) from (19). Let AN = AN (r, ǫ) be the event that Yr(ǫ) contains

an interval of length at least 1/N . Then clearly P[AN ] ր P[A] as N ր ∞. Fix an

integer N . Let A0 := {0 ∈ Yr} and for j = 1, ..., [Nǫ] let

Aj := {0 ∈ Y c
r , 1/N ∈ Y c

r , ..., (j − 1)/N ∈ Y c
r , j/N ∈ Yr}.

On AN , exactly one of the events Aj happens. We first argue that

E[yr(2ǫ)1Aj
] ≥ E[yr(j/N, j/N + ǫ)1Aj

] ≥ P[Aj ]E[yr(ǫ)|0 ∈ Yr]. (20)

The left inequality is trivial. After division by P[Aj ] we see that we need to show that

E[yr(j/N, j/N + ǫ)|Aj ] ≥ E[yr(ǫ)|0 ∈ Yr].

By invariance, the right hand side equals

E[yr(j/N, j/N + ǫ)|j/N ∈ Yr].

Thus it will suffice to show that for each θ ∈ [j/N, j/N + ǫ],

P[θ ∈ Yr|Aj ] = P[θ ∈ Yr|j/N ∈ Yr]. (21)
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So fix some θ ∈ [j/N, j/N + ǫ]. We can write

X =

4⋃

i=1

Xi, (22)

where

X1 = {x ∈ X : B(x, Rx) ∩ Lr(j/N) 6= ∅} (23)

X2 = {x ∈ X : B(x, Rx) ∩ Lr(j/N) = ∅, B(x, Rx) ∩ Lr(θ) 6= ∅} (24)

X3 = {x ∈ X : B(x, Rx) ∩ Lr(j/N) = ∅, B(x, Rx) ∩
(
∪j−1

i=0Lr(i/N)
)
6= ∅} (25)

X4 = X \
3⋃

i=1

Xi. (26)

Note that {j/N ∈ Yr} = {X1 = ∅}. Therefore, given that the event {j/N ∈ Yr}
happens, the event {θ ∈ Yr} is determined by X2, and the event

Ã := {0 ∈ Y c
r , 1/N ∈ Y c

r , ..., (j − 1)/N ∈ Y c
r }

is determined by X3. Therefore, conditioned on {j/N ∈ Yr}, the events Ã and {θ ∈ Yr}
are conditionally independent, that is

P[Ã ∩ {θ ∈ Yr}|j/N ∈ Yr] = P[Ã|j/N ∈ Yr]P[θ ∈ Yr|j/N ∈ Yr].

This implies that

P[θ ∈ Yr|Ã ∩ {j/N ∈ Yr}] = P[θ ∈ Yr|j/N ∈ Yr]

which is the same as (21) and therefore (20) is established. After summing both sides

of (20), we get

E[yr(2ǫ)] ≥ P[AN ]E[yr(ǫ)|0 ∈ Yr]. (27)

Letting N → ∞ in (27) establishes (19). We next show, in a similar way as is done

in [5], that

E[yr(ǫ)|Yr(ǫ) 6= ∅] ≥ 1

2
E[yr(ǫ)|0 ∈ Yr]. (28)

This follows from

E[yr(ǫ)|Yr(ǫ) 6= ∅] =
E[yr(ǫ)]

P[Yr(ǫ) 6= ∅] =
E[yr(2ǫ)]/2

P[Yr(ǫ) 6= ∅]
(19)

≥ P[Yr(ǫ) 6= ∅]E[yr(ǫ)|0 ∈ Yr]/2

P[Yr(ǫ) 6= ∅] =
1

2
E[yr(ǫ)|0 ∈ Yr],
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where the second equality follows from invariance. We can now derive the upper bound

in (18):

P[Yr(ǫ) 6= ∅] =
E[yr(ǫ)]

E[yr(ǫ)|Yr(ǫ) 6= ∅]
(28)

≤ 2E[yr(ǫ)]

E[yr(ǫ)|0 ∈ Yr]

=
2E[yr(ǫ)]∫ ǫ

0
P[θ ∈ Yr|0 ∈ Yr] dθ

=
2E[yr(ǫ)]P[0 ∈ Yr]∫ ǫ

0
P[θ ∈ Yr, 0 ∈ Yr] dθ

(14), (16)

≤ 4
E[yr(ǫ)]

2

E[yr(ǫ)2]
,

concluding the proof of the lemma.

Proof of Theorem 2. In view of Lemma 3, we need to estimate E[yr(ǫ)
2]. First we

estimate P[0 ∈ Yr, θ ∈ Yr] for θ ∈ (0, ǫ] and r > 0. We have

P[0 ∈ Yr, θ ∈ Yr] = P[J(r, θ) ⊂ W].

Let

tθ := inf{t : d(L∞(θ) \ Lt(θ), L∞(0)) ≥ 2C}.

That is, if a point x ∈ L∞(θ) is at distance more than tθ from the origin, the distance

from x to L∞(0) is greater than or equal to 2C (recall that if d(A, B) ≥ 2C then

A ∩ W and B ∩ W are independent). Below, we will consider events of the type

{Lr(0) \Ls(0) ⊂ W}, and if s ≥ r we will use the convention that such an event is the

entire sample space.

We get that

P[J(r, θ) ⊂ W]

= P[{J(r ∧ tθ, θ) ⊂ W} ∩ {Lr(0) \ Ltθ
(0) ⊂ W} ∩ {Lr(θ) \ Ltθ

(θ) ⊂ W}]

≥ P[J(r ∧ tθ, θ) ⊂ W]P[Lr(0) \ Ltθ
(0) ⊂ W]P[Lr(θ) \ Ltθ

(θ) ⊂ W], (29)

where the inequality follows from positive correlations. On the other hand,

P[{J(r ∧ tθ, θ) ⊂ W} ∩ {Lr(0) \ Ltθ
(0) ⊂ W} ∩ {Lr(θ) \ Ltθ

(θ) ⊂ W}]

≤ P[{J(r ∧ tθ, θ) ⊂ W} ∩ {Lr(0) \ Ltθ+2C(0) ⊂ W} ∩ {Lr(θ) \ Ltθ+2C(θ) ⊂ W}]

= P[J(r ∧ tθ, θ) ⊂ W]P[Lr(0) \ Ltθ+2C(0) ⊂ W]P[Lr(θ) \ Ltθ+2C(θ) ⊂ W]

= Θ(1)P[J(r ∧ tθ, θ) ⊂ W]P[Lr(0) \ Ltθ
(0) ⊂ W]P[Lr(θ) \ Ltθ

(θ) ⊂ W], (30)

where we used independence at distance 2C in the first equality. We also have

P[J(tθ ∧ r) ⊂ W] ≤ P[Ltθ∧r(θ) ⊂ W]. (31)
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Let x(l) be the point on L∞(0) which is at distance l from o. Then thanks to Lemma

2, we have

P[J(tθ ∧ r) ⊂ W] ≥ P[Q(o, x(tθ ∧ r), 2C)]
(6)
= Θ(1)P[Ltθ∧r(0) ⊂ W]. (32)

From (29), (30), (31) and (32) we get

P[J(r, θ) ⊂ W]

= Θ(1)P[Ltθ∧r(0) ⊂ W]P[Lr(0) \ Ltθ
(0) ⊂ W]P[Lr(θ) \ Ltθ

(θ) ⊂ W]

= Θ(1)f(tθ ∧ r)f(0 ∨ r − tθ)
2 = Θ(1)f(r)f(0 ∨ r − tθ). (33)

Consequently,

∫ ǫ

0

P[0 ∈ Yr, θ ∈ Yr] dθ = Θ(1)f(r)

∫ ǫ

0

f(0 ∨ r − tθ) dθ. (34)

We next investigate the behavior of tθ. Let γ(t) be the geodesic which starts at 0 and

then follows L∞(θ), and suppose that γ(t) is parameterized by arc-length. Given θ

and t, we first want to find the distance between γ(t) and L∞(0). Denote this distance

by s = s(t). By the hyperbolic law of cosines we have

cosh(2s) = cosh2(t) − sinh2(t) cos(2θ). (35)

Using the identity cosh2(t) − sinh2(t) = 1 we see that s = 2R if and only if

t = tθ = cosh−1

(√
cosh(4C) − cos(2θ)

1 − cos(2θ)

)
. (36)

A calculation shows that r − tθ > 0 if and only if

θ > h(C, r) :=
1

2
cos−1

(
cosh2(r) − cosh(4C)

cosh2(r) − 1

)

=
1

2
cos−1

(
1 − cosh(4C) − 1

cosh2(r) − 1

)
. (37)

Now note that

h(r, C) = Θ(1) e−r (38)

for all r large enough (using cos−1(1 − x) =
√

2x + O(x3/2) for small x). Let

t̂(θ) :=

√
cosh(4C) − cos(2θ)

1 − cos(2θ)
.
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Using

cosh−1(x) = log(x +
√

x2 − 1) ∈ [log(x), log(x) + log(2)), x ≥ 1,

and

1 − cos(2θ) = 2θ2 + O(θ3) ∈ [
4

π
θ2, 2θ2], θ ∈ [0, π/4],

we get that for all large r

∫ ǫ

0

f(0 ∨ r − tθ) dθ

= Θ(1)

(∫ h(C,r)

0

dθ +

∫ ǫ

h(C,r)

e−α(r−tθ) dθ

)

= Θ(1)

(
h(C, r) + e−αr

∫ ǫ

h(C,r)

eα(tθ) dθ

)

= Θ(1)

(
h(C, r) + e−αr

∫ ǫ

h(C,r)

(
t̂(θ) +

√
t̂(θ)2 − 1

)α

dθ

)
(39)

= Θ(1)

(
h(C, r) + e−αr

∫ ǫ

h(C,r)

(1 − cos(2θ))−α/2 dθ

)

= Θ(1)

(
e−r + e−αr

∫ ǫ

Θ(1)e−r

θ−α dθ

)

=





Θ(1) e−r, α > 1

Θ(1) r e−r, α = 1
(40)

Combining (40), (34), (16) and (17), we see that for large r,

E[yr(ǫ)
2] =





Θ(1) e−(1+α)r, α > 1

Θ(1) r e−2r, α = 1
(41)

Note that

8∑

k=1

P[Yr((k − 1)π/4, kπ/4) 6= ∅] ≥ P[Yr 6= ∅] ≥ P[Yr(ǫ) 6= ∅]. (42)

Since E[yr(ǫ)]
2 = ǫ2e−2αr, Lemma 3, (41) and (42) implies that for large r,

P[Yr(ǫ) 6= ∅] =





Θ(1) e−(α−1)r, α > 1

Θ(1) 1
r , α = 1.

(43)

The result follows.
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4. Generalizations of Theorem 2

The proof of Theorem 2 in Section 3 can be fully or partially adapted to other

settings than visibility inside W. Here are some important cases.

4.1. Random convex shapes

Let K be a closed random convex shape which contains the origin, such that the

diameter of K is a.s. less than C < ∞. In addition, assume that the law of K is

invariant under all rotations of H
2. For x ∈ H

2 let φx : H
2 → H

2 be the Möbius

transform mapping x to 0:

φx(z) =
z − x

1 − x̄ z
. (44)

For each x ∈ X, let Kx be an independent copy of K, and let

CK =
⋃

x∈X

φ−1
x (Kx) and WK = H2 \ C.

It is easy to see that the proofs above for balls of random radius are adaptable to

this more general case. All results from [1] used in the above proofs are valid also in

this case. Thus the conclusions of Theorem 2 and Proposition 2 remain true when

replacing balls with random convex shapes. The value of α will of course depend on

the law of K. In this case one gets, as in the proof of Lemma 1,

f(r) = e−λE[µ({x : φ−1

x (K)∩γ[0,r] 6=∅})]. (45)

To find the explicit value of α, one has to calculate the expectation appearing in the

exponent in (45).

4.2. Asymptotics of visibility in the covered set

It is also of interest to consider visibility inside the covered set C. Let V
′ be the

supremum of the set of r ≥ 0 such that there is a line-segment of length r starting at the

origin which is fully contained in C. Let h(r) be the probability that a fixed line-segment

is contained in C. In [1], it was shown that there is some α′ such that h(r) = Θ(e−α′r).

The lower bound in Theorem 2 is just using the ordinary second moment method.

Moreover, the calculations in the proof of Theorem 2, might be adapted to visibility

inside C, except where reference to Lemma 3 is made. The derivation of the upper
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bound in Lemma 3 does not go through for the covered set. In particular, we currently

do not know how to prove Eq. (21). Consequently, at the moment we only know lower

bounds as follows. There is c > 0 (depending on the law of the obstacles) and r0 < ∞
such that





P[V′ ≥ r] ≥ c r−1, α′ = 1, r ≥ r0

P[V′ ≥ r] ≥ c e−(α′−1)r, α′ > 1, r ≥ r0.
(46)

4.3. Asymptotics of visibility outside a Poisson line process

We consider a Poisson line process in the Poincaré disc model of H
2 defined as

follows: we let P be a Poisson point process in the open unit disk with intensity

measure

µλ(dρ, dθ) = 2λ
(1 + ρ2)

(1 − ρ2)2
dρdθ.

For every x ∈ P, let Gx be the hyperbolic line which contains x and is orthogonal to

the Euclidean line segment [0, x]. Let

L =
⋃

x∈P
Gx. (47)

In particular, the law of L is invariant under rotations around 0, and this will be used

below without further mention.

In the same spirit as for the Boolean model, we denote by Yr(ǫ), ǫ ∈ [0, 2π], the

set of all directions θ ∈ [0, ǫ) such that the line Lr(θ) does not intersect L. We keep

the same notations yr(ǫ) and Yr := Yr(2π). In other words, Yr is the set of directions

in which we can see up to distance r without meeting any line from the Poisson line

process.

In [1], the existence of an explicit critical intensity equal to λ = 1
2 has been proved (In

[1], a different but equivalent, up to scaling of the intensity measure, way of describing

the Poisson line process was used. Therefore, the critical value there is 1, rather than

1/2.) In [9], an upper-bound for the distribution tail of the maximal visibility had

previously been derived. We intend here to get a new more precise estimate as in

Theorem 2.

In particular, we can show an analogue of Lemma 3: for every r > 0 and ǫ ∈ (0, π/2),

E[yr(ǫ)]
2

E[yr(ǫ)2]
≤ P[Yr(ǫ) 6= ∅] ≤ 4

E[yr(ǫ)]
2

E[yr(ǫ)2]
. (48)
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The proof of (48) can be written along the same lines. The only point which requires

an extra argument is the extention of the equality (18) to the setting of the Poisson

line process. To do so, let us define

Mr(θ) = {x ∈ H
2 : Gx ∩ Lr(θ) 6= ∅}.

Then conditionally on {j/N ∈ Yr}, the events {0 ∈ Y c
r , 1/N ∈ Y c

r , ..., (j − 1)/N ∈ Y c
r }

and {θ ∈ Yr} are independent. Indeed, the first one is determined by the intersection

of the point process P with
⋃j−1

i=0 Mr(i/N) \ Mr(j/N) whereas the second one is

determined by the intersection of P with a disjoint set, namely Mr(θ) \ Mr(j/N).

This is sufficient to prove (18) and deduce (48).

We now use (48) to show our main theorem.

Theorem 3. When r → ∞, we have

P[Yr 6= ∅] =





Θ(1) e−(2λ−1)r, λ > 1/2

Θ(1) 1
r λ = 1/2

(49)

Proof. As for Theorem 2, the proof relies on the use of (48) and the estimation of

both the first and second moments of yr(ǫ).

By equation 17.61 in [10], we have

P[0 ∈ Yr] = exp(−2λr).

Moreover

P[0 ∈ Yr, θ ∈ Yr] = exp(−λper(Tr,θ))

where per denotes the perimeter and Tr,θ is the hyperbolic triangle with apices 0, ar

and br, ar (resp. br) being the point on Lr(0) (resp. Lr(θ)) at distance r from the

origin.

We have

per(Tr,θ) = 2r + cosh−1(cosh2(r)(1 − cos(θ)) + cos(θ)).

In particular, since cosh−1(t) = log(t +
√

t2 − 1) for every t ≥ 1, we have

log(t) ≤ cosh−1(t) ≤ log(t) + log(2), t ≥ 1.
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Consequently, we deduce that when r → ∞,

∫ ǫ

0

P[0 ∈ Yr, θ ∈ Yr]dθ = Θ(1)e−2λr

∫ ǫ

0

(
cosh2(r)(1 − cos(θ)) + cos(θ)

)−λ
dθ

= Θ(1)e−2λr

∫ ǫ

0

(e2r + 2 + cos(θ)(2 − e2r))−λdθ. (50)

Moreover, for any θ ∈ (0, π/2), 1 − θ2

2 ≤ cos(θ) ≤ 1 − θ2

π . Replacing cos(θ) in (50), we

notice that for C equal to 2 or π, we have

∫ ǫ

0

(
e2r + 2 + (1 − θ2

C
)(2 − e2r)

)−λ

dθ =

∫ ǫ

0

(
4 + θ2(

e2r

C
− 2

C
)

)−λ

dθ

=

(
e2r

C
− 2

C

)−1/2 ∫ ǫ√
C

√
e2r−2

0

dθ

(4 + θ2)λ

=





Θ(1)e−r
∫∞
0

dθ
(1+θ2)−λ if λ > 1/2

Θ(1)e−r · r if λ = 1/2.

Inserting this last result in (50), we obtain that

∫ ǫ

0

P[0 ∈ Yr, θ ∈ Yr]dθ =





Θ(1)e−(2λ+1)r if λ > 1/2

Θ(1)e−2r · r if λ = 1/2.
(51)

We conclude by inserting (51) in (48).

5. Critical point and small intensity

5.1. When α → 1

In this section, we study the behavior of the visibility near the critical point λ = λgv.

Recall that V is the total visibility, i.e.

V = sup{r > 0 : Yr 6= ∅}.

Let

S = {x ∈ H
2 : [0, x] ⊂ W}

be the set of all points visible from the origin. The set S is sometimes called the

visibility star. Recall that α = 2λE[sinh(R)].
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Proposition 1. When λ ց λgv, we have

E[area(S)] =
Θ̃(1)

α − 1
and E[V] =

Θ̃(1)

α − 1
.

Proof. Fix λ1 > λgv. We now verify that Θ(1) in both (1) and in (13) stay in (0,∞)

when λ ∈ [0, λ1], which implies that they can be replaced by Θ̃(1) when λ ∈ [0, λ1].

Indeed, we get from the proof of Lemma 3.4 in [1] that the constant in (1) is between

f(2C) and 1 and the quantity f(2C) ∈ (0, 1] for λ ≤ λ1.

As for Θ(1) in (13), it is deduced from displays (30), (32) and (33).

• In (30), we have

P[Lr(0) \ Ltθ
(0) ⊂ W] = P[{Lr(0) \ Ltθ+2C(0) ⊂ W}

∩{Ltθ+2C(0) \ Ltθ
(0) ⊂ W}]

≥ P[Lr(0) \ Ltθ+2C(0) ⊂ W]

×P[Ltθ+2C(0) \ Ltθ
(0) ⊂ W]

= P[Lr(0) \ Ltθ+2C(0) ⊂ W]

×P[L2C(0) ⊂ W].

It suffices to see now that P[L2C(0) ⊂ W] = f(2C) ∈ (0, 1] for λ ≤ λ1.

• In (32), the constant comes from the calculation of P[Q(x, y, s)], x, y ∈ H
2,

s > 0. Let us consider

E([x, y]s, R) = {z ∈ H
2 : B(z, R) ∩ [x, y]s 6= ∅}. (52)

Then

P[Q(x, y, s)] = e−λ·area(E([x,y]s,R))

= e−λ(area(E([x,y]s,R))−area(E([x,y]0,R)))f(d(x, y)).
(53)

and it remains to notice that e−λ(area(E([x,y]s,R))−area(E([x,y]0,R))) ∈ (0, 1] when

λ ≤ λ1.

• In (33), the constant is between f(4C) and 1 because when r > tθ, we have

f(r)f(4C) ≤ f(tθ)f(r − tθ) ≤ f(r).
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Now, a classical use of Fubini’s theorem and (1) yields to

E[area(S)] = 2π

∫ 1

0

f

(
log

(
1 + r

1 − r

))
4rdr

(1 − r2)2

= Θ̃(1)

∫ 1

0

(
1 + r

1 − r

)α
rdr

(1 − r)2(1 + r)2

= Θ̃(1)

∫ 1

0

dr

(1 − r)2−α

=
Θ̃(1)

α − 1
when λ ց λgv.

In the same way, the second estimate is obtained with the use of (13).

E[V] =

∫ ∞

0

P[V ≥ r]dr =

∫ ∞

0

P[Yr 6= ∅]dr =
Θ̃(1)

α − 1
, λ ց λgv.

We conclude the section by studying how the probability to see to infinity increases

as λ increases from λgv.

Proposition 2. For λ ∈ [0, λgv],

P[Y∞(ǫ) 6= ∅] = Θ̃(1)(1 − α) (54)

Proof. Repeating the calculations leading to (40) and (41), and using that from the

proof of Proposition 1 we can replace Θ(1) with Θ̃(1) at appropriate places, it follows

that ∫ ǫ

0

f(0 ∨ r − tθ) dθ = Θ̃(1)

(
e−r +

e−αr

1 − α
− e−r

1 − α

)
(55)

and

E[yr(ǫ)
2] = Θ̃(1)

(
e−(1+α)r +

e−2αr

1 − α
− e−(1+α)r

1 − α

)
= Θ̃(1)

e−2αr

1 − α
, (56)

where the last equality follows since α < 1. Using E[yr(ǫ)]
2 = ǫ2e−2αr, Lemma 3 and

letting r → ∞ we obtain the the result.

5.2. When α → 0

We conclude the section by showing that as α → 0, the probability to see to infinity

from a given point goes to 1.

Proposition 3.

lim
α→0

P[V = ∞] = 1. (57)
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Proof. In view of (18), it is enough to show

lim
α→0

lim inf
r→∞

E[yr]
2

E[y2
r ]

= 1. (58)

We have

P[θ, θ′ ∈ Yr] ≤ P[Lr(θ) ⊂ W]P[Lr(θ
′) \ Lt|θ−θ′| ⊂ W]

≤ C(α)2e−αre−α(0∨r−t|θ−θ′|)

≤ C(α)2e−2αreαt|θ−θ′|

(59)

where

C(α) = exp

(
− α

2E[sinh(R)]
E[2π(cosh(R) − 1)]

)
−→
α→0

1

is the constant that we obtained in the proof of Lemma 1 when calculating f(r).

Therefore,

E[y2
r ]

(15)

≤ C(α)2e−2αr

∫ ǫ

0

∫ ǫ

0

eαt|θ−θ′|dθ dθ′. (60)

Since E[yr]
2 = C(α)2ǫ2e−2αr, it follows that

E[yr]
2

E[y2
r ]

≥ ǫ2∫ ǫ

0

∫ ǫ

0
eαt|θ−θ′|dθ dθ′

(61)

Using (36), we see that

t|θ−θ′| ≤ log

(
O(1)√

1 − cos(2|θ − θ′|)

)
≤ log

(
O(1)

|θ − θ′|

)
. (62)

Hence,

∫ ǫ

0

∫ ǫ

0

eαt|θ−θ′|dθ dθ′ ≤ O(1)α

∫ ǫ

0

∫ ǫ

0

|θ − θ′|−αdθdθ′
α→0→ ǫ2, (63)

where the limit follows from straight forward calculations. Now (58) follows from (61)

and (63).

6. Visibility with varying intensity

We consider the case where all radii are deterministic, equal to R > 0. For a fixed

intensity, there exists a critical radius RC = sinh−1
(

1
2λ

)
under which visibility to

infinity occurs with positive probability. When the radius R goes to 0, this probability

goes to 1. The question we are interested in this section is the following: what happens
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when the intensity λ of the underlying Poisson point process is a function λ(R) of the

radius which goes to infinity when R → 0?

Let Vλ,R be the total visibility associated with the choice of R for the radius of the

balls and λ for the intensity of the underlying Poisson point process. In the following

result, we show that we can adapt the intensity so that the maximal visibility will not

be higher than a fixed level with high probability.

Theorem 4. For every r > 0 and p ∈ (0, 1), there exists an explicit functional λ(R)

given by (68) such that limR→0 P[Vλ(R),R ≤ r] = p.

Proof. We denote by r = tanh(r/2) and R = tanh(R/2). A ball BH(x, R) intersects

BH(0, r) = BR2(0, r) if and only if ‖x‖ ≤ α(r) where for every r ∈ [0, 1],

α(r) =

√
(1 − R

2
)2 + 4(R + r)(R + R

2
r) − (1 − R

2
)

2R(1 + Rr)
.

The number of such x is Poisson distributed of mean

2πΛ = 4λπ

∫ α(r)

0

2ρ

(1 − ρ2)2
dρ = 4λπ

α2(r)

1 − α2(r)
. (64)

These points are independent, rotation-invariant and the common density of their

radial coordinates is

f(ρ) =
4λ

Λ
1[0,α(r)](ρ)

ρ

(1 − ρ2)2
. (65)

In particular, the (normalized) size Ar,R of the ’shadow’ of one such ball BH(x, R) is

equal to
1

π
arcsin

(
R

1 − ‖x‖2

‖x‖(1 − R)2

)
(66)

if 0 ≤ ‖x‖ ≤ β(r) =

√
R

2
+r2

R
2
r2+1

and something smaller if β(r) < ‖x‖ ≤ α(r). It is easy

to check that when R → 0, the probability that a f -distributed random variable is in

[β(r), α(r)] goes to 0. Consequently, we may use the formula (66) combined with (65)

to show that Ar,R/R converges in distribution to a limit distribution.

The probability of the event {Vλ,R ≤ r} is equal to the probability to cover the

Euclidean circle centered at the origin and of radius r by a Poisson number of mean

2πΛ of i.i.d. random arcs such that their normalized lengths are distributed as Ar,R.

We are going to use a slightly modified version of an original result due to Janson: for

every Λ, ε > 0, let pΛ,ε be the probability of covering the circle of perimeter one with a
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Poisson number of mean 2πΛ of independent and uniformly located random arcs with

a half-length distributed as εR̃Λ, R̃Λ being a bounded random variable for every Λ. If:

1. R̃Λ → R̃ in distribution as Λ → ∞, where R̃ is a random variable with a finite

moment of order (1 + ε) for some ε > 0, and

2. ε (going to 0) and Λ (going to ∞) are related such that the following convergence

occurs:

lim
ǫ→0,Λ→∞

{2πbεΛ + log(bε) − log(− log(bε))} = t (67)

where b := 1
πE[R̃],

then the probability pΛ,ε goes to exp(−e−t).

We apply the above result with the choice ε = R, Λ given by (64) and t such that

exp(−e−t) = p. We can verify that in this case R̃ is distributed as 1−X2

X (up to a

multiplicative constant) where X is f -distributed. In particular, E[R̃1+ε] < ∞ for

every 0 ≤ ε < 1. With the choice

λ(R) =
1 − α2(r)

2α2(r)

[
− log(R)

2πbR
+

log(− log(R))

2πbR
+

t − log(b)

2πbR

]
, (68)

we deduce from the covering result due to Janson that

lim
R→0

P[Vλ(R),R ≤ r] = p.
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