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Abstract Simultaneous recordings of many single neurons reveals unique insights on

network processing spanning the timescale from single spikes to global oscillations.

Neurons dynamically self-organize in subgroups of coactivated elements referred to as

cell assemblies. Furthermore, these cell assemblies are reactivated, or replayed, prefer-
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entially during subsequent rest or sleep episodes, a proposed mechanism for memory

trace consolidation. Here we employ Principal Component Analysis to isolate such pat-

terns of neural activity. In addition, a measure is developed to quantify the similarity of

instantaneous activity with a template pattern, and we derive theoretical distributions

for the null hypothesis of no correlation between spike trains, allowing one to evaluate

the statistical significance of instantaneous coactivations. Hence, when applied on a

epoch different from the one where the patterns were identified, (e.g. subsequent sleep)

this measure allows to identify times and intensities of reactivation. The distribution

of this measure provides information on the dynamics of reactivation events: in sleep

these occur as transients rather than as a continuous process.

Keywords PCA · Reactivation · Sleep · Memory Consolidation

1 Introduction

Ensemble recordings, or the simultaneous recordings of groups of tens to hundreds cells

from one or multiple brain areas in behaving animals, offer a valuable window into the

network mechanisms and information processing in the brain which ultimately leads to

behavior. In the last two decades, the dramatic increase in yield of such techniques with

the use of tetrodes, silicon probes and other devices [24,8] poses extremely challenging

problems to the data analyst trying to represent and interpret such high-dimensional

data and uncover the organization of network activity.

Starting with Donald Hebb’s seminal work [14], theorists have posited cell assem-

blies, or subgroups of coactivated cells, as the main unit of information representation.

In this theory, information is represented by patterns of cell activity, which create a

coherent, powerful input to downstream areas. Cells assemblies would result from mod-
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ifications of local synapses, e.g. according to Hebb’s rule [14]. Their expression and

dynamics are likely driven to a large extent by specific interactions between principal

cells and interneurons [12,4,41]. From an experimental point of view, cell assemblies

can be characterized in terms of the coordinated firing of several neurons in a given

temporal window, either simultaneously [13], or in ordered sequences of action poten-

tials from different cells, as has been shown in both hippocampus [19] and neocortex

[15]. Ensemble recording provides the opportunity to measure these co-activations in

the brain of behaving animals.

To date, only few methods for rigorous statistically based quantification of cell

assemblies have been proposed (e.g. [31]) This problem is all the more delicate when

temporal ordering of cells’ discharges is taken into consideration [25], requiring immense

data sets in order to attain the necessary statistical power [17]. On the other hand,

cell assemblies’ co-activations already provide a rich picture of network function [28,

33], and may represent an easier target for statistical pattern recognition methods.

The effective connectivity between cells is a dynamical, rapidly changing parameter.

Because of this, it is important to follow cell assemblies at a rapid time scale. This

would improve our understanding of the temporal evolution of the interaction between

cells, and their link to brain rhythms, the activity in other brain areas or ongoing

behavior.

Principal Component Analysis (PCA) has previously been used to find groups of

neurons that tend to fire together in a given time window [28,9]. PCA (see e.g. [6]) can

be applied to the correlation matrix of binned multi-unit spike trains, and provides a

reduced dimensionality representation of ensemble activity in terms of the PC scores,

i.e., the projections over the eigenvectors of the correlation matrix associated with the

largest eigenvalues. This representation accounts for the largest fraction of the variance
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of the original data, for a fixed dimensionality. Also, PCA is intimately related to Hebb’s

plasticity rule: it has been shown to be an emergent property of hebbian learning in

artificial neural networks [29,7].

A remarkable success of ensemble recordings was the demonstration that, during

sleep, neural patterns of activity appearing in the immediately previous awake experi-

ence are replayed [40,26,19,17]. This is proposed to be important for memory consoli-

dation, i.e. turning transient, labile synaptic modifications induced during experience

into stable long-term memories. Replay appears to take place chiefly during Slow Wave

Sleep (SWS). In the hippocampus, a brain structure strongly implicated in facilitat-

ing long term memory [34,22,36,27], cell assemblies observed during wakefulness are

replayed in subsequent SWS episodes [40] in the form of cell firing sequences [26,19].

This occurs during coordinated bursts of activity known as sharp waves [18].

To detect replay, we first need to characterize the activity during active experi-

ence, and to generate representative templates from it. Then, templates are compared

with the activity during sleep to assess their repetitions. Previous methods have only

provided a measure of the overall amount of replay occurring during a whole sleep

episode [40,18], by using the session-wide correlation matrix as a template. Alterna-

tively, templates have been generated from the neural activity during a fixed, repetitive

behavioral sequence. This is possible, for example, for hippocampal place cells, which

fire as the animal follows a trajectory through the firing fields of the respective neurons

[19], if the animal runs through the same trajectory multiple times [21,17,10], or when

a new and transient experience occurs [32]. One can then search for the repetition of

this template during the sleep phase. However, such a template construction technique

is not applicable when the behavior is not repeated, or if the behavioral correlates of

the recorded cells are not known.
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Recently, we used PCA to identify patterns in prefrontal cortical neurons ensembles

[30], without making reference to behavioral sequences, and we devised a novel, simple

measure using the PCA-extracted patterns to assess the instantaneous similarity of

the activity during sleep. During sleep, this similarity increased in strong transients

demonstrating that neuron ensembles appearing in the AWAKE phase reactivate during

SWS. Further, the fine temporal resolution of this approach uncovered for the first time

a link between assembly replay in the prefrontal cortex and hippocampal sharp waves,

as well as the relationship between this replay and slow cortical oscillations. It was

also possible to determine the precise behavioral events corresponding to the origin of

replayed patterns. Moreover, we were able to determine that the formation of these cell

assemblies involves specific interactions between interneurons and pyramidal cells [4].

The present paper presents this methodology in detail with mathematical and sta-

tistical support, and provides new results on how the statistical significance of the

replay can be assessed. We show how random matrix theory can be used to provide

analytical bounds for quantities of interest in the analysis when a multivariate nor-

mal distribution is an appropriate starting point for null analyses, and we show how

deviations from normality can be dealt with in a consistent manner.

2 Methods

2.1 Experimental Setting

Four rats were implanted with 6 tetrodes [24] in the prelimbic and infralimbic areas

in the medial PreFrontal Cortex (mPFC). 1692 cells were recorded in the mPFC from

four rats, during a total of 63 recording sessions (Rat 15: 16; Rat 18: 11; Rat 19: 12;

Rat 20: 24). Rats performed a rule-shift task on a Y maze, where, in order to earn a
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food reward, they had to select one of the two target arms, on the basis of four rules

presented successively. The rules concerned either the arm location, or whether the

arm was illuminated (changing randomly at each trial). As soon as the rat learned a

rule, the rule was changed and had to be inferred by trial and error. Recordings were

made also in sleep periods prior to (PRE) and after (POST) training sessions. For an

extensive description of the behavioral and experimental methods, see ref. [30]

2.2 Analysis framework

The inspiration for developing this method was to quantitatively and precisely compare

the correlation matrix of the binned multi-unit spike trains recorded during active

behavior with the instantaneous (co)activations of the same neurons recorded at each

moment during the ensuing sleep. The “awake” correlation matrix can be seen as the

superimposition of several modes of patterns of activity patterns. The PCA procedure

makes it possible to separate such patterns. The precise mathematical definition of the

algorithm is given in the following sections, but schematically, our procedure is divided

in five steps :

1. Spike trains from multiple, simultaneously recorded cells from the awake epoch are

binned and z-transformed.

2. The correlation matrix of the binned spike trains is computed, and diagonalized.

3. The eigenvectors associated to the largest eigenvalues are retained; a threshold value

can be computed from the upper bound for eigenvalues of correlation matrices of

independent, normally distributed spike trains.

4. Spike trains from the sleep epoch are binned and z-transformed.
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5. A measure of the instantaneous similarity (termed reactivation strength) of the

sleep multi-unit activity at each time (the population vector) with the eigenvalue

is computed.

Reactivation strength is a time series describing how much the sleep ensemble ac-

tivity resembles the awake activity at any given time. To make the claim that replay

of experience-related patterns is taking place during sleep, we need to test the com-

puted reactivation strength against an appropriate null hypotheses. The simplest null

hypothesis is that the sleep activity is completely independent from the awake data,

and, for example, is drawn from a multivariate normal distribution. Clearly enough,

disproving this hypothesis does not provide sufficient evidence for replay: certain struc-

tural activity correlations may have existed prior to the experience, perhaps because

of already present synaptic connections. Moreover, activity distributions may be non-

normal, if for no other reason, because binned spike trains for small enough bin sizes

will tend to be very sparse and thus much of the mass of the distribution will concen-

trate around zero, causing the distribution to be strongly asymmetrical. Nevertheless,

from the conceptual point of view, this null hypothesis is interesting as it allows to

better characterize deviations from normality in the activity distribution and their

consequences.

To control for structural correlations, the sleep data must be compared with another

sleep session recorded prior to the experience: if reactivation strengths in sleep after

experience (the POST epoch) tend to be larger than the values for the same measured

for the sleep before (or the PRE epoch), one may conclude that the experience epoch

contributed to increase sleep activity correlations, and replay has taken place. If no
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difference between PRE and POST reactivation strength is measured, one may conclude

that experience had no effect on correlations in spontaneous activity during sleep.

An important feature of this technique is that it permits instantaneous assessments

of replay. Formally, reactivation strength measures similarity between the correlation

matrices for the awake and sleep data (the approach followed in work such as e.g. [18]),

which was decomposed into the contributions coming from each eigenvector and each

time during sleep. As discussed below, this considerably increases analysis power, as

replay time series can be correlated with other physiological time series of relevance.

Furthermore, it is also useful to apply the analysis in the opposite sense: extracting

templates from replay events in the sleep epoch, and matching them in the awake data.

In this way, one can identify those behavioral events with activity most similar to sleep

activity, and therefore, which behavioral events may contribute the most to replay.

For this reason, we will describe the procedure in terms of generic TEMPLATE and

MATCH epochs.

2.3 Isolation of neural patterns

Let us consider N neurons recorded simultaneously over the time interval [0 . . . T ]. The

neurons’ activity could be represented by a series of spike times noted {tij} where tij is

the j-th spike of the i-th neuron (i=1 . . . N).

This activity is then binned yielding a time series of spike counts si(tk) where i =

1 . . . N, tk = 1 . . . B, where B is the total number of bins and tk represents the center

time of the bins:

si (tk) = card
“

{tij} : tk + b/2 > tij > tk − b/2
”

(1)
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Here, b is the bin width (b = T/B). Hereafter, for the sake of clarity, the indices of

the discrete times tk will be omitted. Then, these binned activities are z-transformed,

obtaining the Q matrix:

Qit =
si(t) − 〈si〉

σsi

(2)

where 〈si〉 = 1
B

PB
j=1 sj(t) and σsi =

q

1
B−1

PB
t=1 (si(t))

2
− 〈si〉2. The pairwise cell

activity correlation matrix is then obtained as

C =
1

B
QQ

T (3)

The elements of the correlation matrix, Cij , are the Pearson correlation coefficients

between the spike count series for neurons i and j. To disambiguate the contribution

of each pattern in the resulting correlation coefficients, we perform a PCA on the Q

matrix, that is, an eigenvector decomposition of the correlation matrix. This yields a set

of N eigenvectors pl, l = 1..N , each associated to an eigenvalue λl. The patterns will be

associated to the projectors of the correlation matrix, noted P(l), which are the outer

products of all eigenvectors with themselves, providing the following representation of

the correlation matrix:

C =
X

l

λl(p
(l))T p(l) =

X

l

λlP
(l) (4)

This form highlights the fact that the ensemble correlation matrix can be seen as the

superimposition of several co-activation patterns, whose importance is measured by

the eigenvalue λl. PCA allows to distinguish these patterns which can, in turn, be

compared with the instantaneous cell activity during different epochs. In order to do

that though, we also need to establish which patterns are likely to reflect underlying

information encoding processes and which are the result of noise fluctuations. This

problem is addressed below.
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2.4 Time course of template matching

Let us consider two epochs, TEMPLATE and MATCH. The general idea is to compare

the instantaneous co-activations of neurons during the MATCH epoch with the patterns

identified during the TEMPLATE, following the method proposed above.

To begin, we could just compare the epoch-wide correlation matrices for the two

epochs. One such measure of similarity, computed from the two epochs, would be:

MMA−TE =
X

i,j:i<j

C
TEMPLATE
ij C

MATCH
ij (5)

=
1

2
Tr
“

(CMATCH − I)T (CTEMPLATE − I)
”

(6)

where the superscript MA−TE stands for MATCH-TEMPLATE. This measure would

be strongly positive in the case of high similarity. The measure is strongly negative in

the case where correlations change sign (from positive to negative and vice versa) from

the TEMPLATE to the MATCH epoch.

In substance, this is the approach used in studies such as [40,18], which gave an

overall assessment of the amount of replay in the whole MATCH epoch (in their case,

the sleep epoch). Further mathematical manipulation yields a prescription to measure

the exact time course of the replay: MMA−TE can be expressed as a sum over a time

series defined for each time bin during the POST (or PRE) epoch (by using eq. 3):

MMA−TE =
1

2

X

i,j:i 6=j

CMATCH
ij CTEMPLATE

ij (7)

=
1

2BMATCH

BMAT CH

X

t=1

X

i,j:i 6=j

QMATCH
it CTEMPLATE

ij QMATCH
jt (8)

=
1

2BMATCH

BMAT CH

X

t=1

RMA−TE
0 (t) (9)
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where BMATCH is the number of bins in the MATCH epoch, and

RMA−TE
0 (t) =

X

i,j:i 6=j

QMATCH
it CTEMPLATE

ij QMATCH
jt .

Thus, CTEMPLATE
ij can be seen as a quadratic form, applied to the vector of

multi-cell spike counts QMATCH
it , at each time t during the rest epochs, to produce

the time series RMA−TE
0 (t). RMA−TE

0 (t) represents a decomposition of the epoch-wide

correlation similarity into its instantaneous contributions, i.e. the similarity between

the current population vector at time t and the general pattern of co-activation during

the TEMPLATE epoch. Therefore, it contains information on exactly when during

the MATCH epochs occur patterns of co-activation similar to those that occurred in

TEMPLATE. However, this measure can still combine together factors from several

different patterns which may co-activate independently. The obtained time course may

therefore be the result of averaging over these distinct patterns, which may in fact

behave quite differently from one another. The neural patterns are extracted from

CTEMPLATE :

C
TEMPLATE =

X

l

λlP
(l) (10)

from Eq. 8 and 9, RMA−TE
0 (t) can now be expressed as:

RMA−TE
0 (t) =

X

l

λl

X

i,j:i 6=j

QMATCH
it P

(l)
ij QMATCH

jt (11)

=
X

l

λlR
MA−TE
l (t) (12)

where

RMA−TE
l (t) =

X

i,j:i 6=j

QMATCH
it P

(l)
ij QMATCH

jt (13)

The time series RMA−TE
l (t) measures the instantaneous match of the l-th co-activation

template on the ongoing activity. Excluding the diagonal terms in Eq. 13 reduces the

sensitivity of the reactivation strength measure to fluctuations in the instantaneous
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firing rates. The mean reactivation measure, MMATCH−TEMPLATE is therefore a

weighted sum of the time-averaged value of pattern similarity:

MMATCH−TEMPLATE =
1

2

N
X

l=1

λl〈R
MA−TE
l 〉t (14)

where 〈.〉t denotes the average over time.

3 Results

3.1 Significance of principal components

To determine the significance of the patterns extracted by PCA, we need to consider,

for comparison, the null hypothesis in which the spike trains are independent random

variables. Following the seminal work from Wigner [39] on the spectra of random

matrices, the distribution of singular values (root square of the eigenvalues of the

correlation matrix) of random N-dimensional data sets has been shown to follow the

so-called Marc̆enko-Pastur distribution [23,35]. In the limit B → ∞ and N → ∞, with

q = B/N ≥ 1 fixed,

ρ (λ) =
q

2πσ2

p

(λmax − λ) (λ − λmin)

λ
(15)

where

λmin < λ < λmax and λmax
min = σ2

“

1 ±
p

1/q
”2

σ2 is the variance of the elements of the random matrix, which in our case is 1, be-

cause the Q matrix is z-transformed. Eq. (15) shows that the distribution vanishes for

λ greater than an upper limit λmax. Under the null hypothesis of a random matrix Q,

the correlations between spike trains are determined only by random fluctuations, and

the eigenvalues of C must lie between λmin and λmax. Eigenvalues greater than λmax
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are therefore a sign of non-random effects in the matrix, and for this reason we call

principal components associated to those eigenvalues signal components, while those

associated to eigenvalues between λmin and λmax are defined as non-signal compo-

nents. However, the finite size of data sets implies that eigenvalue distribution borders

are not as sharp as the theoretical bounds described by Eq. 15. The highest eigenvalue

of any correlation matrix is drawn from the Tracy-Widom distribution [38] in the case

of normal, or close to normal, variables. Thus, the highest eigenvalue lies around λmax

with a standard deviation of order N−2/3 (which assumes a value of ∼ 0.1 for N = 30,

typical for our recordings). We also use the value λmax to normalize uniformly eigen-

values across different section, defining the normalized encoding strength as

Φ =
λ

λmax
. (16)

Figure 1A shows the distribution of the eigenvalues of three different ensembles.

The Marc̆enko-Pastur upper-bound is marked as a black dotted line and the expected

distribution in case of random fluctuation is depicted on the right plots of the figure.

The upper bound (i.e. λtw ∼ λmax + N−2/3) of the expected fluctuation for the

highest eigenvalue given by Tracy-Widom is shown as a red line. It can be observed

that the first eigenvalues are largely above the expected upper bound (at least 4 or 5

times the width of the Tracy-Widom distribution above λmax) hence allowing rejection

the null hypothesis of independent spike count series. To check whether any other

irregularities (i.e. normality violation) in the distribution of binned spike trains could

affect the eigenvalues of the correlation matrix (see for example [5]), each row of Q was

randomly permuted. The resulting shuffled matrix is composed of rows whose individual

distributions are preserved but whose temporal interactions are lost. The spectra of

their correlation matrix are shown in Figure 1B. All remain within the bounds of the
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Marc̆enko-Pastur distribution (red curve, equivalent to the ones presented in Figure

1A, right). Thus, we argue that the observed signal eigenvalues are an effect of the

correlation between spike trains, and not simply an effect of the non-normality of each

cell’s binned spike count.

3.2 Average Reactivation

For sake of simplicity, let us first compute reactivation strengths using the TEMPLATE

epoch and the MATCH epoch as well. In this case, at a time t, the standardized

population vector is written Qt = [Q1t, . . . , Qit, . . . , QNt]
T . Let Wt be defined as

Wt = QT
t Qt. Wt can be decomposed in a diagonal matrix WD

t and the remaining

matrix WR
t , therefore:

RTE−TE
l (t) =

“

pl
”T

W
R
t pl (17)

whence,

D

RTE−TE
l

E

t
=
“

pl
”T D

W
R
t

E

t
pl (18)

By definition, 〈W〉t = C and thus
D

WR
E

t
= C − I which thus gives:

D

RTE−TE
l

E

t
= λl − 1 (19)

In the case where the MATCH epoch is different from the TEMPLATE, we have:

D

RMA−TE
l

E

t
= γMATCH

l − 1 where γMATCH
l =

“

pl
”T

C
MATCHpl (20)

As mentioned above, memory trace reactivation studies aim at comparing awake

activity (the TEMPLATE epoch here is the AWAKE epoch) with the subsequent sleep

epoch (POST epoch, taking the role of the MATCH epoch). In Figure 2 the epoch-wide

time course of R for an example principal component from a recording of an ensemble
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of mPFC neurons is displayed for the PRE and POST epochs. Transient peaks are

much stronger in POST, and concentrated in the periods of identified slow wave sleep

(SWS) [30]. However the baseline level is comparable between PRE and POST epochs.

For this reason, from this point on, sleep epochs will always refer to SWS only. The

SWS preceding the AWAKE epoch is taken as a control (PRE epoch). The variable

γPRE
l (resp. γPOST

l ) quantifies the amount of variance that a given eigenvector from

AWAKE could explain during the PRE epoch (resp. POST). The empirical distribu-

tion of γPRE
l (resp. γPOST

l ) as a function of λl is shown in Figure 3A. During POST,

γl was more correlated to λl than in PRE, indicating that the correlation structure

is more similar to that measured during AWAKE than it is in PRE. Note that, if it

held that CPOST = CAWAKE , then γPOST
l = λl for all l. In general, this is not the

case, for example, because the sleep correlation structure includes patterns that are

characteristic of that behavioral phase, and these do not appear during the AWAKE

epoch. In any event, during POST the regression line between λl and the corresponding

values of γl has a steeper (and closer to 1) slope, indicating that the POST correlation

matrix is more similar to its AWAKE analogue than the one computed for PRE. Figure

3B shows an eigenvector-by-eigenvector (combined across sessions) comparison of the

reactivation strengths during PRE and POST. While it is apparent that some reacti-

vation strengths appear during PRE as well, most eigenvectors showed a larger value

for POST, especially for eigenvectors associated to large eigenvalues. During PRE, re-

activation strengths were nevertheless still important. This could be due, as mentioned

above, to structural correlations, as well as to neural processes reflecting anticipation

of the upcoming task (or perhaps lingering reactivations of yet earlier experiences).
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3.3 Distribution of R

In exploring the time course of the reactivation measure R, one interesting question

that emerges is the nature of its variability. One possibility is that R fluctuates steadily

around an average value (possibly different for each epoch), as would be the case, for

example, if the underlying spike trains were a gaussian process. Alternatively, power-

law behavior for the distribution of R values would indicate that the temporal evo-

lution of R is dominated by strong transients, as it would result, for example, from

“avalanche” dynamics [1,2,20]. In fact, if spike trains are multivariate normally dis-

tributed variables, the distribution of R can be computed and compared with experi-

mental data. Let us consider the case in which the TEMPLATE activity is considered

fixed, and we shall compute the distribution of R when the columns of the QMATCH

matrix are drawn from a multivariate normal distribution with covariance matrix C,

QMATCH
t ∼ N (0,C).

In this case, for m different time bins, Q is a m × N matrix and W = QT Q

is a N × N matrix drawn from the so-called Wishart distribution with m degrees of

freedom, W ∼ WN (C, m). It can be shown that, for any given N-dimensional vector

z:

∀z ∈ ℜN , zT
Wz ∼ σ2

zχ2
m (21)

where σ2
z = zT Cz In particular, if z = pl, and C = CTEMPLATE it leads to:

“

pl
”T

Wpl ∼ λlχ
2
m (22)

Let assume that for the population vector Qt = [Q1t, . . . , Qit, . . . , QNt]
T the Qit

are drawn from a multivariate normal distribution: where C is the covariance matrix

of the multivariate distribution (as the columns of Q are by definition z-transformed,
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C is also the correlation matrix). From Eq. (13), Rl could be written as:

Rl(t) = QT
t P

(l)Qt − QT
t D

(l)Qt (23)

where D is a diagonal matrix whose elements are



“

pl
i

”2
ff

i=1..N

The two terms on

the right side of Eq. (23) should be considered separately: α(t) = QT
t P(l)Qt and

β(t) = QT
t D(l)Qt. First, α(t) is easily deduced from (22)

α(t) = QT
t P

(l)Qt (24)

=
“

pl
”T

QtQ
T
t .pl (25)

=
“

pl
”T

Wtp
l (26)

where Wt = QtQ
T
t follows a Wishart distribution with a degree of freedom of 1 such

that α ∼ λlχ
2
1 in the case C = CTEMPLATE .

The “auto correlation” term β(t) is a weighted χ2 distribution whose number of

degrees of freedom is not known a priori :

β(t) = QT
t D

(l)Qt (27)

=
X

i

“

pl
i

”2
Q2

it (28)

A common approximation [16] of a weighted sum of chi-squares is a gamma dis-

tribution whose first two moments are the same as those of the sum. For a gamma

distribution Γk,θ of shape parameter k and scale parameter θ, this gives (with the

superscript of pl omitted):

kθ =
X

p2
i and k

θ2

2
=
X

p4
i (29)

which leads to (recalling that
P

p2
i = 1):

k = θ−1 =
1

2

“

X

p4
i

”−1
(30)
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hence, β is equivalent to1

β ∼ Γm,m−1 where m =
1

2

“

X

p4
i

”−1
(31)

Finally, if α and β are assumed independent, the theoretical distributions of RTE−TE
l

and RMA−TE
l are:

RTE−TE
l ∼ λlχ

2
1 − Γm,m−1 (32)

RMA−TE
l ∼ γMATCH

l χ2
1 − Γm,m−1 (33)

This result leads to an important conclusion: even if α and β are correlated, the

tail of the distribution could not be “heavier” or more skewed than an exponential dis-

tribution. Nevertheless, as we shall see in the following section, experimental evidence

shows that those distributions are actually power-laws. The distribution of RTE−TE

for the first eigenvectors of the 3 data sets presented in Figure 1 are plotted in Figure

4A, against the theoretical curve (red) and the result from multivariate normal data

simulations (blue). The very same distributions are shown in log-log scales in Figure 4B

to highlight the power-law tails of the distributions. The higher the encoding strength

(λ/λmax), the better the tail is fitted with a power-law (in other words the tail is

linear in log-log plots). Figure 4C shows the theoretical (under the multivariate normal

hypothesis) and empirical distribution for the individual terms α and β.

3.4 Reactivation as a rare event

The significant increase of the average of reactivation measures from PRE sleep to

POST sleep (Figure 3C, see also [30]) might not be the most relevant parameter which

1 Note that β ∼ (2m)−1χ2

2m
such that β follows a normalized χ2 distribution whose degree

of freedom is
`
P

p4

i

´

−1



19

changes with learning. Indeed, as shown in Figure 2, the reactivation measure shows

prominent transient ‘spikes’ during POST sleep associated with a simultaneous increase

in firing of the cells associated with the highest weights in the principal component.

During POST, reactivation strength distributions deviate strongly from the multivari-

ate normal case, and their tail can be well fit with a power law (Figure 5). Such

deviation from the theoretical distribution is less marked during PRE, despite some

hints of power law behavior.

In principle, the heavier tail of the reactivation strength distribution during POST

observed in Figure 5 could result from an increase in variability over of the global

population instantaneous firing rate. The standardization of the binned spike trains

for each cell (corresponding to the rows of the Q matrix), does not prevent the instan-

taneous firing rate from varying considerably, for example because of up/down states

bistability dominating cortical activity during sleep [37]. In order to control for this

possibility, we computed the reactivation strength from shuffled data where, for each

time bin, the identity of the cells was randomly permuted. This shuffling procedure

preserves the instantaneous global firing rate (and its fluctuations), but it destroys the

patterns of co-activation. In figure 6A, from the same session presented in Figure 2,

the reactivation measure was computed for one principal component while the eigen-

vector weights (or equivalently, the identities of the cells in the multi-unit spike train

) were shuffled 1000 times. The 99th percentile of the resulting distribution, for each

time bin, is shown as the grey curve superimposed upon actual reactivation measure

data (black dots). Those points are plotted as a function of the average firing rate (in

z-score) which represent the global activation of the cell population. There is a relation

between instantaneous global activation and the upper bound of the distribution of

shuffled measures (the 99th percentile) which is similar in PRE and POST sleep. Nev-
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ertheless, while the actual reactivation measure remained within the expected bounds

in PRE sleep (only 1% of the bins exceeded the shuffled measure), the actual reactiva-

tion measure largely exceeded this confidence interval in POST sleep (3.4% of the bins

were above the 99th percentile). To check whether this could be due to a difference in

global population activation, the PRE and POST sleep distribution of average z-score

were compared (right inset) and, indeed, showed no difference (Kolmogorov-Smirnov

test, p=0.11).

This difference in the tail of the distribution is very important for the excess reac-

tivation strength in POST with respect to PRE which we take as evidence for memory

replay. In the example of figure 6A, 4.5% of the bins from POST exceeded the 99th

percentile of the PRE distribution. Hence, the difference in tails of PRE and POST

distributions (as in the examples in Figure 5) resulted in a higher probability for re-

activation strength values from POST sleep to exceed the 99th percentile of the PRE

reactivation strength distribution than the expected 1% (figure 6B) in an encoding

strength dependent manner: the percentage of “outliers” is significantly above chance

for all groups of components and it increases with encoding strength. Whereas average

actual reactivation strength differences between PRE and POST (Figure 6C, significant

for all groups, p<0.05, t-test) show the same profile as the increased number of outliers

in POST sleep (Figure 6B), there was no difference in mean of the shuffled reactivation

strengths. Furthermore, reactivation strengths for shuffled data were on average one

order of magnitude smaller than reactivation strengths computed from actual data.

These brief, sharp increases in the reactivation strength time course (Figure 2,

or similarly the outliers in the distribution from POST) accounted for a large part

of the difference between the average reactivation strengths. This can be seen in the

cumulative contributions:
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〈R〉r−∞ =

Z r

−∞

uP (u)du (34)

whose difference between POST sleep and PRE sleep is shown in Figure 7. The patterns

were grouped according to encoding strength (Φ = λ/λmax). For distributions P (u)

with an exponential tail, this function will reach an asymptotic value, indicating that

large values contribute little to the overall average. Diverging values of 〈R〉r−∞ (e.g.

∝ log(r)), are indicative of a P (u) with a tail decaying with a power law. This function

converges asymptotically to a value equal to the difference of the average reactivation

strength between POST and PRE (also equal to γPOST −γPRE). The black diamonds

indicate the 99th percentile of the distribution of POST sleep reactivation distribution.

Hence, up to half of the difference (for the highest encoding strength) between POST

and PRE sleep average of reactivation strength is due to one percent of the time bins

from POST sleep, that is, the bins in which the transient reactivation events took place.

3.5 Interactions between different cell assemblies

Different principal components, referring to the same data, tend to activate at different

times, and their activation is concomitant with the firing of independent cell groups

(Figure 8A). Interestingly, as shown in figure 8B, the time courses of R for the two

principal components show a trough for zero-lag in the cross-correlation, showing that

the simultaneous activation of the two components was less likely than in the case of

uncorrelated time course. This effect was observed for all pairs of principal components

[30].

Peaks of R correspond to transient synchronization, or co-firing, of cells with same-

signed weights in the principal vector. Nevertheless, each spike train participates differ-
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ently to any particular reactivation strength, likely depending on its associated weight

in the principal component. To quantify the contribution of the kth cell, the reac-

tivation strength R−k
l was computed with ∀t, Qkt = 0 , or by removing the terms

depending on Qkt in Eq. 13:

R−k
l (t) =

X

i,j:i 6=j
i 6=k,j 6=k

QitP
(l)
ij Qjt (35)

then the contribution was defined as:

Ik
l =

1

2

 

1 −
〈R−k

l 〉t

〈Rl〉t

!

(36)

the normalization factor 1/2 has been derived from simple calculation so that

X

k

Ik
l = 1 (37)

Figure 9A shows an example of the distribution of the contribution for two signal

components in a single day. The joint distribution of individual cells’ contributions

to those two patterns (Figure 9B) indicates no overlap between identities of highly

influential cells.

4 Discussion

This study shows that a simple and linear pattern separation method such as PCA

can be powerful in the identification and characterization of cell assemblies in brain

recordings. This is an important part of the study of the replay phenomenon, where two

epochs must be compared, one in which assemblies would be encoded, and another one,

in which the same assemblies might be replayed again. By construction, our method

is a simple extension of the seminal work by Bruce McNaughton and co-workers [40,
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18], offering two important new features: first, a detailed time course for replay is

obtained, at the scale of the chosen temporal bin (practical values we have used are 10-

100 ms). The resulting resolution is much finer than what can be achieved if replay is

only measured from the similarity between the epoch-wide correlation matrices. This

has important consequences for the study of the physiology of replay. In particular,

we have found that replay takes place for the most part in discrete, transient events

(see e.g. Figure 2 and 5), which correspond to the coordinated activation of subgroups

of cells. In fact, such transients mostly take place during “UP” states characteristic

of slow-wave sleep. These are periods of elevated, relatively steady activation, when

measured at the level of the global neuronal population. However, a very different

time course is uncovered when we consider the dynamics of subgroups of cells, defined

by co-activations measured during wakefulness: a avalanche-like dynamics [1,2,20],

which are embedded in a generally more regular population dynamics. Moreover, a

detailed view of temporal evolution of replay has allowed to explore the links between

this phenomenon on one hand and hippocampal sharp waves (crucial for hippocampal

replay [18]) and UP-DOWN state transitions on the other, showing how replay is an

integral part of hippocampal-cortical interactions and sleep physiology [30].

Second, PCA allows to tease apart the dynamics of different cell assemblies, cor-

responding to different principal components. Interestingly, distinct subgroups tend to

seldom reactivate at the same instant, suggesting that some sort of pattern separa-

tion mechanism may take place during sleep. Because the time courses of the different

principal components are un- (or anti-)correlated (Figure 8), separating them allows

to reveal details of the temporal evolution which would be otherwise averaged out, for

example, in the transient dynamics we discussed above.



24

This measure also lends itself to rigorous mathematical analysis, making some in-

roads towards precisely defined null hypotheses to be tested against the experimental

results. The known eigenvalue spectrum of correlation matrices from purely random

data [23,35] allows determination of which of the principal components in a given data

set are likely to carry meaningful information; in the data considered here, up to 5 or 6

PCs can be found in a simultaneous recording of 30-50 neurons (Figure 1). This could

be seen as a generalization in N dimensions of the classical Pearson test for pairwise

correlations. The boundaries of the support of the theoretical distribution for the eigen-

values, λmin and λmax, can be taken as the critical value for the rejection of the null

hypothesis. In the range of parameters corresponding to our practical experimental sit-

uation (number of variables, N ∼ 50, number of time bins, b ∼ 104 for a bin size of 100

ms) these boundaries are sharp, as demonstrated by the Tracy-Widom estimate of the

variance of the distribution of the largest eigenvalue [38]. Thus, an analysis procedure

that considers as ‘signal’ the principal components associated to an eigenvalue larger

than λmax is justified from the theoretical point of view. This allows us to identify

certain principal components as signal-carrying cell assemblies.

In the next stage of the analysis, the R measure is computed, measuring the time

course of replay during the PRE and the POST epoch. In principle, replay could be

the result of a continuous process, for example one that modified the probability of

co-activation of cell pairs, as a consequence of synaptic modification. In this case, one

would expect an exponentially tailed distribution for the R values. This was indeed

verified analytically, under the hypothesis of multivariate, normally distributed data.

Reactivation strengths are greater than chance levels both in PRE and POST sleep.

This could be due to structural correlations, pre-encoded in the synaptic matrix. Such

correlations would be present in ensemble activity at all times, both in spontaneous
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and in behaviorally evoked activity, and would not have to encode any task-relevant

information. It is also possible that, during PRE sleep, the prefrontal cortex is al-

ready engaged in processes anticipatory of the task. This could explain the similarities

between the activity in the PRE and AWAKE epochs.

Nevertheless, POST sleep shows a significantly greater degree of replay. This can

be observed by empirically comparing the R distributions for PRE and POST. Inter-

estingly, most of the difference between PRE and POST is accounted for by the very

large data points in the tail of the distribution, so that, for the principal components

associated to the largest eigenvalues, up to 50% of the difference is accounted for by

only the largest 1% of the points. It seems therefore likely that the large transients in

the replay measure are at least in part a consequence of replay. Moreover, it is possible

that during experience, synaptic plasticity operates by modifying and strengthening ex-

isting cell assemblies (during gradual learning for example), as opposed to creating new

ones from scratch. This would also contribute to explain why reactivation strength for

the same eigenvectors may be high both in PRE and POST (albeit stronger in POST).

Our method, in its current version, has some limitations. For one, it does not

provide a way to directly discount structural correlation patterns present in the PRE

epoch from the templates extracted by the AWAKE epoch, which would obviate the

need for a comparison of the empirical PRE and POST distributions. Also, it would

be important to compute analytical bounds for quantities under null hypotheses less

stringent than that of multivariate normal spike trains. Still this technique has already

led to scientific results of relevance [30]: as another example of use of this technique,

as mentioned above, the sleep epoch can serve as a template for detecting matches in

the awake epoch: we extracted patterns from PCA applied to the POST epoch, and

matched them on the activity during the AWAKE epoch. This allowed us to assess
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which behavioral phases of the task were represented the most in the sleep activity

(and possibly, be preferentially consolidated). We concluded that this coincided with

activity at the “choice point” of the maze, i.e. the fork of the Y-maze where the animal

had to commit to a potentially costly choice. Also, the effect depended upon learning:

sleep-derived activity patterns were more concentrated at the decision point after the

rat acquired the rule governing reward [30]. These initial results provide hope that this

method, for its relative simplicity and ease of approach with mathematical tools, may

spur further experimental and analytical work.
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Figure Legends

Figure 1:

Evidence for signal components in the data sets. A: Distribution of the eigenvalues

for three example sessions (left) to be compared with the Marc̆enko-Pastur theoretical

distribution (right). The upper bound of this theoretical distribution is indicated in

the left panel with black dotted lines. The red dotted line indicates the upper bound

derived from Tracy-Widom distribution for the highest eigenvalues in case of finite

data sets (see text). B: Histograms of the spectra of all the eigenvalues for each of

the same 3 data sets as for panels in A after shuffling. The empirical distribution was

in good agreement with the Marc̆enko-Pastur distribution, even without taking the

Tracy-Widom correction into account. In particular, all computed eigenvalues remained

within the theoretical bounds.

Figure 2:

Example of reactivation strength time course for one principal component extracted

from awake activity during two sleep sessions. Shaded areas denote periods of identified

Slow Wave Sleep (SWS). POST SWS is dominated by brief, sharp increases in the

reactivation strength, indicating strong similarity between instantaneous coactivations

and the correlation pattern of the awake principal component.

Figure 3:

Eigenvectors from AWAKE better match activity in sleep POST than in PRE. A:

Encoding strength from the AWAKE correlation matrix (Φ = λ/λmax; x-axis) plotted

against the average reactivation strength represented by the very same vectors during

sleep PRE (left) and POST (right) for signal components only (Φ > 1). Each dot

represents one of the 323 signal components identified from 63 datasets (four rats).
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Correlation values (r) and slopes (s) are indicated for the two distributions. The two

measures were more strongly correlated during POST, and the slope of the linear re-

gression line was steeper too (p< 10−6). B: Average reactivation strength from POST

versus PRE. Encoding strength is color coded. The points tend to lie above line rep-

resenting the identity function, showing that mean reactivation was stronger during

POST. This effect was stronger for components with higher encoding strength.

Figure 4:

Distribution of the R measure during the TEMPLATE epochs (RTE−TE). Data are

from the same three sessions as in Figure 1 (AWAKE). A: Distribution of R across all

time bins for the first principal component of each of the three sessions (representative

of the dataset, the respective encoding strength Φ = λ/λmax are displayed on top

of the distributions). Real data (black), theoretical expectation (red) derived from a

Monte-Carlo sampling of Eq. 32 (n = 105), and a numerical simulation using normal

multivariate data with the same correlation matrix as the actual data (blue). B: Same

plots as A but in log-log scale. C: Distribution of the α and β terms from Eq. 32. High

encoding strength eigenvectors (e.g. one at bottom) tend to exhibit a clear power-law

distribution of their R measure distribution.

Figure 5:

Distribution of the R measure during the MATCH epochs (PRE and POST). Data

are from the same three principal components as in Figure 4 (AWAKE). A: Distribution

of R for PRE (left) and POST (right) sleep of the real data (black) and the theoretical

expectation (red) derived from a Monte-Carlo sampling of Eq. 33 (n = 105). B: Same

plots as A but in log-log scale showing a clear power law decay in sleep POST for high

encoding strength components (second and third rows). C: Bar plot of average of the

distributions of actual data shown in A and B for PRE (left) and POST (right). Note
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that the average reactivation strength is equal to γ − 1. The difference in the means

seemed to be related to the difference in the tails of the distributions.

Figure 6:

Effect of instantaneous global fluctuations of firing rate on the reactivation strength

measure. A: For one principal component recorded during one session (third example

of Figures 1, 4 and 5), the scatterplots show the dependence between the instantaneous

activation (expressed as the instantaneous z-score averaged over all recorded cells) and

the corresponding reactivation strength. In black, the actual data are shown, vs. the

99th percentile of the shuffled control. The data pertain to the PRE epoch (left) and the

POST epoch (right). In POST, but not in PRE, a larger number (3.4%) of points than

expected by chance is above the 99th percentile, showing that reactivation effects are

not likely to be the product of activity fluctuations alone. Meanwhile, 4.5% of POST

bins were above the 99th percentile of the PRE distribution. Right inset: Distribution of

the averaged z-score, measuring the degree of instantaneous population activity, for all

time bins in PRE (blue) and POST (red) sleep. The two distributions are not different.

B: Pooled data of the number of POST bins exceeding the 99th percentile of PRE

distributions. Signal components were grouped according to their encoding strength.

The percentages were significantly over 1% for the three groups (p<0.05, t-test) and,

individually, percentages were correlated with encoding strengths (r=0.39, p < 10−12).

C: Pooled data from all principal components computed from all available recording

sessions comparing the reactivation measure average for sleep PRE and POST with

shuffled measures for the two same epochs. The difference between PRE and POST

sleep epochs was significant for the three signal groups (p<0.05, paired t-test), but not

for shuffled measures. Furthermore, the averages for shuffled data were one order of

magnitude less than actual measures.
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Figure 7:

Cumulative average computed with Eq. 34 for components of the whole data sets

separated in the same four groups as in figure 6. Black diamonds display the 99th

percentile of the POST distribution. This shows that for the highest encoding strength,

half of the difference between PRE and POST (represented by the asymptotic value of

each curve) is explained by only 1% of the bins of POST sleep.

Figure 8:

Interaction between two simultaneous reactivation strengths. A: Example of reac-

tivation strength timecourse for two signal components from the same session during

SWS (top) with the simultaneous cell activity (raster plot, bottom; each row represents

the spike train from one cell). The red and green rasters (respective to the colored

reactivation strength traces) show the spike activity of the six cells associated with

the highest weights in each component (i.e. with the highest contribution, see below).

Other spike trains (in black) are displayed in random order. Each peak of the reactiva-

tion strengths is associated with a transient increase of ring rates of the cells with the

highest weights in the respective component. B: Cross-correlogram of the reactivation

strengths for the two components during SWS showing marked negativity at 0 lag.

Figure 9:

Contribution of individual spike trains to the overall reactivation strength. A: Con-

tribution of all the cells recorded during one session to the average of R1 (resp. R2),

the reactivation strength of the first (resp. second) component, as a function of PC

weights for the first (resp. the second) principal components p1 (resp. p2). B: Scatter

plot of the contributions to R1 (x-axis) and R2 shows that the sets of high-contribution

cells for the two components are virtually disjoint.
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