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Abstract 

Slow-wave sleep (SWS) is important for memory consolidation. During sleep,  

neural patterns reflecting previously acquired information are replayed.  One possibility 

is that such replay exchanges information between hippocampus and neocortex, 

supporting consolidation.  We recorded neuron ensembles in the rat medial prefrontal 

cortex (mPFC) to study memory trace reactivation during SWS following learning and 

execution of cross-modal strategy shifts.  In general, reactivation of learning-related 

patterns occurred in distinct, highly synchronized transient bouts, mostly simultaneous 

with hippocampal sharp wave/ripple complexes (SPWRs), when hippocampal ensemble 

reactivation and  cortico-hippocampal interaction is enhanced.  mPFC neural patterns 

appearing during response selection replayed prominently coincident with hippocampal 

SPWRs taking place in sleep, following learning of a new rule.  This was learning-
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dependent, because it was not observed before rule acquisition.  Thus, learning, or the 

resulting stable reward, influenced which patterns were most strongly encoded, and 

successively reactivated, in the hippocampal/prefrontal network. 

 

INTRODUCTION 

The acquisition of labile new memories can trigger processes spanning from molecular1 to 

system-wide levels, gradually transforming and stabilizing memory traces.  The system 

consolidation theory views the interaction between hippocampus and neocortex as 

instrumental for this2-4. While the hippocampus is vital in the initial acquisition and early 

storage of memories, the cerebral cortex, among other structures, play crucial roles later on5.  

The exchange between a fast-learning module (the hippocampus) and a slower one (the 

neocortex) would take place mainly after memory acquisition, allowing one-shot acquisition 

of new items without losses of older memories because of interference2,3.  A further role of 

slow consolidation following acquisition would be to re-organize memories into more 

semanticized, de-contextualized representations6-8. 

A role for slow-wave sleep (SWS) in such exchange3,5,9-11 would be the replay of neural 

patterns reflecting previously acquired information12-18.  Such sleep replay would then instill a 

change in the neural substrate of memory traces, and ultimately favor memory consolidation.  

During sleep, the hippocampus and the neocortex engage in a dialogue which involves and 

affects the dynamical states of both19-23.  Hippocampal sharp waves/ripple complexes (SPWR) 

are likely vectors for  hippocampal-neocortical information exchange24: SPWRs25 are brief 

(~50-150 ms), large bursts of hippocampal activity, mostly observed during SWS or 

immobility and correspond to increased hippocampal memory reactivation14.  During SWS, 

neocortical activity displays periods of large, synchronous oscillations (0.1-4 Hz) of 
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membrane potentials and neural firing26, and these are correlated with SPWRs19-21. Slow 

oscillations were recently found to coordinate episodes of visual cortical and hippocampal 

reactivation16, but the precise temporal relationship between cortical and hippocampal replay 

remains unknown.  

The prefrontal cortex (PFC) is often implicated in long-term memory consolidation 27  in 

particular for hippocampally-dependent spatial and contextual information. Indeed, the PFC 

shows detailed, time-compressed replay following initial acquisition of memory-related 

sequences of neural ensemble activation in rats17 and increased coordination with the 

hippocampus during retrieval of sleep-consolidated memories in humans28. The PFC is one of 

the neocortical areas most closely associated to the hippocampus, both anatomically and 

physiologically because it has a unique afferent pathway from the hippocampus29 endowed 

with synaptic plasticity30.  Some functional imaging and immediate early genes expression 

data support the idea that, during consolidation, the hippocampus activity contributions de-

crease over  time, with an opposite, increasing trend observed for the PFC27,28,31.  However, the 

concerted function of PFC and hippocampus is also necessary for memory maintenance 

during task performance32,33.  

While the behavioral electrophysiology literature provides numerous examples of 

memory replay 12,14-18, the animals in these studies were over-trained, and little learning 

actually took place, or, no specific analysis of the evolution of replay with task performance 

was attempted13. The goal here is to investigate memory reactivation and hippocampal-

neocortical interactions while new task-relevant information is actually being acquired in 

order to better characterize the link between learning and memory replay processes. 

Moreover, this study focussed on sub-second resolution of the time course of memory replay, 

in order to study of precise correlations between replay events and large-scale 

synchronization phenomena  during SWS, such as SPWRs and slow oscillations. Indeed 
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learning-related changes in neural activity over brief time scales have been described in both 

the prefrontal cortex34,35 and hippocampus, but the effects of these changes on the subsequent 

sleep activity has not yet been studied. We recorded neural activity in the PFC and the 

hippocampus in rats during a cross-modal rule shift task (known to implicate the medial 

PFC36), which allowed to introduce novel elements in the form of new rules, while leaving 

the perceptual aspects of the task unchanged.   

RESULTS 

 

mPFC ensemble patterns during a rule shift task  

Multiple tetrodes recorded ensembles of medial PFC (mPFC; see Methods, 

Supplementary Fig. 2 online) neurons, together with mPFC and hippocampal local field 

potentials (LFP) in rats. The animals had to perform a task on a Y maze (Supplementary Fig. 

1), where the animal had to select the rewarded arm using one of four possible rules (left arm, 

right arm, illuminated arm, non-illuminated arm; at each trial one of the two target arms was 

illuminated at random). This period will be referred to as the AWAKE epoch. Neural activity 

was monitored also during rest periods immediately before and after the AWAKE epoch (PRE 

and POST epochs). As soon as the rat achieved criterion performance (See Methods) 

according to the current rule, the rule was changed without any additional cue, and the rat had 

to again infer the new rule from the pattern of rewarded and non-rewarded arms. Because no 

pre-training was performed prior to the electrophysiological recordings, during the 

experiments the rats encountered novel rules, to which they had never been exposed before.  
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1692 cells were recorded in the mPFC (Supplementary Fig. 2) from four rats, during a 

total of 63 recording sessions (Rat 15: 16; Rat 18: 11; Rat 19: 12; Rat 20: 24). Only sessions 

with a minimum of 10 cells and at least four minutes of SWS in each rest epoch were 

analyzed. 

Cells in the mPFC had diverse behavioral correlates, corresponding to one or more task 

phases, and in some neurons responses dynamically adapted as the rat acquired the current 

task rule (Battaglia et al, SfN abstract 2006). We used principal component (PC)  analysis to 

extract the neural patterns characteristic of the AWAKE epoch (high rank principal compo-

nents, associated with larger eigenvalues, or encoding strengths, will be referred to as signal 

components, while lower rank, or non-signal components, mostly reflect noise). (see Me-

thods, Supplementary information, Supplementary Fig.32).  

Signal components identified neuronal assemblies with reliable and consistent responses 

in the task. For example, they assigned same-signed weights to cells with similar behavioral 

correlates, and opposite-signed weights to cells with complementary correlates (Fig. 1A; 

Supplementary Fig. 4). Based on the eigenvalues associated with the PCs, and on a threshold 

value computed on the basis of the null hypothesis of random, uncorrelated spike trains, we 

could typically discriminate 1-6 signal components (and occasionally more) in each session 

(Fig. 1B). The patterns of activity detected by PCs are correlated with behavior: in this exam-

ple session, the first PC (PC1) showed a positive peak activation right after trial onset (Fig. 

1C), PC2 peaked later in the trial, and PC3 even later on. Moreover PC1 and PC2 increased 

their score and PC3 decreased its score as the rat, across trials, abandoned the strategy of al-

ways going to the right arm (Fig. 1C, trials indicated with a green background in the right 

panel), and instead chose, with a great probability to alternate between the two target arms. 

Thus, PC1, 2, and 3 extracted patterns of activity that correlated both with trial phase, and at 

a larger time scale, with the strategy that the rat followed in a block of trials.   
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FIGURE 1 near here 

 

Transient, synchronized replay of AWAKE patterns  

In order to assess the nature and extent of the interaction between prefrontal cortex and 

hippocampus in memory replay, we characterized the detailed time course of replay during 

rest episodes. For this, we computed the instantaneous reactivation strength (see Methods, 

Supplementary Information) of the signal components computed from the AWAKE epoch. At 

each moment (with a resolution of 100 ms, unless specified otherwise), reactivation strength 

assesses the similarity between reference AWAKE signal components and the rest period 

neural activity. 

FIGURE 2 near here 

During POST SWS, signal components reappeared more frequently and strongly than in 

PRE (e.g., Fig. 2A), confirming that experience-related patterns are reactivated in mPFC17 in 

ensuing sleep. No such effects were observed in the rest periods that were not classified as 

SWS, as shown in Supplementary Fig. 5; thus further analyses were restricted to SWS.  PRE 

and POST SWS did not differ in terms of average duration of the sleep episode, average 

population firing rates, rates of occurrence of delta waves and SPWRs, or local field potential 

power in the delta and spindle ranges (Supplementary Fig. 6). The average reactivation 

strength was greater during POST SWS than PRE SWS for signal components (Fig. 2B-C; p 

< 0.005 all comparisons. N = 10, 40, 273 for the three signal groups observed here, sorted 

according to their encoding strength; N = 811 for non-signal components). Reactivation 

strength correlated positively with encoding strength (r
2
 = 0.61, p<1e-30 Pearson correlation 

test, N = 323; Fig. 2B; Supplementary Fig. 7). Thus, the patterns most active in the mPFC  

during AWAKE, are preferentially reactivated during the following SWS, similarly to 
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previous observations in the hippocampus18.  During PRE SWS, this relationship was 

significantly weaker with respect to slope (p<1e-20; N = 323) and correlation (p<1e-5; N = 

323, Supplementary Fig. 7).  These observations were not likely to erroneously result from 

potentially faulty spike sorting, as they persisted when cell pairs discriminated from the same 

tetrode were ignored. Moreover, cell pairs from the same tetrodes, when considered alone, 

showed no replay effect, so that virtually all contributions to the replay results come from the 

correlations between neurons recorded with different tetrodes  (Supplementary Fig. 8).   

Strikingly, replay occurred in distinct events of strong signal reactivation in POST SWS 

(Fig 2A), denoting synchronous transient activation of the cell assemblies identified by the 

signal components.  Histograms of the reactivation strengths for POST SWS were heavy-

tailed (Fig. 2D right), with the tail constituting the main difference with PRE SWS (Fig. 2D 

left).  The bulk of the distribution was similar in PRE and POST.  This is reflected in the 

significant difference between POST and PRE in skewness of the signal reactivation strength 

histograms (p<0.05; t-test N = 10-40), most markedly for patterns with higher encoding 

strengths (Fig. 2E).  The peaks in reactivation strength correspond to the transient, 

coordinated activation of the cells that are assigned a large weight in the relative principal 

component (Supplementary Fig 9). Those cells are the ones that have the greatest 

contribution to the total reactivation strength. Different PCs recruit different, rarely 

overlapping sets of high-weight strengths.  Interestingly, during sleep, reactivation strengths 

for simultaneously recorded principal components tended not to peak at the same times, 

rather, concomitant activation of different principal component-related patterns was less than 

expected by chance, as can be inferred from the zero lag trough in their cross-correlograms 

(Supplementary Figs 9 and 10). Shuffled controls show that this cannot be explained by 

global fluctuations in the population firing rate alone (Supplementary Fig. 11). 
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To assess the prevalence of the strongest transient cell assembly activations, we computed 

the cumulative contribution to the epoch-wide reactivation of events with reactivation 

strengths up to certain values for POST SWS, and subtracted the same measure for PRE 

SWS. This cumulative contribution (Fig. 2F) increased steadily over two orders of 

magnitudes, and 40-50% of the net reactivation (difference between POST and PRE) came 

from events with reactivation strengths beyond the 99
th

 percentile. Thus, rare events of ele-

vated network synchronization or network spikes37,38, while spanning only a small period of 

time, account for a substantial proportion of the total observed reactivation. 

Preferential mPFC replay during hippocampal SPWRs 

The standard systems consolidation theory holds that, following acquisition, experience-

related information flows from the hippocampus towards the neocortex24. Conversely, 

neocortical influences may contribute to selecting the pattern reactivated in the hippocam-

pus22. We tested the relationship between mPFC cell assembly reactivation and hippocampal 

SPWRs, the most prominent pattern of hippocampal activation during SWS (which, like reac-

tivation strength peaks, occur irregularly). Indeed, cortical assembly reactivation events oc-

curred in concert with hippocampal SPWRs. Examining data from entire POST sessions (Fig. 

3) reveals that virtually all reactivation peaks occur concomitantly with a SPWR event (and 

also with an increase in synchronous activity of those cells with large positive weights in this 

signal component). In the example in Fig. 4, the ensemble spike trains corresponding to a 

reactivation peak are shown (red ticks in Fig. 4E): at the time of the peak, virtually all cells 

with large positive weights in this signal component were active (and negative weight cells 

reduced their activity). In this example, the two largest peaks (Fig 4A) coincided with SPWR 

events (red asterisks in Fig 4B), and one preceded a delta wave (Fig. 4C). 

FIGURES 3, 4 near here 
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The average reactivation strength in POST SWS was considerably greater for bins coin-

ciding with SPWRs than for non-SPWR bins (all comparisons p<0.005; N = 8, 37, 225; 

including only sessions with reliable discrimination of ripple signals; Fig. 5A). The effect was 

stronger for components with higher encoding strengths (Pearson's correlation test, p<1e-20, 

Supplementary Fig. 7).  The SPWR-triggered average (Fig. 5B) showed that during POST 

(but not PRE), SWS reactivation strength for signal components increased by ~70% at the 

time of the sharp waves with respect to baseline (p<1e-10, N=270).  Reactivation in mPFC 

declined to baseline values within 1 s before and after the peak of the SPWR events.  No such 

effect was found for non-signal components. A similar analysis at higher time resolution (Fig. 

5C) showed that reactivation peaked ~40 ms after SPWR occurrences, which is compatible 

with the transmission delay measured for prefrontal responses to hippocampal stimulation39 

(the second peak in the event triggered histogram is likely due to the frequent occurrence of 

sharp wave “doublets”). On the other hand, overall ensemble mPFC activity (of all recorded 

neurons, including those not involved in signal components) showed a qualitatively different, 

sharply asymmetric profile with respect to SPWR occurrences (Fig. 5D): on average,  pre-

frontal population activity transiently increased with the SPWRs, and maintained sustained 

activity thereafter20,21 (with no difference between PRE and POST). This sustained post-

SPWR activity contrasts with the faster decay of signal reactivation, arguing against an ex-

planation of the latter solely in terms of general population activity fluctuations. Furthermore, 

autocorrelograms of both reactivation strength and SPWR occurrences (Fig. 5E) decay with 

very similar time constants (respectively 150 and 160 ms for exponential fits), suggesting that 

the clustering in time of SPWRs is reflected by a similar grouping of reactivation events.   

FIGURE 5 near here 

relation of slow oscillations with SPWRs and mPFC replay 
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A hallmark of cortical activity during SWS is slow oscillations26, which trigger and or-

chestrate LFP waves in the delta (2-4 Hz) and spindle (10-20 Hz) ranges.Reactivation epi-

sodes in the hippocampus and neocortex coincide with the slow oscillation phase with high 

neural activity 16  (UP state) and are correlated with hippocampal SPWRs, but little is known 

about the precise temporal relation between cortical oscillatory phenomena, hippocampal ac-

tivity and neocortical reactivation. In Fig. 2A the relation between  mPFC reactivation and 

SWS oscillations is shown: episodes of strong replay were significantly concentrated into  

periods of elevated prefrontal LFP oscillatory activity in the delta (2-4 Hz) and spindle (10-20 

Hz) ranges (p < 1e-5 for all, t-test; Supplementary Fig. 5). Thus, we tested the correlation be-

tween reactivation strength and LFP markers of slow oscillations. First, we considered delta 

waves, large positivities of the depth cortical LFP, associated with states of reduced cortical 

activity (DOWN states), and with the K-complex phase characterized by absence of 

spindles40. During POST SWS, reactivation strength for signal components showed a signifi-

cant (p < 0.001, t-test) increase ~ 400 ms  prior to the peak of the delta wave (Fig. 6A top). 

This was experience-dependent and possibly memory related, since the modulation was 

smaller for PRE SWS and null for non-signal components. The timing of hippocampal 

SPWRs relative to delta peaks closely resembled that of mPFC reactivation (Fig. 6A middle). 

In contrast, mPFC ensemble activity showed a different profile (Fig. 6A bottom) with a min-

imum immediately prior to the peak of the delta wave, but symmetric peaks before and after 

(with a return to baseline in 500-1000 ms). The second peak was not associated to an increase 

in reactivation. 

To further investigate this relationship, the same analysis was performed with times of 

putative DOWN to UP state transitions (Fig. 6B) (putative DOWN states were defined as a 

decrease of neural activity in windows of at least 80 ms). The relations between reactivation  

SPWR occurrence with these transitions were comparable to the delta wave results. 
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Because spindles (bouts of 10-20 Hz oscillations) appear at the onset of UP states41, we 

examined their correlation with reactivation strength. In general, signal reactivation tended to 

occur before spindle episodes. Reactivation event-triggered averages centered on spindles 

troughs are asymmetric, with an increase in reactivation in the ~1 s preceding spindles com-

pared to the period thereafter (p < 0.001, t-test; Fig. 6C top). As is the case for delta waves, 

the increased pre-spindle reactivation over a broad time scale echoes the increased probability 

for hippocampal sharp waves preceding spindles (Fig. 6C middle). In contrast, the population 

activity modulation showed a symmetrical time course peaked at the time of spindle events 

(Fig. 6C bottom).  

The respective cross-correlograms and Event-Time Averages of reactivation relative to 

these three cortical events were strongly correlated (Fig. 6D). Thus, coupling between reacti-

vation and sharp waves primarily structured the relationship between the reactivation time 

course and cortical slow oscillations. 

FIGURE 6 near here 

 

Salient behavioral events, rule learning increase replay 

The PC analysis that characterized the time course of experience-related pattern reactiva-

tion during sleep may conversely be employed to find out which aspects of the neural assem-

bly coactivations during task performance are replayed during sleep. For this, PCs were com-

puted from the ensemble neural activity during sleep PRE and POST, separately for SPWR 

and inter-SPWR time bins. Those templates were matched to the activity during the AWAKE 

period.  For a significant number of components extracted from SPWR bins (Fig. 7A-B; Sup-

plementary Fig. 12), co-activations became stronger as the rat started a run of correct trials, 

signaling rule acquisition.  This difference was not significant for PCs computed from the in-
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ter-SPWR intervals in POST, or from PRE.  This was not simply due to the elapsed time dur-

ing the session, as there was no such difference between the two halves of those sessions 

where no rule learning occurred. 

Furthermore, the PCs computed from POST SPWR appeared primarily when the rat was 

on the central platform of the Y maze, that is, the point where it was required to select the be-

havioral response (Fig. 7A,C). A significant effect of learning on the spatial distribution of 

PCs from POST SPWR appeared only in the part of the maze going from the central platform 

to the end of the target arm (Fig. 7C). Moreover, a factor analysis of these spatial distribu-

tions revealed that the two most important  factors (which ones?)  are concentrated on the 

platform and on the target arm respectively (Fig. 7D; see also Supplementary information).  

Rule acquisition was not accompanied by a change in principal measures of the rat beha-

vior, including terms of (in term of) trial duration, of trajectories (which followed the same 

stereotyped paths before and after rule acquisition), and running speed at each point of the 

trajectory (Supplementary Fig. 12).  Moreover, the greater contribution to reactivated patterns 

during SPWRs from trials occurring right after rule acquisition is not likely to be due to 

changes in the general sensory experience other than reward.  To test this hypothesis, we 

compared trials occurring before and after spontaneous strategy shifts operated by the rat 

which did not lead to acquisition of the rewarded strategy, in days in which (when) no learn-

ing took place. Rats operated this sort of shifts while seeking the correct rule by trial and er-

ror. In these cases, no difference was observed in contribution to reactivated patterns during 

SPWRs (Fig. 7B; Supplementary Fig. 13; Supplementary Information).  

FIGURE 7 near here 

DISCUSSION 
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This work shows new links between learning and the dynamics of replay in the mPFC 

and hippocampus with 3 main results. First, mPFC replay occurs in transient episodes, appar-

ently corresponding to the activation of distinct cell assemblies. Second, prefrontal replay, 

while occurring throughout the following sleep episode, was most likely coincided with hip-

pocampal sharp wave events, and therefore with increased hippocampal replay and hippo-

campal/neocortical interactions. Third, and most importantly, mPFC replay during hippocam-

pal sharp waves principally concerned neural activity patterns emerging only after the acqui-

sition of a new rule.  

The results demonstrated the relation between memory replay, the task phase where the 

activity patterns originated, and task performance level in a dynamic setting,  wherein the rat 

were obliged to continually adapt to new rules. Interestingly, when the rat behaved according 

to the newly acquired rule, the patterns that contributed the most to memory replay in mPFC 

during hippocampal SPWRs were those appearing when the rat commits to choose one target 

arm. During the trial, the contribution to hippocampal-related replay in the mPFC climbed 

steadily on the departure arm (where activity may predict the choice42, to peak at the arms 

intersection.  Furthermore, preferentially replayed patterns arose just when rats began a series 

of correct trials at criterion with respect to the new rule.  Prefrontal cortical activity reflecting 

a newly learned associations has been found to emerge only after that the associations have 

been acquired34.  The time course that we observe for replay is similar: co-activations prefe-

rentially replayed in SPWRs arise after the rat starts to perform at criterion.  These effects 

were likely not a consequence of different neural activity statistics at the choice point, as they 

remain specific for POST SPWR patterns and are not found for patterns extracted from PRE 

or from inter-SPWR intervals. 

The hippocampal involvement in the formation of these novel cell assemblies is likely to 

be critical: strikingly, times in the task linked to preferential replay were also marked by in-



Peyrache et al.                                                                    Replay of rule-learning related neural patterns 

14 

creased coherence between the hippocampus and mPFC LFP in the theta range (Benchenane 

et al. Soc. Neurosci. Abs 690.15, 2008).   Thus, upon learning, the choice point is the site of 

an increase hippocampal-prefrontal coherence. Cell assemblies activated at those times are 

prominently replayed in the mPFC, during SPWRs, that is, when the hippocampal-

neocortical interaction is at its peak19-22. Coactivations may reflect prefrontal (or prefrontal-

hippocampal) cell assemblies representing new information. The nature of this new informa-

tion could be two-fold: on one hand, it could represent an emerging representation of the 

newly learned rule; on the other hand, it might reflect processes that take place after learning 

has taken place, for example, a representation that is activated by consistent stream of reward. 

The reward signal may “tag” the representations making them more likely to be replayed. In 

support of this hypothesis, we analyzed those periods in which rats were searching for the 

correct rule by trial and error.  We showed that when the rat,makes spontaneous strategy 

shifts to strategies different from the rewarded one, patterns from before or after the shift are 

indifferently replayed in sleep (Supplementary Fig. 13).  Thus, the consequent changes in the 

general sensory experience, do not cause the resulting neural patterns to be replayed more or 

less strongly.  Also, this seems to rule out interpretation of our result in terms of repetitive 

experience resulting in stronger replay18.  Because preferential replay only occurs during 

SPWRs, we speculate that regulation of hippocampal-prefrontal interactions could result 

from dopaminergic, reward-related signals43.  The replay of reward tagged patterns, in concert 

with the hippocampal replay during SPWRs14,44 would mark the initial period of systems con-

solidation.  

The high temporal resolution of our coactivation measures revealed another remarkable 

feature of prefrontal replay, its detailed time course. Replay is largely accounted for by brief 

events, with durations on the order of 100 ms or less (e.g. Fig. 2).  In each event (similar to 

„network spikes'; see also Supplementary Discussion), a substantial number of cells is co-
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activated.  The observed highly irregular time course of reactivation strength suggests that 

replay is not simply due to changes in probability of co-firing for cell pairs (a straightforward 

consequence of a change in the efficacy of the connection between the two cells18), but is 

more likely generated by global network effects, induced for example by the excitatory feed-

back connections within the mPFC.    

 

Transient replay is concentrated during SWS (Supplementary Fig. 5).  This differs from 

studies of hippocampal reactivation which showed non-zero restful, non-sleep periods14.  This 

may be an intrinsic difference between the hippocampus and the mPFC, or it could be due to 

a different sensitivity of our analysis methods.  Within SWS, replay occurs principally in 

proximity to hippocampal SPWRs (Fig. 3-5). Thus, besides playing a special role for the hip-

pocampal replay of newly formed memories14, SPWRs also coincide with an increase of 

overall reactivation in hippocampal output structures. Moreover, sharp-waves are related to 

increases in cortical activity and transitions to UP states20,21. It is therefore possible that the 

correlation between cortical replay and SPWRs observed here may be due to a hippocampal 

influence on mPFC. At present, though, it is difficult to speculate whether reactivation events 

originate in the hippocampus or the neocortex: our data show that prefrontal replay peaks 

about 40 ms after SPWR occurrences, a latency which is compatible with observations of 

prefrontal responses to hippocampal stimulation39, and thus with hippocampus triggering this 

extra-hippocampal replay. On the other hand, it is known that the neocortical slow oscilla-

tions45 influence the membrane potential of hippocampal cells23 and the probability of emis-

sion of SPWR22; such an influence would allow the neocortex to contribute to selecting the 

information reactivated in the hippocampus. As a third alternative, the concurrent prefrontal 

cortical replay and hippocampal SPWRs may be the result of particular neocortical network 

states that simultaneously regulate when hippocampal reactivation takes place and facilitate 
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the transfer of reactivated patterns between brain regions20. In a more radical version of this 

hypothesis, the representation of a memory item could integrally involve both hippocampus 

and neocortex already at the time of initial encoding, and thereafter this would reactivate as a 

whole and manifest itself simultaneously in both structures. In fact, analyzing data from these 

same experiments we show that signs of hippocampal/neocortical interplay were already 

present when the replayed representation was likely formed, at the level of theta-band cohe-

rence.  

 In conclusion, the acquisition of new rules involves the hippocampo-cortical network; 

during the ensuing sleep, the PFC activity patterns during hippocampal SPWRs reflect the 

neural patterns that occurred during the task phase, particularly when a rule has been learned, 

just at the time when hippocampo-cortical coherence is enhanced. Whether the predominating 

causal influence in this dialogue is cortical or hippocampal, or rather this corresponds to an 

emergent system-wide representation of information, our results show a possible mechanism 

by which task-relevant learned information can be expressed and reactivated in the prefrontal 

cortex. This would be contingent to SPWRs for newly formed memories, but more uncoupled 

to the hippocampus for more distant memory traces. 

 

 

METHODS 

Animals Four Long-Evans (pigmented) male rats (René Janvier,  Le Genest-St-Isle, 

France) weighing 250-300g at arrival, were handled and pre-trained as described in the Sup-

plementary Information. All experiments were in accord with institutional (CNRS Comité 

Opérationnel pour l‟Ethique dans les Sciences de la Vie), international (NIH guidelines) stan-
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dards and legal regulations (Certificat no. 7186, French Ministère de l‟Agriculture et de la 

Pêche) regarding the use and care of animals.  

After pre-training, rats were anesthetized with intramuscular Xylazine (Rompun 0.1 ml), 

and intra-peritoneal pentobarbital (35 mg/kg).  A drive containing 7 tetrodes (six recording, 

plus one reference) was implanted on the skull above the right medial prefrontal cortex (AP 

3.5-5 mm, ML 0.5-1.5 mm).  Each tetrode was contained in a 30 ga hypodermic tube, with 

the tubes arranged in two parallel, adjacent rows. Tetrodes  were twisted bundles of 13 m di-

ameter polymide-coated nichrome wire (Kanthal, Palm Coast, FL); the drive allowed inde-

pendent adjustment of tetrode depth.  After dura retraction, the rows of cannulae were im-

planted parallel to the sagittal sinus, so that they targeted, respectively, the superficial and 

deep layers of the medial bank of the cortex.  A separate micro-drive containing three tetrodes 

was targeted to the ventral hippocampus (AP -5.0 mm ML 5.0 mm).  The tetrodes were elec-

trically connected in a single-electrode configuration (all channels shorted together) and used 

for local field potential (LFP) recordings.  For all LFP recordings, a screw implanted on the 

occipital bone above the cerebellum was used as a reference. The hippocampal tetrodes were 

lowered to the CA1 pyramidal layer; the depth was adjusted with the help of LFP signs (flat 

sharp waves, maximum amplitude of ripple oscillations)  After surgery, rats were allowed to 

recover for at least 2 weeks, while the tetrodes were gradually lowered to reach the Prelimbic 

area (PL; main drive), and the CA1 pyramidal layer (hippocampal micro-drive). During the 

experiment, they were gradually lowered to probe, in different sessions, different dorso-

ventral levels of the prelimbic cortex. 

Behavioral task Four rats performed an attentional set shift task on a Y-maze (see Sup-

plementary information for a description of the apparatus). Such extradimensional set shift 

tasks were shown to require the function of the medial prefrontal cortex (mPFC) in rats36. 

This parallels the involvement of the human prefrontal cortices in the Wisconsin Card Sorting 
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Task, which inspired the present experimental design. Each recording session consisted of a 

20-30 minutes sleep or rest epoch (PRE epoch) in which the rat remained undisturbed in a 

padded flowerpot placed on the central platform of the maze, followed by an AWAKE epoch, 

in which the rat performed the behavioral task described below for 20-40 minutes, and by a 

second sleep or rest epoch (POST epoch; same situation as in PRE) of 20-30 minutes.   

The first recording sessions corresponded to the first time rats encountered the behavioral 

task.  Rats started each trial in the same arm (the departure arm). One of the two other 

(choice) arms was illuminated at random (pseudo-random schedule: runs of more than 4 con-

secutive trials with the same illuminated arm were avoided, as were repeated bouts of im-

posed alternation between the two arms). After that, the central platform was lowered, allow-

ing the rat to access the choice arms.  

Only one of the choice arms was rewarded, according to one of 4 contingency rules. Two 

contingency rules were spatially guided (always go to the right arm, or to the left arm), the 

other two were cue guided (go to the illuminated arm, or to the dark arm).  The rule employed 

at any given moment in time was not signaled to the rat in any way, so that the animal had to 

learn the rule by trial and error. Once the rat reached a criterion of 10 consecutive correct tri-

als, or only one error out of 12 trials, the rule was changed with no further cue warning to the 

rat.  Rule changes were extra-dimensional, that is, from a spatially-guided rule to a cue-

guided rule, and vice versa.  Because of an operator mistake, an intradimensional shift was 

operated once.  Typically, the trials necessary for acquisition of one rule spanned more than 

one session, which implies that rule shifts occurred only in a fraction of the sessions.  

All four rats learned the Right and Light rules (at least 10 consecutive correct trials), whe-

reas only two learned the Left task, one learned the Dark task. 
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Electrophysiology Tetrode recordings were obtained from 6 tetrodes implanted in the Pre-

limbic and Infralimbic areas of the rat neocortex, hippocampal local field potentials were ob-

tained from two further tetrodes implanted in the CA1 pyramidal layer.  The tetrodes were 

gradually lowered in the cortical tissue during the course of the experiment. Because they 

were not moved after each recording session, it is possible that the same cells were recorded 

more than once, however, usually in different behavioral situations (rewarded strategy, per-

formance level, etc.). 

For electrophysiological recordings, signals from all electrodes were fed into a unit-gain 

headstage pre-amplifier (HS-54; Neuralynx, Bozeman, MT) and then, through a tether cable, 

to programmable amplifiers (Lynx-8, Neuralynx, Bozeman, MT). All signals were there am-

plified 2000x, Signals for single unit recordings were bandpass filtered between 600 and 

6000 Hz, signals for LFP recordings were filtered between 0.1 and 475 Hz (cortex) and 1 and 

475 Hz (hippocampus). Data were digitized and stored on hard disk by a Power 1401 (CED, 

Cambridge, UK) acquisition system, controlled by the Spike 2 software (also by CED).  Sin-

gle unit data were sampled at 25 kHz, and a 1.3 ms sample was timestamped and stored for 

all the channel in a tetrode whenever any of the 4 channels exceeded a threshold. Local field 

potentials were sampled and stored at a 2 kHz sampling rate.  

 

Learning: The first trial of a block of at least three consecutive correct ones and from 

which the performance until the end of the session was above 80% was defined as the learn-

ing point (i.e. the rule was acquired). 

. 

Histology At the end of the experiments, a small electrolytic lesion was made by passing a 

small cathodal DC current (20 μA, 10 s) through each recording tetrodes to mark the location 
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of its tip. The rats were then deeply anesthetized with pentobarbital. Intracardial perfusion 

with saline was followed by 10 % formalin saline. Histological sections were stained with 

cresyl violet. The electrode tracks were reconstructed, verifying that the recording sites were 

in the Prelimbic cortex, or in exceptional cases, in the dorsal end of the infralimbic cortex. 

Slow Wave Sleep Detection Slow Wave Sleep (SWS) was automatically detected. Power 

spectrograms of cortical and hippocampal LFPs were computed for each sleep sessions with 

bins of 1 seconds. Power in the cortical delta band (1-4 Hz), hippocampal theta (5-10 Hz), 

cortical spindles (10-20 Hz) and speed of head motion were clustered with a K-means algo-

rithm. Clusters corresponding to high values of delta and spindle powers, and to a low degree 

of head movement, were considered as corresponding to SWS. Successive SWS clusters oc-

curring within intervals of less than 1 minute were merged and finally, resulting time intervals 

of SWS smaller than 10s were dropped. 

Data Preprocessing.  For single unit activity discrimination, the first three principal com-

ponents of the energy-normalized waveforms were computed from spike waveforms for the 4 

tetrodes, generating a 12-dimensional vector describing each spike.  Those vectors were the 

input of the KlustaKwik46 clustering program. The resulting classification was manually re-

fined using the Klusters47 interface. 

For ripple detection, the hippocampal LFP from the CA1 pyramidal layer was bandpass 

filtered in the ripples  frequency range (100-300 Hz) to detect SPWRs. Then, the RMS signal 

was convolved with a 20 ms gaussian window. Only intervals of time for which the resulting 

envelope was 2 SD above  the raw filtered signal were kept. Ripples events were time 

stamped with the times of the deepest LFP troughs in these intervals if the latter were at or 

below 5 SD from the RMS signal baseline. Finally, discrimination of SPWRs were consi-

dered  reliable when at least 40 ripples were detected. In most sessions, at least 200  SPWRs 

were detected. 
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For spindles detection, cortical LFP signal were filtered between 10 and 20 Hz. The RMS 

was low-pass filtered with a gaussian window of 100 ms. Then time intervals 1 SD above  the 

filtered signal, which were closer than 100 ms apart were merged. Of the resulting intervals, 

only those at least 500 ms long were kept. Spindles troughs are the minima of the filtered sig-

nal during those intervals. For delta waves detection, cortical LFP signal was filtered between 

0.1 and 4 Hz. Delta waves peaks were the minima below 2 SD of the filtered signal.  

Computational methods. Reactivation strengths describe the instantaneous replay at each 

time, during rest sessions, of neural co-activation patterns that were characteristic of the 

AWAKE epoch. Briefly, the spike trains from all cells recorded in the AWAKE epoch were 

binned (in 100 ms bins) and z-transformed; then, principal component analysis (See SOI; 

Supplementary Fig. 3) was used to extract the characteristic activity patterns. PRE and POST 

epoch spike trains were similarly binned and transformed, and reactivation strengths for each 

component at any given time during the rest epoch were computed from the projection of the 

binned activity vector on each principal component, which measures the instantaneous reacti-

vation of that activity pattern.   By summing over all components and all times, one obtains a 

measure of similarity between the correlation matrices in the AWAKE period and in the PRE 

and POST periods analogous to previously published reactivation measures12,14.  High rank 

(which we will refer to as signal) principal components (associated to large eigenvalues), 

capturing fundamental processes , are defined as those associated to an eigenvalue greater 

than a threshold value.  As a threshold, we took the maximum theoretical value (λmax) for ei-

genvalues of principal components for random uncorrelated spike trains48.  (see SOI, Fig. 

1C).  The normalized eigenvalues, or encoding strengths Φ = λ/λmax, quantify the weight of 

each component during the AWAKE epoch in a uniform way across sessions.   

Conversely, in order to establish which moments during the task expressed the patterns 

that account for most of the sleep replay, principal components can be computed by the same 
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procedure from the activity in the POST SWS epoch (PRE SWS as a control), and 

reactivation strength can be computed as defined above from the AWAKE activity.     

An in-depth description and a schematic (Supplementary Fig. 3) of the mathematical 

method can be found in the Supplementary information 

Note: Supplementary information is available on the Nature Neuroscience website. 
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FIGURE LEGENDS 

. 

 

Figure 1 

Signal components and their behavioral correlates 

A: Signal components and behavioral correlates of their component mPFC cells: Peri-event 

time histograms of all cells from a recording session, aligned with trial initiation (vertical 

dashed line). Cells are sorted by their weight in the first signal component (scale above), 

showing that cells with similar weights tended to have similar behavioral correlates and cells 

with opposite signed large weights had complementary behavioral correlates.    B: AWAKE 

epoch correlation matrix eigenvalues from the same session as Figs. 2A and 3A.  Dotted line: 

the signal threshold, defined as the theoretical upper bound for eigenvalues in the random 

spike trains case (see SOI). Filled squares: eigenvalues associated with the six 

(suprathreshold) signal components.  Hollow squares: non-signal components. C Trial-by-

trial time scores of the first three principal components over the activity during the awake 

epoch, plotted as a function of the linearized position of the rat on the maze. The right panels 
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summarize the rat behavior: a beige background color indicated trials in which the rat reliably 

chose the right arm, the green background indicated trials in which the rat, to a large extent 

alternated between the two arms (with no other discriminable strategy).  The black dots in the 

first column (“Arm”) denote trials in which the rat chose the left arm.  The black dots in the 

second column (“Correct”) indicate rewarded trials. (Here the Light rule was imposed and 

neither strategy was successful.)  Note that PC scores are displayed instead of reactivation 

strength (see below) because in this case the sign is important, since large positive PC scores 

denote activation of those cells with positive PC weights (see fig. 2A) and large negative PC 

scores denote activation of those cells with negative PC weights.  

 

Figure 2 

Time course of memory replay  

A: Reactivation strength (black/white traces; right axis) of the signal component shown in 

Fig. 2A  during sleep PRE (left) and POST (right) epochs superimposed on the mPFC LFP 

spectrogram (left axis).  White traces: SWS periods; black trace: non SWS.  The spectrogram 

shows periods of elevated slow/delta and spindle oscillations often coinciding with SWS. 

Reactivation strengths show high peaks during POST epoch SWS, usually concomitant with 

periods of strong oscillations. B: Bar plot of the epoch-wide average reactivation strengths, 

grouped by their encoding strength (normalized eigenvalue), Φ = λ/λmax, for the PRE and 

POST epochs (data from 63 sessions and 1692 recorded cells; error bar: S.E.M.). C: Average 

difference in reactivation strength between PRE and POST, for PCs grouped by their 

encoding strengths (error bars: SD). D: Incidence of reactivation strengths during rest periods 

(left, PRE; right, POST) for the same session as Figs. 2A and 3A. Black filled zones: during 

SWS; gray trace: non SWS.  The POST SWS histogram has a heavy tail, reflecting strong 

transient reactivation events.  E: Average difference between POST and PRE of skewness of 
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reactivation strength incidence histogram (3C) for components grouped by their encoding 

strength, showing that  POST epoch histograms were generally more skewed than the PRE.  

Error bars: SEM. F: Cumulative contribution to the difference between total reactivation 

strength in POST and PRE for signal components (black; grouped by encoding strength) and 

for non-signal components (gray). Red diamonds: 99th percentile of reactivation strength 

distribution (in POST). About half of the  reactivation was accounted for by reactivation 

strengths over the 99th percentile.  

 

Figure 3   

Memory replay, SPWRs and cell activity in a rest session  

A: Reactivation strength for one signal component. B: Occurrences of SPWRs. C: Averaged 

firing rate of the cells that contributed the highest weights to the signal component. Note that 

peaks correspond to events in A and B. D: Average firing rate for all cells recorded in this 

session.  

 

Figure 4 

Example of reactivation strength peaks coinciding with hippocampal SPWR. A: Reactivation 

strength (white/gray traces; right axis) of the signal component superimposed on the mPFC 

LFP spectrogram (left axis). This is expanded from the zone in Figure 3A (POST) delimited 

by the dashed line. Black dashed line: normalized population firing rate.  B: The bandpass 

filtered hippocampal LFP (100-300 Hz) shows ripple events (red asterisks); signal is 

normalised by its SD.  C: bandpass filtered (0-5 Hz) PFC LFP.  Delta waves are denoted by 

green asterisks. D: Raster plot of spike trains from the PFC cells sorted by principal 

component weight magnitude (as in Fig. 1A). E: Expansion of the 300 ms surrounding the 

peak indicated by an arrow in A. Red rasters represent spikes occurring in the bin of peak 

reactivation strength. The example also show two delta waves in the cortical LFP, with pre-
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ceding and following increases in population activity (or UP states41). Note that, in the ab-

sence of SPWRs only a smaller reactivation peak was obtained (see Supplementary Fig. 7 for 

statistical analysis of reactivation/slow oscillations interactions).  

 

Figure 5 

A: Average reactivation strength for non-signal (Φ < 1) and signal components (grouped by 

encoding strength) during PRE and POST SWS for SPWR bins (left) and non-SPWR bins 

(right); error bars: S.E.M. B: Event Triggered Average (ETA) of reactivation strength 

centered on hippocampal SPWR for all analyzed signal components during PRE SWS (blue) 

and POST SWS (red) and for non-signal components (respectively black and gray), showing 

an increase around SPWRs during POST for signal components only; error bars: S.E.M; Grey 

bars indicate significantly  higher reactivation strengths (p < 0.001, t-test) for signal 

components during POST SWS with respect to baseline (defined as the average reactivation 

strength from -4 s to -2 s and from 2 s to 4 s from delta wave peak). C:  Expanded view of the 

central portion of C for POST SWS (time bins of 20 ms) with increased reactivation peak 40 

ms after SPWRs.  D:  ETA of spiking probability density of multi-unit activity relative to 

SPWR occurrences and averaged over all recording sessions. grey: PRE SWS; black: POST 

SWS.  No difference was observed between PRE and POST. E Autocorrelogram for POST 

SWS reactivation strengths (grey) and SPWR occurrences (black), showing similar decay 

time constants.  

 

Figure 6. Reactivation strength relative to mPFC LFP events. 

A: Cortical delta wave peaks. Top: ETA of  signal components‟ reactivation strength centered 

on cortical delta wave peaks, for PRE (grey) and POST SWS (black). Error bars: S.E.M.; 

grey bars indicate significantly  higher reactivation strengths (p < 0.001, t-test) as defined in 

Fig. 5Bf. Reactivation had a significant peak preceding the delta wave.  Middle: Cross-
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correlogram of SPWR occurrences relative to delta peaks. SPWRs tended to occur more 

frequently just before delta peaks, similarly to reactivation. Bottom: Spiking probability 

density of multi-unit activity relative to delta waves and averaged over all recording sessions. 

grey: PRE SWS; black: POST SWS. Prefrontal cells exhibited a strong decrease in firing at 

the time of the delta peak, preceded and followed by activity increases. B: Same plot as in A 

but centered on DOWN to UP transition (as defined by population average firing rate). 

Results are comparable with A except for spiking probability which only shows a dramatic 

deflection during the DOWN state . C: Same plots as in A but centered on spindle troughs. 

Top: Reactivation strength was significantly higher for over 1 s before spindles. Middle:, 

Hippocampal SPWR ETA centered on spindles showed a similar profile Bottom: Spike 

activity increased at the time of spindles. D: Comparison between time relationship of 

reactivation strength and SPWR occurrence relative to the three cortical events presented in 

A-C showing a high correlation in each cases. 

 

 

Figure 7 

Replayed activity during SPWRs is correlated to rule acquisition 

A: The activation strength of  principal components computed from POST SPWR activity is 

displayed in color peri-event rasters, for two examples of sessions with rule learning (in 

different rats). The maze was linearized and divided into 25 equal bins. Rewarded trials are 

marked with white dots at right.  The arrows indicate the trial where learning is considered to 

be achieved. B: Incidences of PCs computed from PRE or POST SPWRs or inter-SPWR 

epochs during sessions with learning (n = 10, 4 rats). (black bar is after learning occurred in 

the session, grey bars are before).  Significantly more POST  SPWR  activity patterns were 

positively correlated with activity after learning than with activity before learning (p < 0.05, 
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two-ways ANOVA followed by t-test). No such difference was observed for PRE SPWR 

patterns or for inter-SPWR patterns, or when a comparison was made between the first and 

second half of non-learning sessions  or when the rat switched between two erroneous, 

unrewarded strategies. Error bars: 95% confidence interval defined for multinomial 

distributions (see Methods). C: Average spatial distribution of all fifteen principal 

components computed from POST SPWR which were significantly higher on average after 

learning (black trace) than before (grey trace). The grey bar (above) marks significantly 

different bins (p < 0.05, t-test, n=15). Dashed lines displays SEM. D: Factorial analysis 

scores of data from C exhibits two profiles with peaks at  the goal arms and the central choice 

point respectively (see also supplementary information).  
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SUPPLEMENTARY DISCUSSION 

Memory replay and network spikes. 

The transient co-activations which make up most of replay  resemble network spikes, 

transient activations of groups of cells, which have been described in mathematical models of 

recurrent neural networks, in which dynamics is governed by synaptic facilitation and depres-

sion38. These events are an intrinsic feature of network dynamics in several neural systems, 

e.g. organotypic cultures49 and in neocortical slices50.  From a theoretical viewpoint, network 

spikes may be triggered by small fluctuations in activity, activating a subset of cells encoded 

in the synaptic matrix, then terminating because of synaptic depression. Network spike firing 

may also, through synaptic facilitation, increase the likelihood of a successive activation of 

the same group of cells38 in a self-sustained, repetitive process, favoring synaptic plasticity 

and a more permanent encoding of that  cell assembly in the connectivity matrix. Thus, by 

themselves, network spikes do not denote learning or information processing. However, they 

provide a mechanism for the expression of learning in neural activities: patterns of activity 

may be “tagged”, for example by synaptic facilitation, or long-term synaptic plasticity, and be 

more likely to re-emerge later under the form of a network spike. Moreover, several groups of 

cells likely to give rise to network spikes may co-exist, and activate at different moments dur-

ing sleep. Conceivably, the sleep activity of the mPFC could be largely composed of network 

spikes, each involving a different cell group. Of these groups, our technique can detect but a 

few among those that are related to the immediately preceding experience.  Another interest-

ing point is that different reactivating cell groups are unlikely to be active at the same time, as 

shown by the cross-correlograms for reactivation strengths relative to different PCs (Supple-

mentary Figure 10).  This suggests that some sort of pattern separation mechanism (possibly 

through feedback inhibition), takes place specifically during sleep.  This result does not con-

tradict studies16,17 
demonstrating the replay of neuronal ensemble activation in sequential or-
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der, spanning up to several hundreds of ms: our technique will search for the patterns of co-

activation accounting for the largest fraction of the activity variance in the AWAKE epoch. 

With respect to sequences, two situations may arise. First the sequence is shorter than the bin 

size we used (100 ms), then it would be completely contained in one of our co-activation pat-

terns.  For longer sequences, or in any case sequences that are cut in two at the bin bounda-

ries, nothing ensures that all parts of the sequence will be detected as co-activation patterns 

by our analysis, so that the sequential character of replay can be analyzed.  In general this 

will not be the case, because here PCs are computed by AWAKE analysis without reference 

to precise, repetitive behavioral templates, as it is  the case for analyses of sequential activa-

tion of ensembles. Thus, the present method and sequence-based methods highlight comple-

mentary aspects of sleep replay.  


