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A systematic analysis of matched layers is undertaken with special attention to better understanding the remark-
able method of Bérenger. We prove that the Bérenger and closely related layers define well-posed transmission
problem in great generality, and are perfectly matched when there is only one nonconstant absorption coefficient.
The methods include energy methods and the Fourier-Laplace transform. Amplifying and nonamplifying layers
are identified by a geometric optics computation. It is proved that the loss of derivative associated with the
Bérenger method does not occur for elliptic generators. The proof uses the energy method with pseudodifferential
multiplier. We construct by an extrapolation argument an alternative matched layer method which preserves the
strong hyperbolicity of the original problem and though not perfectly matched has leading reflection coefficient
equal to zero at all angles of incidence. Open problems are indicated throughout.

Keywords: PML, WKB, hyperbolic operators, weak well-posedness, geometric optics, extrapolation,reflection,
amplification.
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Dedication

En écrivant ce papier, les auteurs ont toujours présente a l'esprit leur amitié pour Michelle Schatzman.
Comment la garder vivante sinon en manifestant chaque jour la curiosité, l'exigence scientifique et le
plaisir du partage qui étaient les siens.

1. Introduction

This paper analyses absorbing layer methods for calculating approximations to the solutions, U, of first
order systems of hyperbolic partial differential equations,
d
L(0y,0:)U = U + > AU = F, (ta) € R Ut,z) eCV. (1.1)
=1
Approximate values are sought on a finite domain. The source term F' and/or initial condition is compactly
supported in the domain. The absorbing layer strategy surrounds the domain with a layer of finite
thickness intended to be absorbing and weakly reflective. We lay foundations sufficient to give a good (but
not entirely complete) understanding of the remarkable method of Bérenger, and its close relatives, which

*Research partially supported by the National Science Foundation under grant NSF DMS 0405899.
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have no reflection at all from a planar interface even in the presence of a discontinuous coefficient. We
propose a new extrapolation method, which we call the Harmoniously Matched Layer. It is is reflectionless
to leading order and inherits the L? estimates of symmetric hyperbolic systems. Numerical tests confirm
that it is competitive with the Bérenger algorithms for Maxwell’s equations.

The simplest case is to consider in one dimension waves in x; < 0 computed with an absorbing layer
in 1 > 0. In our first example it is more convenient to consider inhomogeneous initial data and zero
right hand side. The simplest absorbing layers add a lower order term o1,,5~9 C U where 1 denotes the
characteristic function, for example,

10 10
atU+(0 )81U + 0'111>0( b)U = 0.

To get a feeling for the reflections, consider the solution U (¢, x1) so that,
for ¢t <0, U= (6(xz1—1),0).
Then
Uy =6(x1 —t)e 7" (8,5 — 01+ boly >0 )UQ = —0l,>0cUi.

If ¢ # 0, then V, ,,Us is discontinuous across the ray {1 = —t}. From the perspective of a numerical
method, such a reflected singularity is undesirable.

The reflected singularity from a discontinuous lower order term is weaker than the singularity of the
incident wave. For the equation

8tU + A181U + 0'111>()CU =0

if C diagonal in a basis diagonalising Ay, the reflections are avoided. The ease of eliminating reflections for
this problem with d = 1 is deceptive. No such simple remedy exists in dimensions d > 1. For symmetric
hyperbolic systems A; = A7, it is wise to choose C' = C* > 0 so that the absorption term is dissipative
in the L%(R?) norm.

Consider next the wave equation with friction 0yv — 011v + 20 1,50 O;v = 0 written in characteristic
coordinates (Uy, Us) = (0:v — d1v, Opv + 01v) with absorption B = oC"

10

0—

(%U+< 11

11
>81U+0'111>00U0 C( )
The absorption matrix C is symmetric and nonnegative but does not commute with A;. It produces
unacceptably strong reflections. The absorption from Israeli and Orszag [E], Opv—011v+o(Ow+d1v) =0,
absorbs only rightward waves and corresponds to

- ((1) 8) i (Ay),

introducing the notation w1 (A;) for the spectral projector on the eigenspace corresponding to strictly
positive eigenvalues of A;. The general nonnegative symmetric choice commuting with A; is a positive
multiple of

C = m4(4A1) +vn_(Ar), v>0. (1.2)

We call these smart layers. They dissipate the L? norm. As observed by Israel and Orsag, the numerical
performance of the smart layers is not as good as one would hope. One reduces reflections by choosing
o(x) > 0 vanishing to order k > 0 at the origin. That reduces the rate of absorption and thereby increases
the width of the layer required. The leading reflection by such smart layers of incoming wave packets
of amplitude O(1) and wavelength ¢ is O(¥*1). The leading reflection is linear in o. In section [, we
introduce the method of Harmoniously Matched Layers which remove the leading order reflections (at all
angles of incidence) by an extrapolation.
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Open problem. Repeated extrapolation further reduces the order of reflection. It is easy to program
and it is possible that an optimization could pay dividends.

Elaborate absorbing layer strategies, like Bérenger’s introduce operators related to but often more
complicated than the original operator L. The operators in the absorbing layer and in the domain of
interest may not be the same. For the case of a layer in {z; > 0}, absorbing layer algorithms solve a
transmission problem for an unknown (V, W) where V is a CV valued function on z; < 0 and W is a
function on z; > 0. The equations in x; > 0 are chosen to be absorbing and the transmission problem
weakly reflective. The ingenious innovation of Bérenger was to realize that the operator R in the layer
can differ substantially from L. He increased the number of unknown functions in the layer. So W is a
CM valued with M > N.

The pair (V, W) is determined by a well posed transmission problem,

LV = F on RY .= {(t,z): z; <0} RW =0 on RY, (1.3)
with the homogeneous transmission condition
(V,W) € N on {z; =0} (1.4)

Here N C CN x CM is a linear subspace.ﬁ The choice of the hyperbolic operator R and transmission
condition N is made with three goals,

e The transmission problem is well posed, and not hard to approximate numerically.
e Waves from the left are at most weakly reflected at x; = 0.
e Waves moving rightward decay rapidly in 21 > 0 so that the layer can be chosen thin.

Definition 1.1. A well posed transmission problem is perfectly matched when for all F' supported in

x1 < 0, t >0, the solution supported in ¢t > 0 satisfies V =U 21<0"

We prove that Bérenger’s method with one discontinuous absorption o is perfect in this sense. In
practice one does not absorb in only one direction and the computational domain is rectangular.

Open problem. We know of no proof of perfection of any method with absorptions in more than one
direction.

The strategy of Bérenger is quite ingenious. For an artificial boundary in two dimensions at {21 =}
and domain of interest {7 < r} it consists of two steps. The first is a doubling of the system and
the second is insertion of an absorption term in {z; > r}. The doubled system involves the unknown
U:= (U, U?) e CN x CN. When F = 0, the doubled equation without dissipation is

2
oU7 + > A0;(UN+U?) =0,  j=1,2.

J=1

The system with damping in x; changes the j = 1 equation to

2
U + ZAjaj(Ul +U?) + o(z))U" = 0, suppo C {z; >7}.
j=1

Then U =3, U7 satisfies L(O)U = 0 in x1 < r. In practice it is the restriction of U to z; < r that is
of interest. There are three distinct ways to view this. One can think of the unknowns as U defined in
x1 <7 and U in z; > r with the transmission condition that A;U = A1 (U +U?) on z1 = r. One is
given initial values of U and takes initial values of U vanishing. This is the most natural choice and the
one presented by Bérenger.

2Transmission conditions which involve derivatives can also be treated. The algorithms of Bérenger and our HML do not
require that generality.
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From the computational point of view it is simpler to have the same unknowns throughout. The
simplification is greater when one passes from the half space case to a computational domain equal to a
rectangular domain in R%. One introduces U everywhere with transmission condition [A; (U + U?2)] = 0
where [#] denotes the jump at 23 = r. The transmission condition is then equivalent to the validity of
the differential equation satisfied by U in all of R?. When one uses U everywhere, the initial values of U
are taken equal to zero outside the computational domain. The initial values are constrained to satisfy
Uu=>5% j UJ within the computational domain. The choice is otherwise arbitrary. For the case of the
doubling above the choice U7 (0,z) = U(0,x)/2 for j = 1,2 is common.

If the domain of interest is |21]| < 7 one would choose o > 0 on |z1| > r and vanishing for |z;| < r.
The transmission condition is [A1(U! + U?] = 0 with the jump at x; = r and also at 21 = —7.

In a rectangular geometry in R? introduce U= (UL, ...,U%), where U' € CN for 1 <1 < d. Then U
with values in CN? is required to satisfy (in the case F' = 0),

d
(L0, 02) U)y == 0U' + 40> U7) + oy(x)U' =0, 1<I<d. (1.5)

j=1

Each absorption coefficient o;(z;) > 0 depends on only one variable. It is strictly positive between the
inside rectangle and a larger outside rectangle. In the layer between the rectangles the solution is expected
to decay. If U solves ([.J), then U = Z;l:l U7 solves ([L.1)) on the set {z : oy(x;) =0 for 1 <1< d}
including the inner rectangle. In the case considered by Bérenger the o were discontinuous and the
equations (E) are equivalent to transmission problems where on the discontinuity surface of o; one
imposes the transmission condition of continuity of A; ", U

Bérenger introduced this method for Maxwell’s equations with o piecewise constant. Using a computa-
tion which resembles plane wave analysis of reflections for problems without lower order terms, Bérenger
argued that the layers were perfectly matched for all wave numbers and all angles of incidence. Using
variants of the same approach other closely related PML were constructed afterward. Performance is
observed to be enhanced using ¢ which are not discontinuous. Twice differentiable cubic functions are
the most common. The Bérenger method is a very good method for Maxwell’s equations.

Plane wave analysis is sufficient to study reflection and transmission for linear constant coefficient
operators without lower order terms. Problems with lower order terms require other tools as it is no
longer true that the plane waves generate all solutions. The first level of generalization is to use the
Fourier-Laplace transform for problems where an absorbing layer occupies 1 > 0 and both L and R
have constant coefficients. Using that method Hersh [@] found necessary and sufficient conditions for
(weak) well posedness of transmission problems. We recall those ideas in § and verify in § that
the condition is satisfied for the Bérenger splitting of general systems with one discontinuous absorption
coefficient. To our knowledge this is the first proof that the Bérenger split transmission problem with
discontinuous o(z1) is well posed.

Inspired by the work of Appelo, Hagstrom, and Kreiss, in § we give necessary and sufficient
conditions for perfection at a planar interface. In §j we verity that the condition is satisfied for the
Bérenger splitting, and for several variants in §E

In §- we prove that in the case of Maxwell’s equations (and not in general) the perfection criterion

follows by analytic continuation from the plane wave identities established by Bérenger.

In §Q we prove using the Fourier-Laplace method that Bérenger’s method with one coefficient
o1(z1) € Lip(R,,) is well posed and perfectly matched. In our use of the Fourier-Laplace method,
including this one, a central role is played by the Seidenberg-Tarski Theorem estimating the asymptotic
behavior of functions defined by real polynomial equations and inequalities. The Fourier-Laplace method
is limited to coefficients that depend only on x;.

Our second main technique is the energy method. In §@ we show that if (§1, ..., &) = 0 does not
meet the characteristic variety of L then the Bérenger method is well posed without loss of derivatives.
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This applies in particular to linearized elasticity and suggests that in some ways the Bérenger method is
better adapted to that situation than the Maxwell equations for which it was intended. In §@ we give a
nontrivial extension of the method of Métral and Vacus to show that Bérenger’s method for the Maxwell
equations in dimension d = 2 (resp. d = 3) is well posed provided that o;(x;) is Lip(R.;) (vesp. o’(z;)
is Lip(Ry,)). The method introduces a norm that is the sum of L?(R{ ) norms of suitable differential
operators P, (D) applied to U. It has the property that the norm at time ¢; is estimated in terms of the
norm at time to. If one introduces the vector of unknowns P, (D)U this shows that the Bérenger prob-
lem becomes strongly well posed without loss of derivatives. Such transformations are typical of weakly
well posed problems. A general result of this type is the Dominicks’ proof in Taylor, Pseudodifferential
Operators.

Our third method of analysis is to study the behavior of short wavelength asymptotic solutions. For
such solutions we examine in §E the decay in the absorbing layers, and reflections at discontinuities of
oj(x;) or its derivatives when smoother transitions are used. For problems other than Maxwell, Hu [@]
and Becache, Fauqueux , and Joly [E] have already shown that the supposedly absorbing layers may in
fact lead to growth. The study of short wavelength solutions in the layer yields precise and clear criteria,
also valid for variable coefficients, explaining the phenomenon.

The analysis of the reflection of short wavelength wave packets at the interface with the layer also leads
us to propose in §ﬂ, a new absorbing layer strategy which we call Harmoniously Matched Layers. The
method starts with a smart layer for a symmetric hyperbolic system. Then for wavelength ¢ asymptotic
solutions of amplitude O(1) and discontinuous o, the leading order reflected wave at nonnormal incidence
typically has amplitude proportional to oe. Therefore an extrapolation using computations with two val-
ues of o eleminates the reflections proportional to o. This yields a method with leading order reflection
O(g?) at all angles of incidence. The resulting method inherit the simple L? estimates of the symmetric
systems. More generally if the first discontinuous derivative of the absorption coefficients is the k' then
the reflection is O([D¥Fo)e**+1) and the same extrapolation removes the leading order reflections. In §f.4
we investigate several implementations of this idea and show that the method with cubic o is competitive
with that of Bérenger with the same o. On short wavelengths or random data it performs better than
the Bérenger method. On long wavelengths Bérenger performs better.

Though we provide satisfactory answers to a wide range of questions about absorbing layers, there is
a notable gap.

Open problem. For the original strategy of Bérenger with discontinuous absorptions in more than one
direction we do not know if the resulting problem is well posed.

In practice discontinuous ¢ have been abandoned, but it is striking that this problem remains open.
The problem of perfection cannot even be addressed until well posedness is established.

2. Well-posed first order Cauchy problems
2.1. Basic definitions
Consider a first order system of partial differential equations in C,

d
L(x,0,0,)U = U + Y AU + Bx)U = 0. (2.1)

=1

The principal part of £

d
L1(00,0,) = 0 + Y Adr

=1
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has constant matrix coefficients A;.

Definition 2.1. The characteristic variety Char(£) C C'*\ {0} of £ is the set of (7,&) such that
det £1(7,€) = 0.

Definition 2.2. The smooth variety hypothesis is satisfied at (z,§) € Char(L) if there is a conic
neighborhood € of £ € R?\ {0} and a C* function £ — 7(£) on €2 so that on a neighbourhood of (z, £),
the characteristic variety has equation 7 = 7(§). At such a point the associated group velocity is defined
to be v i= —=Ve7(§).

Remark 2.1. This hypothesis holds if an only if for £ near £ the spectrum of £(0,£) near —z consists
of a single point with multiplicity independent of &.

The Cauchy problem for £ is to find a solution U defined on [0, co[xR? satisfying (.I]) with prescribed
initial data U(0, -).

Definition 2.3. The Cauchy problem for £ is weakly well-posed if there exists ¢ > 0, K > 0, a € R
such that for any initial values in H9(R?), it has a unique solution U € C°([0, +-o00[; L2(R%)) so that

Vt>0,  [U®)L2@ey < Ke*' U0, )] gagmay- (2.2)
When the conclusion holds with ¢ = 0, the Cauchy problem is called strongly well posed.
Theorem 2.1.

(i) The Cauchy problem for Ly is weakly well-posed if and only if for any & € RY, the eigenvalues of
£1(0,€) are real.

(ii) The Cauchy problem for Ly is strongly well-posed if and only if for any ¢ € Re, the eigenvalues
of £1(0,&) are real and L£1(0,€) is uniformly diagonalisable, i.e. there exists C > 0 so that for all
€ € RY, there is an invertible S(&) satisfying,

S(€)71L1(0,€) S(€) = diagonal, S, [STHE)] € L=(RY).

(111) If B has constant coefficients, then the Cauchy problem for L is weakly well-posed if and only if there
existes M > 0 such that for any € € R, det L(7,€) =0 = [Im7| < M.

Remark 2.2.

1. The algebraic conditions in and express weak hyperbolicity, in the sense of Garding. The
necessity of uniform diagonalisability in expressing strong hyperbolicity is due to Kreiss [f], [@]

2. An application of Grénwall’s inequality shows that if £1(0,&) satisfies the condition of Theorem @,
(i1), then for all B(z) € L>=(R?; Hom(C")), the Cauchy problem for £ is strongly well posed.

3. By property , if £ is strongly hyperbolic, then every eigenvalue —7 of £;(0, §) is semi-simple. Equiv-
alently, for any (7,&) € Char(L) the eigenvalue 0 of £;(7,&) is semi-simple, i.e. its geometric multiplicity
is equal to its algebraic multiplicity. It is equivalent to saying that Ker £1(, &) = Ker (£1(7,&))?, or that
CN =Ker £,(r,€) @ Range £ (1, £).

2.2. Characteristic variety and projectors for Bérenger’s L

To study the Cauchy problem for Bérenger’s split operators L one starts with a study of the characteristic
variety. The coefficients of the Bérenger operator L are the dN x dN matrices,

: : O'l(xl)IdN... 0
A=A ... ... ... A, B(x) = . (23)
: : 0 Ud(wd)IdN
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The principal symbol of Lis

&GAL+TIN 14 §14:
~ §2A2 §2A2 +7IN ... 52142
Ly(1,€) = : : :
€dAd fdAd R gdAd + 7N

Theorem 2.2.

(i) The characteristic polynomial OfZ 18

det Ly(,€) = 7N~V det L(r, ). (2.4)
The polynomial associated to the full symbol including the absorption is
d
det L(r,€) = detL(H(TJri), al[e+op). &[[r+o), .. &a[r+ oj)). (2.5)
j=1 J#1 J#2 j#d

If (1,€) € Char L with T # 0, the following properties hold
(i) The mapping

d
S: o= (D1, ,0g) > — Y D
j=1

is a linear bijection from Ker Zl(T,f) onto Ker Ly (7,€). Its inverse is given by
> (5—1A1<I>, . ,g—dAdq)).
T T

(iii) The kernel of the adjoint El(T, fl* is equal to the set of wectors d = (®,---, D) such that

O ¢ KerLi(7,&)*. The range of L1(7,§) is equal to the set of vectors U = (\Ill,~~~ ,\I/d) such
that (320_, U;,®) =0 for all ® € Ker Ly (7,£)*.

(iv) If moreover the eigenvalue 0 of Li(T,&) with T # 0 is semi-simple, the eigenvalue 0 of El(T,f) is
semi-simple. Equivalently,

Keril(T,g) @ Rangeil(T,g) = C¥,

Proof. (i) Adding the sum of the other rows to the first row in the determinant of Ly (7, ¢) yields,

L(7,¢) L(7,¢)
— 62142 €2A2 +TIdN 62142
det Ll (7-7 6) = . . .
fdAd 6dAd+TIdN
Substracting the first column from the others yields,
L(r,&) 0 ... 0
~ §2A2 T IdN e 0
det Ll (Ta 6) = . . .
fdAd 0 e TIdN
The first result follows. For the second write,
§1 A1+ (T +o01)IN §141 §14:

~ &A §2As + (T +o02)ldy ... & A
det L(7,§) = . _ .

EqAq fdAd—l—(T—l—O’d)IdN
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For each i divide the i*® row by 7 + o; to find,

d
= = &1 §a
det L(, =|| AN det Ly (1, .
e j:1(7+0]) o T+& T+§d)
By formula (£.4) this implies
~ ‘ ¢ 3
det L(7,&) = ||T+J-NdetL1, ! AR d ,
(7.9) j:l( 3) ( T+& T+€d)

which is equivalent to (.3).

(74) Suppose that 0 # P = (P, ,Pq) € Ker El(T,f). Then, for any I,

d
T+ A Y P =0, (2.6)

J=1

Add to find

Li(,6) Y ®; = 0.
j=1
Therefore the map ® — — >_; ®; maps Ker Zl(T, €) to Ker Ly(1,€).
If Z;l:l ®; = 0, equation (P.§) implies that all the ®; vanish since 7 # 0. Therefore the mapping is
injective.
Let ® € Ker L;1(0,&). Define

o = %Ajcb. (2.7)

This defines an element ® = (Py,-+,Py) in Ker El((), €) with S® = ®, so the mapping is surjective with
inverse given by (R.7).

(iii) Since Ly (,£)*® = (Ly(1,€)*®,..., L1(1,€)*®) = 0 it follows that the set of ® is included in the
kernel. Since the matrices are N x N, one has by the rank theorem

dim Ker Ly(7,§) + dim RangeLi(7,§) = N = dim Ker L(7,&) 4+ dim Range Lj(7,¢).

Therefore Ker Ly (7,€) and Ker L (7,£)* have the same dimension. The set of ® has dimension equal
to this common dimension which by (i7) is equal to the dimension of Ker Li(7,&) proving that they

exhaust the kernel. The last property follows directly from the fact that Range L (7, &) is the orthogonal
of Ker Ly (1, £)*.

(iv) Tt suffices to show that the intersection of these spaces consists of the zero vector. Equivalently, it
suffices to show that there is no ® # 0 in Ker L; (7, &) such that

d
VU € Ker Li(r,)*, (O ‘E—JAJ@, T)=0.
T
j=1

The quantity above is equal to —(®, ¥), and ® would belong to (Ker Ly (7, £)*)* = Range Ly (7, £). Since
7 # 0 and Ker L1 (7, &) NRange L1 (7, &) = 0, this would imply that ® = 0, leading to a contradiction. O

Denote by IIL(7,€) (resp. II;(7,£)) the spectral projector onto the kernel of Ly (7,§) (resp. El(T, £))
along its range. For L it is given by
1

HL(Tv 5) = 2_7”

]{_ (,ZI—L1(7',§))71 dz
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with p small. It is also characterized by,

HL(77§)2 = HL(Ta 6)7 Ll(Ta €)HL(7-7§) = 07 HL(Ta €)L1(Ta €) =0. (28)
Proposition 2.1. For all £ € RY, 7 # 0, the matriz 5 (7,&) is given by,
g .. S (g
T T
Hz(r,§) = - : :
S ) S (g

Proof. Calling the matrix on the right M(7,£). The properties of the projectors associated to L yield
formulas for the (i, j) block of the products

&iA; &A;

(M (7, L1(,8))ij = — — Ly = 0, (La(7, )M (7,€))iy = — — L1llLL1 =0, and,
§iAi §iA;
(M (1, §)M(7,§))i; = = Hp(Ly — 7D = — = 7 = (M(7,8))i; -
These identities prove that M(7,&) is the projector on the kernel of Zl(T, §). O

Remark 2.3.

1. The characteristic varieties of L and L are identical in 7 # 0.

2. In particular, the smooth variety hypothesis is satisfied at (,&) with 7 # 0 for one if and only if it
holds for both, and the varieties have the same equations and the same group velocities.

3. When the smooth variety hypothesis is satisfied the spectral projection I1;(7(£),£) is analytic in &,
hence of constant rank. It follows that 0 is a semi-simple eigenvalue of L(7(€), €) on a conic neighborhood
of &.

If the eigenvalue 0 of Li(7,£) is semi-simple, the kernel and the range of Lq(7,€) are complemen-
tary subspaces as mentioned in Remark E 3., and the partial inverse Q(7,&) of Li(7,&) is uniquely
determined by

QL(Tvg)HL(Tag) =0, QL(TaE)Ll(TaE) = I—HL(T,f). (2-9)

The partial inverse Q; (7, §) is defined in the same way from Li(r,6).

2.3. The Cauchy problem for Bérenger’s split operators
Part (i) of Theorem P.9 proves the following.

Corollary 2.1. If the Cauchy problem for L is weakly well-posed, then so is the Cauchy problem for the
principal part Ly.

An important observation is that though the Cauchy problem for L is at least weakly well posed,
the root 7 = 0 is for all £ a multiple root. When there are such multiple roots it is possible that order
zero perturbations of L; may lead to ill posed Cauchy problems. The next example shows that this
phenomenon occurs for the Bérenger split operators with constant absorption o;. The Theorem after
the example shows that when 7 = 0 is a root of constant multiplicity of det L1 (7,&) = 0, the constant
coefficient Bérenger operators have well posed Cauchy problems. Cases where the problem are strongly
well posed are identified. In the latter cases, arbitrary bounded zero order perturbations do not destroy
the strong well-posedness.

Example 2.1.
1. For L:= 0y + 01 + 0o, det L(1,§) = 7+ & + &. Therefore 7 = 0 is a root if and only if & + & = 0.
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The doubled system with absorption o =1 in x is

~ 11 00 10
Eeeae (Do e (Da e (10). o

THEHD €
¢ T-¢

The roots of det L(r,&,—£)) = 0 are 7 = (—1 + /T + 4€)/2. Taking £ — —oc shows that the Cauchy
problem for L is not weakly well-posed by Theorem @ m

2. More generally if 7+ &; + & is a factor of det L1 (7, £) then for o # 0 the operator L is not even weakly
hyperbolic. In this case (@) implies that 72 + 7 — ¢ is a factor of det L(T, £, =€).

3. This generalizes to linear hyperbolic factors in arbitrary dimension.

det L(r, &, —€)) <kt< ) = (T+E+ )T -6+ = P +7-¢.

Our main tool is a special case of Theorem A.2.5 in Hormander vol. 11 [L3].

Theorem 2.3 (Seidenberg-Tarski Theorem). If Q(p, (), R(p,(), and S(p,C) are polynomials with
real coefficients in the n+ 1 real variables (p,(1,...,(,) and the sets

= {¢ : R(p,¢) =0, S(p,¢) <0}

1s nonempty when p is sufficiently large. Define

w(p) == sup  Q(p,().

CEM(p)

Then either u(p) = +oo for p large, or, there is an a € Q and A # 0 so that
plp) = Ap*(1+o(1)), p — oo,
Theorem 2.4. Suppose that 7 =0 is an isolated root of constant multiplicity m of det L1(7,&) = 0.

(i) If the Cauchy problem f0~r Ly is strongly well-posed, then for arbitrary constant absorptions o; € C
the Cauchy problem for L1 + B is weakly well-posed.

(i) If the Cauchy problem for Ly is strongly well-posed, and if there is a & # 0 such that Ker L(0,&) #
gﬂ Ker A;, then L1(0 §) is not diagonalizable. Therefore the Cauchy problem for L is not strongly

well-posed.
(iii) If the Cauchy problem for L is strongly well-posed and for all £, Ker L1(0,&) = Er;éoKer Aj, then

the Cauchy problem for L is strongly well-posed. This condition holds if L1(0,0,) is elliptic, that is
det L1(0,&) # 0 for all real &.

Remark 2.4.

1. Part (4) is a generalisation of results in [[L§] and Theorem 1 in [E] In the latter paper, Bécache et. al.
treated the case N = 2 assuming that the nonzero eigenvalues of L1(0,&) are of multiplicity one. They
conjectured that the result was true more generally. Like them we treat the roots near zero differently
from those that are far from zero. The treatment of each of these cases is different from theirs. The
tricky part is the roots near zero. We replace their use of Puiseux series by the related Seidenberg-Tarski
Theorem @

2. Arbarbanel and Gottlieb [[]] proved (i7) in the special case of Maxwell’s equations. The general argument
below is simpler and yields a necessary and sufficient condition for loss of derivatives when the eigenvalue
0 of L(0,&) is of constant multiplicity.

3. Part (iii) is new, extending a result in the thesis of S. Petit-Bergez [p4].

Proof.
(4)
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For ¢ € R4\ 0, define for p € R,
E(p) = max{lm (1) : det Z(T,f) =0, ¢(eR? |¢? = pQ}.

Apply the Seidenberg-Tarski Theorem E with real variables p, ( = (Re 7,Im 7,£) and polynomials
R(p,¢) = |det L(,&)|> + (|¢]> — p*)?, S = 0 and Q(p, () = Im 7. Conclude that there is an o # 0 and a
rational r so that

E(p) = ap"(1+o0(1)), p— 0.

To prove the result it suffices to prove that Im 7 is bounded, i.e. to show that » < 0. Suppose on the
contrary that r > 0.
Define k € S~ p € R, and, 6 by

— £ - S
ko= &R £ pk, 0 : P
Choose sequences p(n) — oo, k(n), 7(n), and £(n) = p(n)k(n) so that for n — oo,
det L(7(n),&(n)) = 0, |k(n)| =1, Im7(n) = a(p(n)) (1 +o(1)). (2.10)

Write

E(T;E) = Zl(Taf)—i-B = p(fq(@,k)-i-%B) = p(GIsz2N+Z1(0,k)+%B).

The matrix E(T, §) is singular if and only if —6 is an eigenvalue of El((), k) +p~'B.

For large p this is a small perturbation of Ly (0, k). Choose i > 0 so that for |k| = 1, the only eigenvalue
of L1(0, k) in the disk 0] < 2u is 0 = 0.

Because of the strong well-posedness of L, there is a uniformly independent basis of unit eigenvectors
for the eigenvalues of L;(0,k) in || > p. By part (iv) of Theorem P.9 there is a uniformly independent
basis of unit eigenvectors for the eigenvalues of Ly (0, k) in 0] > p.

It follows that there is a Cy so that for p > Cy the eigenvalues of Ly(0,k) + p~'B in |0] > pu differ
from the corresponding eigenvalues of Ly (0, k) by no more than Cy/p. In particular their imaginary parts
are no larger than Cy/p. Therefore, the corresponding eigenvalues 7 = p § have bounded imaginary parts.
Thus for n large, E(p(n)) can be reached only for the eigenvalues —0(n) which are perturbations of the
cigenvalue 0 of Ly(0, k(n)).

Perturbation by O(1/p) of the uniformly bounded family of dN x dN matrices, L1(0, k), can move
the eigenvalues by no more than O(p~ @ ). Since the unperturbed eigenvalue is 0, |0(n)| < C p(n) /4N
o

7)< Cp(n)'~av,  Tm7(n) = ap(n)(1+0(1)), a#0.
Therefore r <1—1/dN < 1,

N

[[em) +05) = r@)N (1 +0(1)), &) [[(7(n) + ;) = Ee(n) 7(m)V (1 + 0(1)).

j=1 J#t
Identity (-3 yields
det L (v(n)V (1 + 0(1)),, €(n) 7(m)" " (1 4+ 0(1)) ) = 0.

N=1 and use homogeneity to find

m o n o =
detLl(p(n) (1+0(1)), k(n)(1 + (1))) 0.

The constant multiplicity hypothesis shows that

Divide the argument by p(n)7(n)

det Li(,&) = 7™ Fi(r,£), and, Ve e R, F(0,€) #0. (2.11)
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Since for n large (7(n)/p(n))(1 + o(1)) # 0 we have

m o n o =
A (T3 (14 o(1) )1+ (1)) = 0.

Passing to a subsequence we may suppose that the bounded sequence k(n) — k. In addition, 7(n)/p(n) —
0 so passing to the limit yields F (0, %) = 0 contradicting (.11)). This contradiction proves (7).

(i7) Part (i) of Theorem P.J, shows that 0 is an eigenvalue of L1(0,€) with algebraic multiplicity equal
to N(d — 1) + m. It remains to see that with the assumption, the dimension of Ker L1 (0,¢) is strictly
smaller than N(d — 1) 4+ m.

KerL1(0,6) = {® = (®1,+ ,®a) : Y _&; € NKer(5A4,)}
j=1
Define
~ d
£ = {0 = (B, ,0g) : Y P;=

Jj=1

Then & C Ker L1(0,¢) and dim & = N(d —1).
Define

& = Ker Li(0,6) ® 0971, dim& = m.
If & € Ker L1(0,€), 7, ®; € Ker Ly(0,€) , write

= (X000 —w, (Ya,0,..,0)e8, Wee

Thus, Ker El((),&) Cé& @&
Pick V in Ker L1(0,&), but not in Er;éOKer A;. Then

V=(V,0,--,0) € & and V & KerL(0,£).
This proves that Ker El((), &) is a proper subset of & @ &3, so
dim (Ker L;(0,¢)) < dimé& + dim& = N(d—1)+m.
Thus the geometric multiplicity of the eigenvalue 0 is strictly less than its algebraic multiplicity. There-

fore, L;(0,€) is not diagonalizable. This proves (i7).

(i4i) To prove that the split problem is strongly well-posed it suffices to consider the principal part.
Suppose L(0, ) is uniformly diagonalisable on a conic neighbourhood of £ € RN\0. For U = (Uy, -+ ,Uy),

introduce V = (V- , Vy) with V; = 329, U;, Vi = U for 2 <1 < d. Then
(8t,8 ) =0 <— 8tV+Q( ) —0 with
L1(0,6) 0...0

_ €Ay 0...0
Q) = . L

€4As 0...0
The eigenvalues of @(E) are those of L1(0,¢), therefore real. It suffices to diagonalize uniformly @(5) on
the conic neighbourhood of &.

By hypothesis for || = 1_, there exist a real diagonal matrix D(§) and an invertible matrix S(§) such
that

L1(0,€) = S()DE)STH€), and, 3K >0, Y€e€R% [SE)+ISTHOI < K.
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Seek a diagonalization for Q(€) of the form

S(&) 0...0 (S()~t 0...0

N 64,Q(6)S(€) Id... 0 - —645Q(6) Id... 0
S = | FRAO TS0 gy = | RS T
§aAaQ(€)S(E) 0 ... Id —&aAaQ(§) 0 ... Id

with @ to be determined. Then,

D(¢) 0...0

I 2 As(I — Q(E)L1(0,6)S(€)  0... 0
S o050 < | © ( Q(é:) 0.8)8(€) 0.«

Cadall — QO L1(0.€)S(6) 0. 0

and

STHEQE)S(€) is diagonal & &A;(I — Q(€)L1(0,€)) =0, 2<j<d. (2.12)

From the strong well-posedness of L; it follows that uniformly in ¢ one has Ker Li(0,§) @
Range L1(0,€) = CN. Use the left inverse of L1 (0,€) defined in (2.9). Since Ker L;(0,¢) = NKer&;A;,
the condition on the right in (R.13) holds so S(¢) diagonalizes Ker L1 (0, €). Since S(¢) and S(¢)~! are
uniformly bounded it follows that S(¢) and (S(£))~! are uniformly bounded, completing the proof of
(ii). O

3. Analysis of the Bérenger problem by energy methods.

For the classical case of Maxwell’s equations, and with the absorption oy (1) only in one direction equal to
the Heaviside function in x1, the model of Bérenger has two properties rendering the analysis nontrivial,

(i) the constant coefficient operator in both halfspaces £z, > 0 is only weakly hyperbolic, and
(i) the zeroth order term o4 (z1) is discontinuous.

This section contains results proving that the boundary value problems define so defined are well-posed.
We begin with the case of Gevrey absorptions, then lipschitzian, and finally the case of the Heaviside
function.

In Section @ we prove that when L is only weakly well-posed, Gevrey regular o; lead to well posed
initial value problems in Gevrey classes. Commonly used o are not this smooth.

The strongest result, from Section @, applies when L(0, d,) is elliptic. Important cases are the wave
equation and linearized elasticity. In these cases the operator El is strongly hyperbolic so remains strongly
hyperbolic even with general bounded zeroth order perturbations. Thus for bounded o;(z;) the initial
value problem is strongly well-posed.

In Section @ we analyse the case of L associated to Maxwell’s equations with finitely smooth o. We
follow the lead of [@] and extend the analysis of [@] to several absorptions o; and to higher dimensions.
Related estimates for the linearized Euler equation have been studied by L. Métivier [2d].

When L is only weakly hyperbolic and there is only one absorption that is a multiple of Heaviside’s
function, the problem can be analysed by Fourier transformation. We prove in Section that as soon
as L is hyperbolic the transmission problem is weakly well-posed. This result has not to our knowledge
been proved even in the case of Maxwell’s equations. It is a crucial ingredient in our analysis of reflection

in Section f.4.

3.1. General operators and Gevrey absorption

The next result is implied by Bronstein’s Theorem [[f| [l BJ [B]. It shows that when L;(0,¢) has only
real eigenvalues and the o; belong the appropriate Gevrey class, then the Cauchy problem for L is solvable
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for Gevrey data.

Definition 3.1. For 1 < s < oo, f € §'(R?) belongs to the Gevrey class G*(R?) when
3C, M, Va € N, HaafHLZ(Rd) < M (Jaft) Cl*.

Then G* C N, H?(R?) C C*®(R%). For s > 1 the compactly supported elements of G* are dense. If
If()] < Ce 18" with 0 < a < 1, then u € GV/2.

Theorem 3.1. If the principal part Ly is weakly hyperbolic, and o; € GN/NH(Rd) then for arbitrary
f e GN/WHED(RY) there is one and only one solution u € C®(R'*?) to

Lu = 0, u(0,) = f.

The solution depends continuously on f.

3.2. Strong hyperbolicity when L(0,9) is elliptic.

Theorem 3.2. If L is strongly well-posed and L(0,0) is elliptic, then L is strongly well-posed for any
absorption (o1(x1),...,04(zq)) in (L=(R))%.

Proof. Kreiss’ theorem asserts that an operator with constant coefficient principal part is uniformly
well-posed if and only if the principal part is uniformly diagonalisable on a conic neighborhood of each
£ # 0. Therefore the Corollary follows from the third part of Theorem @ |

Example 3.1. This result implies that the PML model for the elastodynamic system is strongly well-
posed. The system is written in the velocity-stress, (v,3) formulation where v = Oyu is the velocity
field.

pOov —div =0,
hY — Ce(v) =0

with the tensor ;;(v) = (9;v; + 9;v;) , and the positive definite tensor of elasticity coefficients C, with
> = Ce. See [ﬂ]7 where the authors showed that such layers may be amplifying (see Section E)

3.3. The method of Métral-Vacus extended to the 3d PML Mazxwell system

Métral and Vacus proved in [@] a stability estimate for Bérenger’s two dimensional PML Maxwell system
with one absorption oy (z1) € W1*°(R) and x = (x1,72) € R? There are two crucial elements in their
method. First following Bérenger, they do not split all variables in all directions. This section begins
by showing that the partially split model is equivalent to the fully split model restricted to functions U
some of whose components vanish. The L evolution leaves this space invariant and its evolution on that
subspace determines its behavior everywhere.

The second element is that on the partially split subspace there is an a priori estimate bounding
the norm at time ¢ by the same norm at time 0. This looks inconsistent with the fact that the Cauchy
problem is only weakly well-posed. However the norm is not homogeneous. Certain linear combinations
of components have more derivatives estimated than others. The observation of @I] is that the system
satisfied by the fields and certain combinations of the fields and their derivatives, yields a large but
symmetrizable first order system. These estimates have been obtained, and extended in Sabrina Petit’s
thesis [@] in the 2d case with two coefficients, and in the 3d case for an absorption in only one direction.

In this section, motivated in part by the clarification of the role of symmetrizers in the work of L.
Métivier ] for the 2d variable coefficient Euler equations in geophysics, we construct analogous more
elaborate functionals which suffice for the general case of three absorptions in three dimensions. They
require one derivative more smoothness, o; € W2 (R).



The, Analysis of Matched Layers 1%
January 4, 2011 17:2 'WSPC/INSTRUCTION FILE paperconfluentes.hyper17545
Maxwell’s equations for 0; F4 and 0;B; contain only partial derivatives with respect to zo, x3 and not
z1. In such a situation Bérenger splits the corresponding equations in directions 2,3 but not in direction 1.
To see why this is a special case of the general splitting algorithm (@) reason as follows. If the equation
for 9,U; from L does not contain any terms in dj, that is the 5 row of Ay, vanishes, then the equation
for the j* component of the unknown U* corresponding to the splitting for the k"™ space variable is,

&tUgI'C + O'k(ﬂc)Ujk =0, Uyk = e lom)t Uf((),x). (3.1)

Plugging this into the other equations reduces the number of unknowns by one. The simplest strategy
is to take initial data Uj’-C (0,2) = 0 which yields the operator L restricted to the invariant subspace of
functions so that U J’»“ = 0. Conversely if one knows how to solve that restricted system then the full system
can be reduced to the restricted system with an extra source term from (B.1)).

Summary. To study the fully split system it is sufficient to study the system restricted to {U;C = 0}.
Performing this reduction for each missing spatial derivative, corresponds to splitting equations only
along directions containing the corresponding spatial derivatives.

An extreme case of this reduction occurs if an equation contains no spatial derivatives, that unknown is
eliminated entirely. For the Maxwell system which is the subject of this section this does not occur. The
use of unsplit variables

e reduces the size of U reducing computational cost,
e corresponds to Bérenger’s original algorithm,

e is important for the method of Métral-Vacus which takes advantage of the vanishing components
Uk.
J

We deal here with the 3d Maxwell equations,
6tE—VXH:0, 8,:H—|—V><E:O

Defining U = E + iB, they take the symmetric hyperbolic form ([L.1[) with hermitian

00 0 00i 0—i0
Ay = [00—i|, 4, = [000] and A3 = [i 00]. (3.2)
0i 0 —i00 000

Introduce the splitting (E) Define the subspace corresponding to the unsplit equations
H o= {17 = (UL U%U%) € H2(R3; C3)3) : Ul =0, UZ=0, U}= o}.
For U = (U*,U2,U3) in H, define

U :=U'+U*+U?, Vi = 9,U, Vil = 9;U, W o= Y, ox(zp)UF,

Wi = oW,  Z = 3, 06(Wi+or(@)lUe), 27 = 9;Z, (3.3)
Vo= (U, Vi Vil Wi U, W, Zj) e O,

The function Z and therefore Z7 are C valued. The other slots in V are C? valued. The second derivatives
Vi of U are ordered as V11, V21 V31 122 V3.2 V3.3 This convention is important when the equations

for V are written in matrix form.
The unknown in ([Lf) is U = (U',U?,U?). The U’ appear in the fifth slot of V. Therefore,

HV(t, ')H(LZ(R3))54 > ||[7(f, ')H(LZ(RS))Q.

For the Cauchy problem the initial data is Uy = (U}, U2, U3), from which Vj is deduced by the derivations
above, and

HVO||(L2(R3))54 < C||UO||(H2(R3))9-



16 L. Halpern, . Petil-Bergez, J. Rauch
January 4, 2011 17:2 WSPC?INgSTRUCTION FILE paperconfluentes.hyper17545

Theorem 3.3. If 0, for j = 1,2,3, belong to W2>(R), then for any Uy = (U&,Ug,U&) in H there is
a unique solution U in L*(0,T;H) of the split Cauchy problem (B) with initial value Uy. Furthermore
there is a Cy > 0 independent of Uy so that for all positive time t,

1Tt z2@sye < C’lecltHﬁo (3.4)

H(H2(]R3))9 :
Proof. The main step is to derive a system of equations satisfied by V(¢, z) together with a symmetrizer
S(D). These imply an estimate for ¢t > 0,

|V(t < Coe®'||V(0 (3.5)

)||L2(]R3) )||L2(R3)'

From this estimate it easily follows that the Cauchy problem for the V-equations is uniquely solvable. It
is true but not immediate that if the initial values of V are computed from those of U then the solution
V comes from a solution U of the Bérenger system. The strategy has three steps,

e Discretize the Bérenger system in x only.

e Derive an estimate analogous to (@) for the semidiscrete problem. The estimate is uniform as the
discretization parameter tends to zero. The proof is a semidiscrete analogue of (@)

e Solve the semidiscrete problem and pass to the limit to prove existence.

This is done for the case d = 2 in [@] to which we refer for details. Uniqueness of the solutions to the
V-system and therefore U is simpler and classical and is also in [@]

Equation (E) yields,

U7+ AV + 0,07 =0, (3.6)
k
Summing on j yields
U + L(0,0)U+ W =0. (3.7)
Differentiate in direction x; to find,
VI 4+ L(0,0)VI + W = 0. (3.8)
Differentiate once more to get
O VH 4 L(0,0) V™ + 9,7 = 0. (3.9)

The quantity 0;W7 on the left is replaced using the next lemma.

Lemma 3.1.
8jW = L(O, 8)AJW + Zej — Zk Ejk(O';CU + O'kvk), (310)

where e; is the jt vector of the standard basis, and E;j is the 3 x 3 matriz all of whose entries vanish
except the (i,j) element that is equal to 1.

Proof.
First evaluate L(0,0)A;W to find

L(0,0) AW = > A A0 W.
k
The coefficients for our Maxwell system satisfy A;A, = —Ej;, for j # k, and A? = Zk# Ey, =1-FEjj.
This yields

L(0,0)A;W = = > Ej0 W + (I — Ejj)oW = ;W = > Ej0 W = 0;W — div(W) e;.
k#j k
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Introducing the definition of Z, we have

Wj = a]W = L(O, 8)AJW + div(W)ej
= L(0,0)A;W + Zej — (31, O (0xUy)) €;

Compute
(2% Ok(okUk)) € = Xk EjnOk(0wU)
= 2k Eirol U+ 3y Ejor V>,
which proves (B.10). The proof of the lemma is complete. O

Differentiate (B.1() in space to obtain
OWI = L(0,0)A; W + 0; Zej — >, Ej10; (akU + a,’ch).
Inserting into (B.9) yields
OV 4+ L(0,0)V™ + L(0,0) AW + 2V — Z #0i (okU + V) = 0.

This is equivalent to

o VH + L(0,0)VH + L(0,0)A;W* +

. ) . 3.11
Zzej — O’QEJ‘Z'U — (Ui”Eji + Zk O'kEjk)Vl — Zk O’;CEjkVZ’k = 0. ( )
To close the system it remains to evaluate the time derivatives of W, W7 and 9;Z.
8tW = Zk O'katUk,
= —> L ou(AU + o UR),
= — Ek UkAka — Ek U,%Uk.
Using the particular form of the equations yields
Sk BUE = (L o) (e onl®) = Syon (i i)
=+, o)W — diag(oa03,0103,0102)U — diag(o1,02,03)W .
Therefore
oW + Z oL ALVF + (Z o)W — diag(c203, 0103, 0102)U — diag(o1,02,03)W =0. (3.12)

k k
Differentiating in z; yields
OW 35, (0; (o) A VF + 0, AgVF) + 0i(X ) o)W + Y ok W
—0; (diag(agag, 0103, 0102))U — diag(oe03,0103,0102)V? (3.13)
—ai(diag(al, 09, 03))W — diag(o1,09,03)Wi =0
Next compute

Oz = Zaz&g(Wz + O'ZUz) .

Consider the pair of equations
OU?E +i02Us + ooU% = 0, and  O,U} —idsUy + 03U = 0.
Add the two equations. Also add o9 times the first to o3 times the second. This yields two equations,
OUr +1i(02Us — 93Uz) + Wy =0, and ;W1 +i(0202Us — 0305Uz) + 03U; + 03U7 = 0.
Rewrite the last term as 03U7 + 03U} = (02 + 03)Wi — 0203U1, to find
OUr + 1(02Us — O3Us) + Wy =0, and, OWi + i(0202Us — 0303Us) + (02 + 03)W1 — 020301 = 0.
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Multiply the first equation by o1 and add the second to obtain
O:(Wi +01U1) + i ((01 4 02)02Us — (01 + 03)03U2) + (3, ok) Wi — 0203U1 = 0.
The other indices follow by permutation. Differentiate in x; and add to find
>k OO (Wi + 0k Uy) +4 ), Ok ((0k + 0kt1) Okt 1 U2 — (0% + Okg2)Ok2Uk+1)
+225 00 (g or)Wi) = 224 Ok (0n410k42Uk) = 0.
The terms with two spatial derivatives cancel. This leaves

WZ +1i3 2y 01, (Ok+1Uk+2 — Ot2Us+1)
(0 01) (5, W) + 2k 03 Wi — 323 Ok10k42 Vi = 0.
Since

Z = Zak(Wk + op(zk)Ug) = Z(W;f + o, Uy + okV,f),
k k

we can replace (3, ox) (Y., WF) in the previous equation by (3", 0x)(Z — Y., (0.Uxk + 0% ViF)) so
WZ+ (S pon)Z+i Y, on(VEL —ViERD)
(35 0) (4 (0L Us + 0k Vi) + 305, 0, Wi — 35, ok+10k42 V3 = 0.
Differentiating in z; yields
0z + (Syon)Z/ + 052 +i0y” (Vi = Vi) +iX, oh(Vly ™ = Vi)
~03 (3 (00 Uk + 0k ViE) = (g o) (07U + 05 V) = (325, 00) (5 (07, Vi) + 0w V)
W+ 3 oW = 304 05(0ks10k42)ViE — 323, 95 (0ns10m42) VP = 0.
Replace Z by >, (WF + o1, Vi¥) to end up with
W27+ (X on)Z7 + ‘73' Zk(Wlf + ok Vi) +ioy” (‘/J‘];:r21 - Vj]:rl?) +i) kO (Vkl::rgl’j - ka.:rf’j)
—05 () (01U + 01 ViF)) = (X ow)(0"Uj + 7 VJJ) — (e on) (X0 Vi + ok Vi) + oW (3.14)
+2% U;chz — >k Oi(okr10kt2)ViE =D aj(ak+1ok+2)ij’k =0.

Summarizing, V is solution of a first order equation, 9,V + P(9,)V 4+ B(x)V = 0, whose principal
symbol is given by

Iy ® L(0,0) 046® 033 043®033 043®033 044 X033

06,4 ®033 Is @ L(0,0) (Is ® L(0,0))M 06,3 @ 03,3 06,4 ® 033
P(9) = 03,4 ®033 036 ® 033 033®033 033®033034®033
034®033 036®033  033®033 033®033034®033

04,4 ®033 04,6 ® 03,3 043®033  04,3®033044®033

Here the V% are ordered as indicated before the Theorem and,

A 0 0
A10
0 A
AQO
0 A
0 As

o O O o o
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To symmetrize it suffices to construct a symmetrizer for the upper left hand block
I, ® L(0,0) 046 ® 03,3 04,3 ® 03,3
Q) = 064 ®033 Is® L(0,0) (Is ® L(0,0))M
03,4 ®033 03,6 ® 03,3 03,3 ® 03,3

Since L is strongly hyperbolic, there exists a symmetrizer S(i€) to L(0,i€), i.e. S(i€)L(0,i€)S™1(i€) =
D(i€) with D diagonal real and S, S~ bounded. We verify that

. I, ®S5 046®033 043®033
S = 06,4 024 0373 Ig®S (IG (024 S)M
034®033036®033 I3®S5

is a symmetrizer for Q(i£). It is easy to see that

. Iy ® S-1 0476 & 0313 0473 & 0373
S_l = 0674®03,3 IG®Sil 7M(13®Sil)
0374 & 0313 03,6 X 0313 I3 ® St

It follows that

) I, ® SL(0,-)S~t 04,6 ® 03,3 04,3 ® 033
SQS_I = 06,4 (24 0373 I ® SL(O, ')Sil 06,4 & 0313
03,4 ® 033 036 ®033 033®033

I4 ® D(i€) 046 ® 03,3 04,3 ® 03,3
= 06.,4 (24 0373 IG & D(Zf) 06.,4 X 03,3
03,4 ® 03,3 03,6 ® 03,3 033 ® 03,3

is a diagonal matrix.

Therefore P(€) is uniformly diagonalisable like L(0,&) is, and the Cauchy problem for (B.7), (B.g),
B.11), B.19), (B.13)), (B.14) is strongly well-posed. The norm of the zero order terms depends on the
coefficients o; and their derivatives up to order 2. The estimate of the Theorem follows.

Remark 3.1. In case of only 2 coefficients o1 and o9, the estimates depend only on the first derivatives
of 0j. The extended system does not need second derivatives of U. This is always the case in dimension
d = 2. Suppose o3 = 0. Split W as

Wi
W = EssW + | Ws
0
Then
W1 0‘2U12
Wy | = [ o1U3 | = diag(o2,01,0)U.
0 0
Rewrite (B.7) as
atU+L(0,(’))U+E33W+diag(ag,01,0)U: 0. (315)
Differentiate with respect to x1 and x5 to obtain
V7 + L(0,0)VI + E330;W + 9;(diag(ca,01,0))U + diag(o2, 01,0)W = 0. (3.16)

To find an equation on W, proceed as in the 3 — D proof to get,
AW+ ok AVE+ (Y ok)W — 01090 =0 (3.17)
k k
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Therefore V is solution of a first order equation, whose principal symbol is given by

L(0,0) 0 0 0
0 L(0,0) 0 Es30
0 0 L(0,0) Es30,
0 0 0 0

P(9) =

A symmetrizer is given by

S00 0
0 S 0 iSEss
00 SiSEis
000 I

S(i€) =

The verification is direct using the inverse

S0 0 0
= _ 0 Sil 0 77:E23

0 0 S —iE;
0 0 0 I

4. Analysis of layers by Fourier-Laplace transform.
4.1. Fourier analysis of piecewise constant coefficient transmission problems.

Return to the general situation of ([.3) with operators L and R on the left and right half spaces and
transmission condition (@) Suppose that both L and R are weakly hyperbolic in the sense of Garding.

4.1.1. Hersh’s condition for transmission problems

This section takes up the analysis of mixed problems following Hersh in [@] In the present context we
treat transmission problems which are essentially equivalent. The analysis of Hersh supposed the interface
is noncharacteristic which is never the case for Maxwell’s equations. We address the changes that are
needed to treat problems with characteristic interfaces.

First analyse the solution of the constant coefficient pure initial value problem LU = F on R'*? by
Laplace transform in time and Fourier transform in o’ = (23, -+ ,24). The transform

~

U(r,x1,n) = /e_” (2m)~ 2 e Ut o)) dt da

decays as |z1| — oo and satisfies

L(r,d/dzy,in)U = F in R.

When A; is invertible this is a standard ordinary differential equation in x;. When A; is singular, the

analysis requires care. The homogeneous equation L(7,d/dx,in) U = 0 has purely exponential solutions
eP®1 corresponding to the roots p of the equation

det L(7, p,in) = 0. (4.1)

Hyperbolicity of L guarantees that for Rem > 75 and n € R%~! this equation has no purely imaginary
roots.

The number of boundary conditions at x1 = 0 for the boundary value problem in the right half space
is chosen equal to the number of roots with negative real part (see also Remark EI) That integer must
be independent of 7, 7. Since roots cannot cross the imaginary axis, the only way the integer can change
is if roots escape to infinity. That can happen when the coefficient of the highest power of p vanishes.
The next hypothesis rules that out.
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Definition 4.1. A hyperbolic operator £(0;,d,) is nondegenerate with respect to z; when there
is a 71 > 0 so that the degree in p of the polynomial det L(7, p,in) is independent of (7,7n) for Rer >
T, N E R4-1,

Example 4.1.

1. In the noncharacteristic case, det A1 # 0, the condition is satisfied and the degree with respect to p is
equal to N.

2. For Maxwell’s equations written in the real 6 x 6 form, the degree with respect to p is equal to 4. If
written in the complex form (B.9), the degree is 2.

3. The formula for the characteristic polynomial in Theorem E shows that if L is nondegenerate then
so is the Bérenger doubled operator L with one absorption o; in 27 > 0. The degree in p is the same for
L and L.

4.1f L = L1+ B is nondegenerate with respect to 1 then so is the operator P := £1(d)+a 1B = a=1L(ad)
for any a > 0. If the degree for £ is constant in Rer > 71, then the degree for P is constant for
Ret > a tr.

For the lemmas to follow it is useful to transform so that .4; has block form.
Lemma 4.1. If L in @) is nondegenerate with respect to x1 then for Ret > 1, n € R,
(i) the degree in p of the polynomial det L(7, p,in) is equal to rank Ay,

(ii) the number of roots p with positive real part is equal to the number of negative eigenvalues of A;.

Proof.
Since L is nondegenerate, it suffices to study the case n = 0.
(7) Choose invertible K so that

K'AK = ('Sl 8) , A invertible .
Then
K 'L(1,p,0) K = (TI -i(-).Ap TOI> -+ matrix independent of 7, p.

It follows that the degree in p is no larger than rank A;.
The coefficient of p™*%A1 in det L(7, p, 0) is a polynomial in 7 of degree < N — rank A;. For large 7
the coefficient is equal to

(det .A) (TNfrank Al) + lower order in 7.

Thus the degree in p is rank A; for such 7 proving the result.
(i)
I +pA 0
det = det B
et L(1,p,0) = de << 0 TI) + )

For fixed 7, sufficiently large, p # 0, and p/7 is a root of the polynomial p(z,1/7)of degree rank A:

7l +x A+ By eBi2

p(x, E) - eBo1 7l + £Boo

This polynomial has exactly rank A roots. By Rouché theorem,

i 1

i -, T>1,
T >‘j

where the \; are the rank A eigenvalues of A repeated according to their algebraic multiplicity. Since the

eigenvalues of A and the nonzero eigenvalues of A; are the same, this completes the proof. O
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Remark 4.1. For the transformed one dimensional hyperbolic operator L£(0¢,d.,,in) the number of
incoming characteristics at the boundary x; = 0 in the right half space is equal to the number of strictly
positive eigenvalues of A;. The second part of the Lemma shows that this is equal to the number of roots
with negative real part. The two natural ways to compute the number of necessary boundary conditions
yield the same answer.

The next lemma shows that for nondegenerate operators, the characteristic case can be transformed
to a standard ordinary differential equation.

Lemma 4.2. Suppose that A, M € Hom (CV) and the equation det(Ap + M) = 0 has degree in p equal
to rank A and no purely imaginary roots. Then,
(i) The matriz M is invertible and all solutions of the homogeneous equation
au
A—— MU =0 4.2
pralis (4.2)

take values in the space G := M~ (Range A) satisfying dim G = rank A.
(ii) There is a M € Hom G so that a function U satisfies (Q) if and only if U is G valued and satisfies

v~
— + MU = 0. 4.3
s (4.3)

(iii) The vector space U of solutions of ([L3) is a linear subspace of C*(R) with dimension equal to
rank A. The Cauchy problem with data in G is well-posed.

Proof.

(i) Since p = 0 is not a root, M is invertible. The equation U = M~'AdU/dz; shows that continuously
differentiable solutions U takes values in G. More generally, if U is a distribution solution and ¢ € C§°(R)
takes values in the annihilator, G+ of G, then

(U,v) = (M"Y AdU/dxy , ¢) = (dU/dzy, (M~'A)*)
But G = range M ~*A so Gt = ker (M~ A)*. Therefore (M~ A)*s) = 0 so (U,¢) = 0 which is the

desired conclusion.

(74) Multiplying the equation by an invertible P and making the change of variable U = KV transforms
the equation to the equivalent form

PAKj—V + PMKV = 0.

X1

Choose invertible P, K so that PAK has block form

10
PAK =
(v0)

where I is the rank A x rank A identity matrix. With V' = (13, V5) one has the block forms

PMK = (H” H”) and (I 0) v + (H” H12)V = 0.

Ho1 Hoao 00/ dxy Hoy Hoo
One has.
det(Ap+ M) = det P~' det (pI+H” H”) det K.
Hyy  Hoo

The first part of the preceding lemma implies that the determinant on the left is a polynomical of degree
rank A in p. It follows that Hoo is invertible.
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The solutions V satisty Ho1 Vi + Ha2Vo = 0 so take values in V := {V2 = —H2_21H21V1}. The function
V' is a solution if and only if it takes values in V and

dv;
d_,CCl + R‘/l == 0, R = H117H12H2721H21.
1

If N:V — V is the map,
(Vi,Va) = (RVi, —Hz'Hai RV ),

then V is a solution if and only if it is V valued and satisfies dV/dz; = NV . Writing V = K ~1U implies

(i1).
(7it) Follows from (ii). m|

Lemma 4.3. If £ is hyperbolic and nondegenerate with respect to x1 then its principal part L£1(0¢,0x)
is also nondegenerate with respect to x1. The degree in p of det L1(T, p,in) is constant for ReT > 0 and
n € RI7L,

Proof. With notation from the preceding proof,

_ 10,, 0 Hy1(0, 0y1) H12(5t,5z'))> 1
L(0,0p,,0p) = P71 ! + ( K=t 4.4
(0 ) ( < 0 0> Hy1 (0%, 0p) Hao (0, 0x) (44)

The proof of the last lemma showed that for ReT > 71 and n € R9™1 Hay(7,7) is invertible.

The computation in Lemma EI shows that for n = 0 and R 3 7 — oo the coefficient of prark A1
has modulus > e¢rN—rank A1 with ¢ > 0. This implies that 7 = 0 is noncharacteristic for Hso. Therefore
H3(0%, 0,r) is hyperbolic.

Replacing £ by its principal part £1 has the effect of replacing each operator H;;(9) by its principal
part. This yields identity (Q) with £ and the H;; replaced by their principal parts.

Since the principal part of a hyperbolic operator is hyperbolic, it follows that (Ha2)1(0¢, 0sr) is a
homogeneous hyperbolic operator. Therefore (Has)1(7,4n) is invertible for € R?~! and Re 7 # 0. Thus,
the coefficient of p™k 41 in det £, (7, p,in) is nonzero for n € R4~ and ReT # 0. O

Lemma 4.4. Suppose that the ordinary differential equation (@) satisfies the hypotheses of Lemma @
Denote by E* the linear space of solutions which tend exponentially to zero as x, — +oo and by E*
their traces at xt1 = 0. Then

(i) E¥Nker A = {0},

(ii) dim AE* = dim E*,
(iii) The map U — U(0) is an isomorphism from EE to E*.
(iv) AETNAE- = {0},

(v) AET @ AE~ = Range A.

Proof.
(¢) The absence of purely imaginary roots shows that every solution is uniquely the sum of two solutions.
One grows exponentially at +o0c and decays exponentially at ¢ = —oo. The second grows at —oo and

decays at 4+o00. In particular the only bounded solution is the zero solution.

Ifey € E* Nker A, denote by U(z1) the solution with this Cauchy data. The function that is equal
to U on 1 > 0 and equal to 0 in z; < 0 is a distribution solution of ([.3) on all of R since A[U],,—o = 0.
This solution is bounded hence identically equal to zero. Therefore e; = 0. The case for E~ NkerA is
analogous.

(1) Follows from (7).
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(i74) Tt is surjective by definition. If it were not injective for ET, there would be a nontrivial solution
U(z) exponentially decaying as x; — +oo with U(0) = 0 violating (7).

(iv) The set AE* consists of the values AU, (0) with U, satisfying (.J) and exponentially decreasing in
x1 > 0. If the intersection were nontrivial there would be a solutions U_ decaying as 1 — —oo so that
AUL(0) = AU_(0). The function V equal to Uy in z1 > 0 and U_ in 27 < 0 is then a distribution solution
for all x7 exponentially decaying in both directions. Hyperbolicity implies that V' = 0 contradicting the
nontriviality.

(v) Using (i) and (iv), one sees that the direct sum on the left is a subspace of Range A of full dimensiom

The next lemma is needed in in §4.1.2.

Lemma 4.5. Assume that the hypotheses and notations of the preceding lemma are in force. Then for
K € ET there is an F € C§°(] — 00, 0]) so that the unique solution of

au ~

— + MU = F, lim ||U(z1)]] = 0, (4.5)

dx |z1|—00

satifies U(0) = K.
Proof. Consider first the case of invertible A. A change of variable yields the block form,

au M
— + + 0 U=F U=(U,U), F=(F,F), specMy C{£Rez>0}.
dxy 0 M_

Then Et = {Uy = 0} so K = (K1,0). Choose F' = (Fy,0). Then U(0) = K if and only if,

0
K, = / eM+SF1(s) ds.

— 00

This is achieved with,

Fi(s) = x(s)e MKy, x € C5°(] — 00,0]), /X(s) ds=1.

When A is not invertible change variable as in the preceding lemma to find the block form
10\ dU Hyy Hyo
— U=PF
(0 0) dzy N <H21 Hs; 7
with invertible Has.

Part (i) of () implies that the map G > G = (G4, G2) — Gy is an isomorphism. Write G > K =
(K1, K3). Choose F' = (F1,0). Then choose a G valued solution U defined by

aly

T + HnU, = F, Uy = — Hyy'Hy U, .
L1
One has U(0) = K if and only if U;(0) = K;. The construction in the invertible case finishes the proof.
O
Suppose that
L=0;+ A0+ and R=0;+ A0, +---

are nondegenerate with respect to z1. For Re7 > 79 and € R?~!, define ELjE (1,m) to be the set of
solutions of

L(r,d/dzy,in)V = 0

tending to zero as x1 — F0c0. Denote by E.’f(T, n) C CV the linear space of traces at 21 = 0 of solutions
ot
in E7 (7,7).
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Similarly with a possibly larger value still called 7y, there are Elj-tf (1,m) € CM so that the solutions
of R(r,d/dx1,in)Z = 0 taking values in Elj-tf (1,m) are exactly those tending to zero exponentially as
1 — £o0. The subspaces Ef(T, 7) and Eﬁ(T, n) depend smoothly on 7,7 for ReT > 79 and € R4~
Lemma EI implies that

dim E} (1,mn) = # positive eigenvalues of Aj, dim Ef (7,n7) = #negative eigenvalues of A; . (4.6)
Consider the inhomogeneous transmission problem,

LV =0 when z1<0, RW =0 when z1>0, (4.7)

(V,W)—g € N when z;=0. (4.8)

The problem with inhomogeneous term F' can be reduced to this form by subtracting on the left
a solution of the hyperbolic Cauchy problem LU = F on R'*? with Ul = 0. Denote by
‘A/(T,zl,n),W(T,xl,n),g(T, 1) the Fourier-Laplace transforms. The transform U is defined for 21 € R,
while V (resp. W) is defined for z1 < 0 (resp. x; > 0). The transforms V, W decay as |z1| — oc. vV, W

satisfy the ordinary differential transmission problem

o~ o~

L(r,d/dz1,in)V =0 in x1 <0, R(r,d/dxy,in) W =0 in z1 >0, (4.9)

(V(7,0,m), W(r,0,n)) — g(s,n) € N. (4.10)

Hersh’s necessary and sufficient condition for well-posedness of the transmission problem is derived

as follows. Uniqueness of solutions of (@), (B.1q) for ReT > 19, n € R~ is equivalent to the fact that
there are no exponentially decaying solutions of the homogeneous transmission problem. That is,

N 0 (Ep(rm) x Efi(r,m) = {0}. (4.11)
In order to guarantee existence, one imposes the maximality condition,
N @ (Ef(r,n) x Ef(r,m) = CV xCM. (4.12)

Using (JL.6), this determines the dimension of A from the coefficients 4; and A; of L and R respectively.

Definition 4.2. If the transmission problem ([t.7), (J.§) satisfies ([.19) for all ReT > 75 and 7 € R4~?
it is said to satisfy Hersh’s condition.

Theorem 4.1. Hersh’s condition is satisfied if and only if there is an r and a Ao so that for all X > g
and g supported in t > 0 with e Mg € Hs"'T(R‘ZI,) with values in CV x CM there is a unique V, W
supported in t > 0 with

e MV € H*(] — 00, 00[x{z; <0}) and e MW € H*(] — 0o, 00[x{x; > 0})
satisfying the transmission problem ([L7), (£9).

Sketch of Proof. We have shown that the Hersh condition permits one to compute a candidate Fourier-
Laplace transform. We outline how the condition implies the desired estimate. The method is to use the
Seidenberg-Tarski Theorem @ to derive a lower bound on the real parts of the roots v together with
a contour integral representation. The same elements form the heart of [@], and §12.9 of [ In the
present context we treat a transmission problem rather than a boundary value problem. In addition, one
needs to use the earlier lemmas to treat the case when x; = 0 is characteristic.

Choose A > max{ry(L), 70(R)}. The equations

det L(,v,in) = 0, det R(r,v,in) = 0
with Re7 > A, n € R4"! have no purely imaginary roots. Define
C(R) := min{|Rey| : neR¥L Rer > A, |7+ |n]* < R,

{det L(,v,in) =0 or det R(r,v,in) = 0}}
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The Seidenberg-Tarski Theorem E implies that there is a p € Q and b # 0 so that
C(R) = R’(b+o(R)), as R—oo.
Thus, there are C, N so that, for any 7, n with ReT > A,

C

Rev| > ———.
Revl = T

(4.13)

The solutions in E;g (7,7n) are written using a contour integral representation of W in the block form of
Lemma @ Here the matrix H;; depend of (7, 7). Denote by D = D(7,n) the finite union of the squares
with centers at the roots with Rerv < 0. The side of each square is the smaller of 1 and half the distance
of the root to the the imaginary axis. Then

o~

W = % ) e (r + (Hu + H12H2_21H21))71d7' Wi, Wi = Hy Ho Wy (4.14)
The Seidenberg-Tarski Theorem E applied to
max{|w|2 c |22 =1, Hpw==z Rer>A, |7 +|n?*< R2}
proves that
[Hoo(r,m) | = R°(a+o(1)), a#0, BeQ.
This estimate together with () yields with new C, N,

| WP da < 0@+ @I O,
0
With the analogous expression for V' the solution of (@) satisfies

o0 Y 2 Y
| [Pran)| dn < ca i@ mio)r

— 00

The Hersh condition asserts that for each (7,7), W[(O) and V;(0) are uniquely determined by §(7, 7).
Seidenberg-Tarski Theorem @ yields an estimate

[W:(0), Vi) < C+Imm)* I1g(r,ml>
The last three estimates together with Parseval’s identity proves the desired estimate,
_ 2 M Ao
3C,N, Vg, YA>A, e M UHL?(]RHd) <C Z e M at,ngLZ(Rlﬂdfl)) :
lo|<N

This estimate proves the existence part of the Theorem. O

4.1.2. Necessary and sufficient condition for perfection.

The Fourier-Laplace method is used to derive a necessary and sufficient condition for perfection of an
absorbing layer. Begin with a closer analysis of the transform, U (1,21,n), of the solution of the basic
equation ([L.1)).

When A; is invertible, U is analysed as follows. Denote by II4 (7,7) the projectors associated with
the direct sum decomposition Ej (7,7) @ E; (1,17) = CN. Define Sy(7,1,7) as the Hom(CV) valued
solutions of

L(T,d/dml,in) S+ = 0, Si’ = Aflni-

x1:0

Then S+ decays exponentially as 1 — 00 and
X]—o00,0[ 9= + X[0,00[ O+

is the unique tempered fundamental solution of L(T d/dxy,in). Decompose F=F_+ 13+, U= 17+ + U_
according to Ef (r,n) ® E; (1,n7) = CV. Then U_ is the convolution of £ with X]—o0,0[ S— and U+ is
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the convolution of 13+ with X[0,00[ S+ In particular U_ (7,0,n) vanishes on a neighborhood of [0, oo[ so
U(r,0,n) = Uy (1,0,7) € E+(T n). The value of U in 1 > 0 satisfy the homogeneous ordinary differential
equation L(7,d/dzy,in)U = 0. with initial value U(0) € Ef(1,n).

To reach the same conclusion when A; is singular, apply the lemmas of the preceding section to the
equation L(7,d/dz1,in)Z = 0. Lemma [£4 applied to A = A; and M = 71 + iZ?ZQ A;n; shows that
both EF(r,n) are subspaces of G and that the space of solutions is a direct sum E (7,7) ® Ep (1,7). It
follows that

Ep(rn) @ Ef(r,n) = G(r,1).
Repeating the analysis in the nonsingular case applied to () shows that U (1,0,n) € EZF(T, n).

Definition 4.3. For a transmission problem (L, R, N) satisfying Hersh’s condition (Definition [£),

ReT > 19 and n € R%"1, define the reflection operator, H(r,n) : Ef (t,n) — FEy(r,n) as follows.
Hersh’s condition implies that for each K € E (r, 1) there is a unique (V W) € E; (1,n) x Ef(7,n) so
that (K,0) = (V, W) mod N. Define, H (T, n)K =V.

Theorem 4.2. Suppose that the transmission problem (L, R,N') satisfies the Hersh condition. The fol-
lowing are equivalent.

(i) The transmission problem is perfectly matched in the sense of Definition B
(ii) There is a 7o € R so that for all ReT > 19 and n € R, H(r,n) = 0.
(i4i) There is a 70 € R so that for all ReT > 79 and n € R~

VK € BEf(r,n), 3'Kgr € Ef(r,n), suchthat (K, Kg)€N. (4.15)

Proof. Conditions (i) and (iii) are clearly equivalent.

For the equivalence with (i), compare the values of U and V in {z1 < 0}. Since both satisfy LZ = F'
and decay as x1 — —ooc it follows that L(V-U)=0,s0,V—U:=Tisan E; valued solution of LT = 0.
Since F'=0in x; > 0, We E+ The transmission condition requires that

N 3 (V(0), W(0) = (U(0)+T(0), W(0)) = (U(0),0) + (I'(0), W(0)). (4.16)

Since (T'(0), W\(O)) € By (1,n) x Ef(7,m), [E18) expresses (U(0),0) as a sum of and element in A" and an
element of L7 (7, 7) X E}(1,m). The Hersh condition (JL12) asserts that such a decomposition is unique.
Therefore (V(0), W(0)) is uniquely determined from U (0).
The method is perfectly matched if and only if for all F' supported in x; < 0,¢ >0
vV = U|

z1<0 "’
This occurs if and only I' vanishes for 21 < 0 which holds if and only if I'(0) = 0.

If the method is perfectly matched, then in the decomposition ( one has I'(0) = 0. Then
(U(0),W(0)) € N. Lemma [1.5 asserts that for any K € E; there is an F so that U(0) = K. This

proves that (f.19) holds.
Conversely if ([L15) holds, then in the decomposition (fL1q), T'(0) = 0 so I' = 0. It follows that

U|z1<0 =V. O
Remark 4.2. 1. When (f.1§) holds, the decomposition of (K, 0) € CV x CM in the direct sum ([.19) is,
(K,0) = (K, W(K)) — (0, W(K)) € N&(E, x Ef).

2. With K = U(0) as above the solution (V, W) of the ordinary differential equation transmission problem
is given by V = U|,<o and W is the solution of RZ = 0 with Z(0) = —W(K).

3. In the important case where N = M, invertible A; and A; and transmission condition N' = {V=W},
the perfection criterion (i44) asserts that B} (1,1) = Ef (1, 7).
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We present a typical example showing that the natural absorbing layers are virtually never perfectly
matched in dimension d > 2.

Proposition 4.1. Consider the dissipative symmetric hyperbolic example with d = N = M = 2,

A1<(1)_01), A2<(1)(1)), R=L+P, P=P" >0, N={V,W):V=W}.

(i) The transmission problem is perfectly matched if and only if P =0.
(i1) The corresponding problem with d =1 is perfectly matched if and only if P is diagonal.

Proof. Define
My = AT'[r +inds], Mg = A7'[r +inds] + AT'P,

so that AT'L(7,01,in) = Oy + M (r,n) and similarly for A;'R(7,0y,in). For ReT > 0 and n € R, the
matrices My, and Mp have one eigenvalue with positive real part and one with negative real part. The
eigenspace corresponding to positive (resp. negative) real part eigenvectors is equal to EZF(T, 7n) (resp.
E;{ (7,m)). Therefore the necessary and sufficient condition for perfection is that for Re 7 > 75 and any 7,

Ef(r,in) = Ef(r,in).
Since

. T+p in . 2 2., 2
L = d det L =7° -
(7, p,in) ( in T_p), and, et L(r, p,in) =77 —p~ + 1,
the eigenvalue of My, (7,n) with positive real part is p = /72 +n?. The eigenspace is the kernel of
L(7, p,in). Therefore

Ef(r,n) = C(=in,m+p). (4.17)

Since Mg = My, + A7 ' P, a necessary condition is that the family of vectors v(n, 7) := (—in, T + p)
be eigenvectors of the constant matrix Ay ' P, which is possible only if A7 P is a constant multiple of
the identity. Therefore P = cA;. Since P > 0 and A; has eigenvalues of both signs, it follows that ¢ =0
proving (7).

In the one dimensional case there is just one eigenvector (0, 1) which must be an eigenvector of A;*P.
Since (0,1) is also an eigenvector of A; it follows that (0,1) must be an eigenvector of P. Since P = P*,
the orthogonal vector (1,0) is also an eigenvector and P is diagonal. Conversely, if P is diagonal the
condition is satisfied. O

Remark 4.3.
1. Examples verifying perfection for a family of absorbing layers related to but not including those of
Bérenger are presented in [ To our knowledge even Hersh’s criterion for Bérenger’s layers has not been
verified before.
2. The perfection criterion is related to the plane wave criterion of Bérenger. We examine the relation in

§4.1.6.

4.1.3. Hersh’s condition for Bérenger’s with one piecewise constant oy.

Of our earlier results, only those of Section @ apply to discontinuous absorptions. So, if the generator is
not elliptic, (for example. the PML Maxwell system of Bérenger), the preceding results do not prove that
the initial value problem is well-posed. In this section we prove that the doubled operators of Bérenger
define a (weakly) well posed initial value problem provided that

o, =0 for j>2 and o1(r1) =0t in R, (4.18)

and, the constant coefficient operators L on R4 are both (weakly) hyperbolic.
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The unknown U satisfies ([LF). Denote by U* = {U, ..., UL} the restriction of the unknown U to
R4. They satisfy differential equations in the half spaces R4.

Lemma 4.6. For U locally square integrable on a neighborhood of (t,z) € {x1 = 0} the following are
equivalent.

(i) LU € L? on a neighborhood of (t,z) in Rl"’iin the sense of distributions. L
(i) There is a neighborhood O of (t,x) so that LU* is square integrable on O NR% and [A1U] = 0.

Remark 4.4.
1. The first hypothesis is often verified by combining LU + B(z)U € L?
2. [A;U] makes sense since the differential equation implies

51(Z1I7+) € Lloc(]o’g[; Hloc(Rd ))

UcL? and B e L™

locy loc loc®

With U € L2(|0,[; H;;}(R%) this implies that A,U+ € C([0,e[; H,,./*(R%)). An analogous result holds
for AlU Therefore the traces from both sides and the jump are well defined elements of H, locl/ 2

3. is clear on a formal level since if A;U were discontinuous there would be a d(z1) term from the
differential operator L applied to U.

4. The standard proof based on these remarks is omitted.

loc

Open problem. For two or three discontinuous absorptions, o1(x1), o2(22) and o3(x3) as proposed by
Bérenger, we do not know if the initial value problem is well-posed for the Maxwell equations. When
the discontinuous coefficients are smoothed as is standard in practice the well-posedness for Maxwell’s
equations is proved in §@

We have supposed that the nonzero data are initial values f¥(x). By the usual subtraction one can
convert the problem to one with homogeneous initial values and right hand side and inhomogeneous
transmission condition. In this way, the determination of U= is reduced to finding W+ satisfying the
inhomogeneous transmission problem

L0, 0,)W* + BEW* = 0, A4, [W] = 7, (4.19)
where

cfIdy 0...0

~ 0 0...0
B* = S (4.20)

0 0...0
and g(t, x) take values in Range /~11. The unknowns W and source g are vectors of length dN.

Theorem 4.3. Suppose that L(0) is a hyperbolic operator nondegenerate with respect to x1 and that the
Bérenger’s doubled operator L is weakly hyperbolic for o = o*. Then, the transmission problem (f.19)

with absorption (|.1§) satisfies Hersh’s condition.

Proof. Drop the tildes on the Fourier-Laplace transforms of W, g for ease of reading. The transformed
problem is
d — S
(Ald— + Lir0,im))WE =0, A W] =g (4.21)
1

The condition of Hersh is that for an arbitrary right hand side g in range Zl this transmission problem
has one and only one solution.

Denote by E%E(T, 7n,0) the spaces associated to the Bérenger operator operator L with absorption o.
The uniqueness of solutions of () is equivalent to

A EZ (1,m,07) 0 AEX (r,n,07) = {0}, (4.22)
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Existence is equivalent to
AE F(mmo7) + AE (7‘ n,0t) = rangeA;. (4.23)
Part (ii) of Lemma [£.4 implies that
dim (A, B Z(r,m,07)) + dim (%LE% (r,n,6%)) = dim (range 4, ),
so ([.29) implies ([.23). It remains to prove ([E2).

For o > 0, the split Bérenger operator L is hyperbolic so for ReT > 79(0) the solutions of
L(r,d/dzy,in)U = 0 (4.24)

are generated by exponentially growing and exponentially decaying solutions. The next lemma identifies
these solutions in terms of the corresponding solutions of

L(r,d/dzy,in) V =0. (4.25)

The result shows that the traces at 3 = 0, E%, are independent of o.

Lemma 4.7. For o >0, ReT > 19(0), n € R¥™L,

(i) The map

o~

Vi) (% MV ((r+)arfr), B 4V ((r+ a)anfr) o ”—jAd?(vw)xl/r))

is an isomorphism from solutions of ([.23) onto the solutions of ([24).
(ii) p is a root of det L(7,-,in) = 0 if and only if v = (T + o)u/7 is a root of det L(T,-,n) = 0.
(iii) For the roots in (ii), the real parts of u and v have the same sign. In particular, the map in (i) is

an isomorphism EzE(T, n) — E—jLE (1,m,0).
(iv) The map W= (/V[Z’ . 7ng) D Wj is an isomorphism E%[(T,n, o) — Ef(r,m).

Remark 4.5. In (i) it important to know that the solutions V (z) are entire analytic functions of x;
so it makes sense to evaluate V at points off the xj-axis. In the literature this is sometimes called a
complex change of variables. It is only reasonable for analytic solutions. A related idea is used in the
Fourier-Laplace analysis for general o1 (x1) presented in §4.2.

Proof of Lemma @
(i) I U = (Uy,...,Uy) satisfies ([.24) then with W := > Ujs
dw - S = :
Ald_1 + (r4+0)U; = 0, TU; + i A; W =0, j=2,...,d. (4.26)

Multiply the first by 7 and the last d — 1 by (7 4+ o). Sum and then divide by 7 to find,

2 L(r,0,in) WE = 0. (4.27)

Conversely it W satisﬁes () and U for j > 2 is defined from W using the last equations in () and
U =W Z > Uj then U satisfies (}.24)).

The solutions W to ([£27) are exactly the V((r + 0)a1/7) with V satisfying (f29). This proves that
the mapping in () is surjective.

The set of solutions V of ({:29) has dimension rank A;. The set of solutions of (f.24) has dimension
rank A; = rank A; (see [®-3)). so surjectivity implies injectivity.

(i4) and (iv) follow from (3).
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(23i) Denote by K the mapping from (7). When 7 > 0, (7 + 0)/7 is also positive and real. Therefore K
maps decaying (resp. increasing) solutions to decaying (resp. increasing) solutions. Thus for 7 > 7y and
real,

K(E{(r,n) = EL(1,n,0). (4.28)

For all Re 7 > 19, K(E] (7,7)) is a subspace of solutions of ([24) with dimension equal to dim Ef(1,m).
If (.2§) were violated, K (E™(7,1)) would contain exponentially growing solutions. If this happened at
7,1 with Re £ > 79 consider the values 7(r) = Re £+ rIm 7 for 0 < < 1. For r = 0 (§.2§) is satisfied
while for » = 1 it is violated. Let

f(r) = maX{ReT(:_)(%u det L(r(r), p,in) =0, Re,u<0}.

Then f(0) < 0, f(1) > 0 and f is continuous, so there is a 0 < r < 1 so that f(r) = 0. Then for
7 = Rer + rImz there is a purely imaginary root. This violates the hyperbolicity of L establishing
(:29) This proves (iii) completing the proof of the Lemma. 0

We now finish the proof of Theorem @ by proving () Lemma @ implies that the spaces of
Cauchy data EZi are independent of 0. Therefore if (.29 is violated then also

Aleg(T,n,O'-’_) N Ale.%_(TvnaoA_) 7& {0}

This contradicts part (iv) of Lemma @ for the operator L with absorption o1. The proof of Hersh’s
condition is complete. O

In these problems with only one nonzero absorption coefficient o1 and o7 = 0 when z; < 0 one can
consider a transmission problem which is only split in 1 > 0. The next result shows that this partially
split problem satisfies Hersh’s condition if and only if the fully split problem does.

Introduce the partially split problem (L, R, N') where

L=1I1,(0), R=Li+B" with ot>0, N = {(V,W): V- W, € kerA}, (4.29)
J

with B+ given by (20) and the split variable on the right is W= (Wi,...,Wa).

Corollary 4.1. Suppose that o; = 0 for j > 2, and o > 0. Then the partially split Bérenger transmission
problem (L1, L1+ BT, N) defined by (1.29) satisfies Hersh’s condition if and only if the fully split problem
does.

Proof. Denote by (V, W) = (V,Wh,...,Wy) the variables for the partially split problem and (ﬁ, W) =
((Ul, o Ug), (W, Wd)) the split variables. If [7(7, x1,1m), W\(T,xl,n) is an exponentially decaying
solutiAon 9f the split Laplace-Fourier transformed homogeneous transmission problem, then (‘A/, ﬁ/\) =
> ;Ui W) is an exponentially decaying solution of the partially split homogeneous transmission problem.

Conversely, if V(T,xl,n),W(T,xl,n) is a solution of the homogeneous partially split problem, the
computation leading to ([t.24) shows that

61 = 77’7114181‘7, 6]' = 77’71 ’L?]]AJ ‘7, ] Z 2,

is an exponentially decaying solution of the fully split homogeneous transmission problem.
Therefore, if either problem has decaying solutions for 7 real and Re 7 arbitrarily large, then so does
the other. 0O
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4.1.4. Perfection for Bérenger PML with one piecewise constant o1 # 0.

Theorem 4.4. With the hypotheses of Theorem @, the Berenger transmission problem is perfectly
matched. The Bérenger transmission problem that is only split on the right is also perfectly matched.

Proof. Verify condition (i7) of Theorem @ For K € Eg (1,m,07") consider the unique decomposition
guaranteed by the Hersh’s condition,

(K.0) = (W=, W)+ (F~,F7), (4.30)
where,
(W= W) = (W, W) W W) €N (P FY) € Bx (rn,07) x B (r.n,0").

Perfection is equivalent to F'~ = 0.
By inspection, one such decomposition (}.3(]) is given by

(K70) = (KaK) + (Oa _K)
where we use the fact from Lemma Q that
B (rm07) = Bf(rn.o").

As this decomposition satisfies F'~ = 0 the proof of the first assertion is complete.
For the partially split case, K € EZ(T, 7) has a unique decomposition from the Hersh’s condition,

(K,0) = (W=, WF) + (F7,F"),
with
W=, WH) =W, (W,..., W) eN, (F7,FF)eE(r,n)x Ef(r,n07).
Define

wi o= LK.
T

J

Part (i) of Lemma [I.7 implies that W+ € E.’-JLf(T,n, o). In addition, 3>, W;" = K so (K, W) e N.
By inspection

(K,0) = (K, W) + (0, -WT)

is the unique Hersh decomposition. Since F'~ vanishes for this one the proof is complete. O

4.1.5. Perfection for methods related to Bérenger.

All computations below are formal manipulations. Taking the Laplace transform of (E) in time yields
Ul + (T—l—O’j(l‘j))_lAJ‘ajU = 0, 1 <1 <d,
with U = )", U;. Sum on j to obtain

.
U —A;0,U =0 1<y <d. 4.31
i +zj:7'+oj(zj) 7 ’ =J= (4.31)

This equation is the starting point for many authors. It has been seen as a complex stretching of coordi-
nates (see 2], [{ll. [B3). [[J], or, in the case of Maxwell system, as a system with modified constitutive
equations (a lossy medium [PE],[P]), or recovered as above from the Bérenger’s system. The system ([L.31))
is no longer differential because of the division by 7 + o;(z). In order to recover a hyperbolic system, a
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change of unknowns is performed. We adopt the approach in for the Maxwell system with matrices

given in (B.3).

Lemma 4.8. Define S; := (1 +0,(x;))/7. The exists a pair of invertible matrices M, N, unique up to a
multiplication by the same constant, such that

S;INA; = AjM, j=1,2,3. (4.32)
They are given by
S0 0 5285 0 0
M:’y 0S5 0 R N:’y 0 515 0 s ’YE(C\O. (433)
0 0 S5 0 0 515
Proof. Since
Ajej =0,  Ajejp = —iejpa,  Ajejir =€,

it is easy to see by applying (£.32) to e; that M is necessarily diagonal, M = diag(m1, ma, m3). Applying
([:39) to e;11 and e;j o shows that for any j,

Nejr1 =mj255€e41, Nejio=m;1155€j42.
This implies that N is also diagonal, equal to diag(maeSs, msS1, m1.52), and

m1S3 = m3S1, maS1 =m1Sz, m3S52 =m2Ss3

This leaves no choice but to choose ([.33). O

In the rest of the analysis take v = 1. Insert in ({£.31]) to obtain

TNU + Y A;MO;U = 0. (4.34)
J
The fact that o; depends only on z; and the form of the matrices guarantees A;0; M = 0. This yields
A;MO;U = A;0; (MU).
Define a new unknown V' := MU to find
NM~'7V + > A;0,V = 0. (4.35)
j
NM-1! = diag(5f15’25’3, 52_15’35’1, 53_15’15’2). Next compute a rational fraction expansion of TSfngSg
as
0% + 0903 — 01 (02 + 03)

T4+ o09)(T+ o0
—( 2)( 3) =7+ (02+03—01) + .
T+ 01 T+ 01

Introduce a new unknown W to find
TNM™YV =7V + SV 4+ 22W, W, = ;Vj = lUj,
T+ 04(x;) T
with
Y= diag(ol,og,ag),
» = diag(02 + 03— 01,03+ 01 — 02,01 + 02 — 03),
»@) = diag((al —09)(01 — 03), (02 — 01)(02 — 03), (03 — 01) (03 — 02)).
This leads to a system in the unknowns V' and W:
L(0y, 0,)V +3WV 4+ 2@w = o,
OW+XW -V =0.
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Finally, U is recovered by
= oW =V - XW.

The system of equations for V, W is strongly well-posed since L is symmetric hyperbolic. In the case of a
single layer in the x; direction, we have only one coefficient o, therefore a single extra variable, and we
obtain in terms of magnetic and electric fields,

OB — (V/\H)l — ok +O’2W1 =0, O Hy + (V/\E)l —oHy +O’2W2 =0,

atE27(V/\H)2+O'E2:0, atH2+(V/\E)2+UH2:O,
atng(V/\H)gﬁ*O'Eg:O, atH3+(V/\E)3+UH3:O,
8tW1+oW1—E1:O, atW2+O'W27H1:0,

which is in 2 dimensions identical to the layers in [2] and equivalent to the layers in [J].
The principal symbol and lower terms are

L 0 »(1) »n(2)
R (0 Igat) and (13 b )

Reversing the computation shows that (V, W) € Ker R(7,¢) if and only if V.= MU, W = 1/7U, and
Ly (7, f_ﬁ; Ly f_ﬁ—;)U = 0. The characteristic polynomial is therefore the same as for Bérenger’s layer.
Thus, by Theorem @

g
detR(T 5) = T _Zm

Consider next the question of perfection for an absorption in the direction x; only. The difference here

with the theory developed above is that a change of unknowns is added. That is we must match V
on the interface. The solutions of det R(t,p,in) = 0 are pf = TE2pE with pf = +p = /72 + 02

Identify F}, and for that first identify a basis for Ker R(T,&). Ker L(7,€) is generated by ®(7,&) =
(& -7 /'51,“'53/51 + &2, —it62 /&1 + €3). Ker R(7,§) is generated by
M(ro)a(r, S g =200
ou(r,O)=| erte , M(r,o)=1| 0 10
—®(r, ,¢) 0 01
T T+o0

The matching is perfect if and only if

T . .
Ay M (7,0)®(T, . Jer('T,m) = A19(7, pL,in),

which is the case since 28T = p,.
T+0

4.1.6. Analytic continuation for Mazwell like systems and Bérenger’s plane waves

In this section we investigate Bérenger’s method for operators, including the Maxwell system, whose
characteristic polynomial is 77 (72 — |£|?)?. For ease of exposition we treat the case d = 2 and the explicit

L= o + (é 0>81 <0 1> D (4.36)

Analogous results are valid for the Maxwell system with only slightly more complicated formulas.
For Re 7 > 0 and 1 € R there is exactly one root of det Ly (7, p,in) = 0 with Re p > 0 given by

p = /12412, Rep>0.

The corresponding eigenspace Ej (r,7) from ([L179) is spanned by ®(r,n) = (—in, 7 + p). If Ly is
the Bérenger operator doubled in the x; direction one has the same roots and EJr is spanned by

(pAl@,mAg )

operator,

Proposition 4.2.
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(i) For eachn, p(t,n), E; (1,1), and Ef (1,m) are holomorphic in Ret > 0 with continuous extension
to ReT > 0.
(i) If o1 > 0 then for Ret > 0 and n € R the equation det Z(T, v,in) = 0 has exactly one root v with
positive real part. It is given by v = (1 + o1)p/T.
(iii) For oy >0, the relation ({13) with Ly on the left and L is satisfied for {Ret >0, 7 # 0}.
(iv) The mapping H(7,n) is for each n holomorphic in ReT > 0 with continuous extension to {Ret >

0, 7#0}.

Proof.
(i) There are two roots p = /72 + 12 one with strictly positive real part and the other negative. Each
is holomorphic in Re 7 > 0. Holomorphy for Ezr r(7,m) follows from their expression in terms of p.
Consider the behavior as ReT — 0. If 7 does not tend to zero, then one stays in the interior of the
non-exceptional points and both p and the eigenspace are holomorphic up to the boundary.
If » # 0 and 7 tends to zero, then the roots p tend to +in so both the root and eigenspace are
continuous up to the boundary.
If n = 0, then p = 7 and the eigenspace is (0,1). Both are continuous up to the boundary.

((i7) Tt suffices to remark that this is an eigenvalue and then to show that the real part is positive. For
the latter compute

0 (T+0o T2+ n?

%(TWW) = T = VI

For Re 7 > 0 this has positive real part so the real part of the eigenvalue is increasing as a function of o
so is positive for all o > 0.

((4i3) Tt suffices to show that (J.11]) is valid for such s, 7. Suppose (v, w) = (v1,va, w1, ws) € Ey x E4. Must
show that v1 + vy # wy + we. Since (w1, wq) € E4 it follows that wy + we € 4. Similarly v; +vs € E_.
Thus it suffices to show that E_ and E. are uniformly transverse as Re T — 0. It suffices to show that
(in, 7+ p) and (in, T — p) are uniformly independent. This follows from p # 0.

((iv) The holomorphy of H follows from (i). The continuous extension follows from (i) and (ii7) . m|

Since the method is perfectly matched, H = 0 for Re 7 > 0. By continuity the map vanishes for purely
imaginary 7 # 0. This shows that for {Re7 > 0} \ 0, the function equal to

eimtto(rmeitine g for p1 <0, and eTHHP(mMITIRINTL (=opT/T § for g1 >0,

satisfies the Bérenger transmission problem. For Re 7 > 0 these solutions decay (resp. grow) exponentially
as 1 — oo (resp. ¥;1 — —o0). Though such solutions serve to verify perfection they don’t look very
physical in isolation.

On the other hand, when 7 is purely imaginary and not equal to zero, the solution is a bounded plane
wave in z; < 0 and is a plane wave modulated by an exponentially decaying factor in x; > 0. These are
the solutions which Bérenger constructed to show that the method was perfectly matched.

In the language of the analytic objects constructed in the preceding lemma, Bérenger’s plane wave
solutions show that H(is,n) = 0 when s is real valued with s? > n%. For ) fixed the function 7 — H(1,n)
is holomorphic in the right half plane continuous up to the imaginary axis punctured at the origin,
and vanishes on the boundary interval 7 = is € iR with s> > 7?. By Schwarz reflection and analytic
continuation this implies that H vanishes in the right half plane.

In summary, the computation of Bérenger is actually sufficient to prove perfection for Maxwell’s system
given the structures provided in this paper.

Remark 4.6. The perfection argument based on plane waves is not valid in full generality where the
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objects like E and H are analytic in ReT > 75 with 75 > 0. This is the case, for example, whenever the
absorbing layer is amplifying.

4.2. Fourier-Laplace analysis with variable o1 (x1).

Consider the case of only one nonzero oy (x1). If Lis hyperbolic for one constant value g; # 0 the scaling
(t,x) — (at,az) shows that L is hyperbolic for o, /a. Therefore L is hyperbolic for all constant values o .

The results of §@ will be extended to the case o; = 0 for j > 2 and variable coefficient o1 (z1). The
Fourier-Laplace transform U (1,21,n) of the Bérenger split operator satisfies

Z(T,d/dml,n)ﬁ = 13, —00 < 1 < 00,

with variable coefficient o1 (z1).

The first line of the proof of Lemma [L.] yields ([£26) with ¢ = o1 (z1). As in the proof of that lemma
one derives ({.27) now with ¢ = oy (z;). The important observation is that the x; dependence of the
coefficient appears only as a scalar prefactor in ([.27). Such equations will be analysed in the same way
as the equations in Lemma [£.3.

4.2.1. Well-posedness by Fourier-Laplace with variable o1(x1).

Theorem 4.5. Suppose o; = 0 for j > 2 and o1(x1) € L>=(R) is real valued. Suppose in addition that
L is nondegenerate, and for one value o1 # 0, L is hyperbolic. Then there is a 79 > 0 and m so that for
all X\ > 19 and F € eML*(Ry : Hm(Rf,m,)) there is a unique solution solution U € e L2(R41) to the

Bérenger split problem LU=F.In addition, there is a constant C independent of F,\ so that

el pagasay < Cllem™F| (4.37)

2 (R, : Hm(]Rf’I,)) :

Remark 4.7.
1. The condition U € e*L? implies that U tends to zero at t — —oo as does F.
2. If F is supported in t > tq it follows from (4.37) on sending A — oo that U is supported in ¢ > t.

Proof. The values of the Fourier Laplace Transform of W = > U; are computed from the ordinary
differential equation

dW S
A,V T o) Li(r,0,ip) W = F. (4.38)
dzr, T
As in Lemmas @ and @, transform to the equivalent form,
(I 0) dw n T+0’1(l’1) (H11 H12

s W = F,  Hy invertible.
0 0 dl‘l T Hgl HQQ) ’ 22 Hvertibie

Denote the decomposition as W = (Wy, W;) and similarly F. The invertibility of Has from Lemma E
yields,
Wi = Hy,' (Frr — H21W1) : (4.39)

It suffices to find /WI which is determined from,

dw, T+ o1(x = ~ B PO i~
dxl + Tl( 1)M(7',7])W[ = G, M(r,n):=Hy — HyHy ' Hyy, G:=F;+ Hy'Fyy.
1

The hyperbolicity of L implies that M has no purely imaginary eigenvalues. Correspondingly there is
the decomposition, into the spectral parts with positive and negative imaginary parts,

W = W+ Wy, G = G +G, M=M"® M.
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For o constant, part (iii) of Lemma [L.7 (using the hyperbolicity of L) implies that for Re 7 sufficiently
large (depending on o), one has the spectral decomposition,

T+ 0

Mirn) = T M)t @ T M(r)-
T T
corresponding to spectra with positive and negative real parts.

Lemma 4.9. If g(x1) satisfies dg/dxy = o1 , then
d PP d T+ o01(x1) ~
el g(x1)M /T — pglz)M/T [ _©
(dl‘l +M) (6 UI) ¢ (dxl + T M)UI
Proof of Lemma. Since d (egM/TUI)/dxl = e9M/T (dg/dleﬁI/T + dﬁf/dacl) one has
(i 4 M) (69(961)M/Tfj]) — e9M/T (@ 4 (M + ﬂ) [7[) :
dxq dxry T T

proving the desired identity. O
Therefore

W, - e—g(m)M/r(i+ )71((39(“)”“7@).

dl‘l

The unique L! fundamental solution of d/dx; + M is equal to,

—X1 + —T1 -
e M Nooof(x1) + e g (21)
Therefore,
egM/‘r Wl-i— _ (e—zll\/j+ X[Oyoo[(l'l)) % (eg]\/f/ré)'i"
eIM/7 Wf = (eiIlM? X]—o0,0] (xl)) * (egM/Té)7 .

The kernel of the integral operator mapping G+ to ’W;r is equal to,

exp ( —(x1—11) {T *(g(z) = gT(yl)/(xl — ) M(r, n)*}) X1 >y - (4.40)

Lemma 4.10.

T+ o0

3710 =710(1), VReT >79, VneRY Vo€ [—pupul, spec M*(r,n) € {Rez>0}.

T

Proof of Lemma. Part (ii7) of Lemma Q allows one to choose 71 so that for o = p one has the desired
conclusion for Re7 > 1. Then for A € spec M (7,7)" one has

ReA>0,  Re(l+2)A=Re % >0.

T+
Tr
For 0 < o < p write o = a+ bu with nonnegative a, b summing to 1. It follows that Re (14 p/7)A > 0.
This proves that 7, suffices to treat the nonnegative values 0 < o < p.
Choosing 75 for ¢ = —pu, that value suffices for —u < o < 0. Set 7y equal to the maximum of 71 and

2. 0

The Seidenberg-Tarski Theorem @ shows that the absolute values of the real parts of the eigenvalues
of M(r,n) are bounded below by C(|7| + |n|)~" for some N. And also that the spectral decomposition
V i (V*,V7) and its inverse are both bounded polynomially in |7, n|. More generally for 7,7, u, o as
above,

T+
-

spec ——M*(r,n) € {[Rez|>C(lr|+ )}
Taking u := || f|| L one finds that for all z1,y;, the matrix

T+ (9(@1) —g(y1)/ (@1 — 1) M(r,n)* (4.41)
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has spectrum in
{Rez>c(rl+m) ™},  c>o.

The elements of the matrix ([.41)) are bounded above polynomially in |r,7|. Therefore the kernel ([.40)
is bounded above by

I, 0N exp (—c(z1 —y1)/I0Y) Xeysy . €>0. (4.42)

This is proved using Schur’s Theorem to reduce M* to upper triangular form by orthogonal transforma-
tions of the spectral subspaces. Then solve the differential equation X’ + M*X = 0 by back substitution
to prove ||exp(pM™T)|| < C|r,n|Pe=ce/Inl™

The operator with kernel ([.49) is convolution by an element of L!(R) whose L' norm grows poly-
nomially in |7,7|. By Young’s theorem one concludes that the operator with kernel ([4() has norm in
Hom(L?(R)) which grows at most polynomially in |7, 7).

There is an entirely analogous estimate for the expression for the spectrum with negative real part.

Therefore,

HWI(TMTMU)HL2(R) < G (1 + |T| + |77|)N } G(Taxlan)HL2(R) < Gy (1 + |T| + |77|)N Hﬁ(Ta-Tlan)HL2(R) :

A similar estimate for Wy follows from (£:39). Estimates for U ; follow from the second equation in ({£.24).
Plancherel’s Theorem then implies (@)7 proving the existence part of well-posedness.

Uniqueness is proved by a duality argument of Holmgren type using existence (backward in time) for
the adjoint differential operator (details omitted). |

4.2.2. Perfection for Bérenger PML with variable coefficient oq(x1).

Lemma 4.11. Suppose that A, M satisfy the hypotheses of Lemma@ with G and M € Hom G are from
that Lemma. Suppose in addition that f € L2 (R; C) and g is the unique solution of

loc
B _fog0)=0, s, glm) = /1f(s) ds.
0

dl‘l

Then for v € G the unique solution of the equivalent initial value problems for the G valued function U,
du du ~
A— + f(x1) MU =0, equivalently, — + f(z1)MU = 0, U(0) =1,
d.fCl d.fCl
18

U(z1) = e 9(@) M

Proof. Compute using the differential equation,
d i il dg\—~ dU al. = ~
2 | e9(@) M — ()M | [ 2T 2V o py(z)M _ _

The lemma follows. O

The next result shows that when the Bérenger split problem with absorption o(z1) defines a stable
time evolution, then the problem is perfectly matched. Either the split problem is ill posed, or it is
well-posed and perfect.

Theorem 4.6. Suppose that o1(x) € L>(R) has support in [0, p] for some p > 0, that o; =0 for j # 1,
and that the operator L with these absorptions defines a weakly well-posed time evolution. Then, the L
evolution, is perfectly matched in the sense that for F € C§°({t > 0} N {z1 < 0}) the solutions U and U’
with and without absorptions respectively,

LU =rF, U =0, and, LU = F, ﬁ/‘tgo =0

t<0
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satisfy
g = 0

x1<0 <0’

Proof. Denote by U and U’ the Fourier-Laplace transforms. The functions are characterized by
zl(T,d/diEl,n)ﬁ = ﬁ’ andv Z(Tad/dzlan)ﬁ/ = ﬁv

both requlred to decay exponentlally as |z1| — oo. The strategy is to construct a solution of the problem
defining U’ from the solution U
The equations for W = Zj UJ and W’/ = Zj U]{ in z; > 0 have the form

d AW
Al—W + MW =0, a4 TEa)
dzy dry T
Lemma applies with f(z1) := (7 + o(x1))/7.
Define g as in that lemma. Set V=W in x; < 0. For 1 > 0 define

MW = 0.

Vo= e_g(zl)MW(T 0,7) .

The resulting function satlsﬁes the differential equatlon required of W In addition since e~ 9@1)M jg
independent of xy for 1 > P v decays as rapldly as W. Therefore V satisfies the condltlons unlquely
determining W’. Therefore V = W', and W' lor<o0 = W|$1<0. Use ([.24) to recover U, U’ from W, W
shows that U’|;, <0 = Uls, <0, proving perfection. O

Example 4.2.

1. If L1(0,0,) is elliptic then Corollary @ shows that the evolution of L is strongly well-posed. This
includes the case of anisotropic wave equations for which the layer is amplifying showing that perfection
is not at all inconsistent with amplification.

2. For the Maxwell equations and o1 (z1) € W2 (R) well-posedness is proved in Theorem and we
deduce perfection.

5. Plane waves, geometric optics, and amplifying layers

This section includes a series of ideas all related to plane waves and short wavelength asymptotic solutions
of WKB type. We first recall the derivation of such solutions from exact plane wave solutions by Fourier
synthesis. Then we review the construction of short wavelength asymptotic expansions. These are then
applied to examine the proposed absorption by the ;. In many common cases the supposedly absorbing
layers lead to asymptotic solutions which grow in the layer. Related phenomena are studied by Hu, and
Becache, Fauqueux, Joly , [E] For the Maxwell equations for which the PML were designed, the
layers are not amplifying. At the end of Section @ situations where the amplification does not occur are
identified.

5.1. Geometric optics by Fourier synthesis

When the coefficient ¢ vanishes identically, both L and L are homogeneous constant coefficient systems.
When (z,§) is a smooth point of the characteristic variety, denote by 7 = 7(§) the smooth parameteriza-
tion, and Iy, (7,§) and II; (7, £) the associated spectral projections for £ ~ ¢, see (B-9). The function 7(¢)
is homogeneous of degree 1, while the projectors are homogeneous of degree 0. The next argument works
equally well for L and L.

For G(§) € C§°(RY) construct exact solutions for 0 < ¢ << 1,

US(t,2) = / GETHTON 11, (7,6) G(e - £/e) de
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Make the change of variable
gié/s = Cv 5:(§+€§)/€7

and extract the rapidly oscillating term e ETFIN/E 16 find,
Ua(t,l') = ei(§‘$+lt)/8 /ei((‘l’(§+€<)*‘r(§))t/€+<m) HL(T(§+€§),§+€§) G(C) dC

= &TFTO/E (et x). (5.1)

Expanding in € and keeping just the leading term yields the principal term in the geometric optics
approximation

Us m el&atrt)/e /ei(z'c""m HL(z,§) G(O) dC, v = —=0e7(§).
One has
UF S (v, aole) = [ @I GO
A complete Taylor expansion yields the corrected approximations which satisfy the equation with an
error O(e™V) for all N. We write O(£>) for short. This yields infinitely accurate solutions,
Us(t,x) = e’ CFD/eq(t x,¢), a(t,x,e) ~ ap(x —vt)+ear(t,z)+--- . (5.2)

If 0 is a semi-simple eigenvalue of L(7,¢§), and ®¢ € Ker L(7, &) \ {0} of dimension 1, then the leading
amplitude ag in the case of ([L1)) (resp. (7)) is of the form

, —
T

a(t,z) g, (resp. alt, x)(g—lAltbo, . S Ad<I>0))
T
with scalar valued amplitude « satisfying,
(0,5 —|—v.6$)a = 0.

This shows that « is constant on the rays which are lines with velocity equal to the group velocity
v = —0¢7(§).

For g € C§° \ 0 the solutions do not have compact spatial support. This weakness is easily overcome.
Choose x € C§°(R?) with x = 1 on a neighborhood of the origin. For g € S(R?), define exact solutions
by cutting off the integrand outside the domains of definition of 7(¢) and Il (7(&),€),

w(t,z) = / SHEHTEON T1L (1(6), €) (€ — £/2) x(VE(E — £/2)) de. (5.3)

The analysis above applies with the only change being the initial values. In the preceding case these
values were equal to the transform of Il (7(£),&) g(§ — £/¢) and in the present case they are infinitely
close to that quantity,

u(0,2) = / L (r(€),€) g(€ — /) dE + O(=).

This yields infinitely accurate approximate solutions (2.5) which have support in the tube of rays with
feet in the support of [ ™€ II.(7(€), &) g(&) d€.

5.2. Geometric optics with variable coefficients

The Fourier transform method of the preceding sections is limited to problems with constant coefficients.
In this section the WKB method which works for variable coefficients is introduced. It will also serve for
the analysis of reflected waves.

Let £ be the general operator in (R.1]). Fix (7,€) € Char £ and seek asymptotic solutions

+oo
Us ~ e/¢ Zsja]—(t,x), with the phase S(t,z,§) = tr+ z€. (5.4)
§=0
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More precisely we construct smooth functions a;(t,z) with suppa; N ([0,7] x R?) compact so that if
s .
a(t,x) ~ Z el a;(t, )
j=0

in the sense of Taylor series at ¢ = 0 also has compact support then
Us = /% a(t, x)
satisfies for all s, V,

lcu — 0(Y).

HHs([o,T]de)

In this case we say that (@) is a infinitely accurate approximate solution. The next result recalls some
facts about such solutions.

Theorem 5.1. Suppose Problem (R.J) is hyperbolic, (7,£) € Char(L) satisfies the smooth variety hy-
pothesis, and 0 is a semi-simple eigenvalue of L(T,§).

(i) If the coefficients a; satisfy the recursion relation
ap(t,x) € Ker L41(1,§), (5.5a)
Vi>0, iLi(1,6)a;1(t,x)+ L(0,0z)a;(t,x) =0, (5.5b)

then (5:4) is an infinitely accurate approzimate solution of (P.1]).

(ii) If gj(z) = Ue(1,€)g; € C°(RY) are supported in a fived compact K, then there is one and only
one family of a; satisfying (E) together with the initial conditions, Il (7,£)a;(0,z) = g; and the
polarization Mz (1,&)ag = ag. They have support in the tube of rays with feet in K and speed of
propagation v = —07(§).

(i11) The principal term ag is a solution of the transport equation

Orag + v - 0zag + (7, &) B(x) g (7,&)ag = 0. (5.6)

Proof. For simplicity, throughout the proof we note Il := IIz(7,£) when no ambiguity is to be feared.
The equations (f.§) are obtained by injecting U® in (R.1]), to find an expression ~ e*%/¢ >0 €l w;(t, x).
In order that the w; vanish it is necessary and sufficient that the equations @) are satisfied.
Next examine the leading order terms to find the relations determining ag. Projecting the case j =0
of (F.3) onto Ker £; yields,

d
e (0 + Y Aid + B(x)) ag = 0.

=1

This yields a first order system satisfied by ag = Il ag,

d
dvao + > T AyTIz Qyag + Tl B(x) Iz ag = 0. (5.7)
=1

The leading order part of this equation is a scalar transport operator. To see this differentiate
L1(7(£), T, (7(€), &) = 0 with respect to & to find

(s + T 1) M (r(60,6) + £1(7(0).9) 5 (Ter(€).6)) = .
651 afl
Multiplying on the left by I, (7(£), &), eliminates the second term yielding,
oAl + 3T(§)H =0.

og £
Injecting this in (f.7) yields (f-G).
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In order to compute the coefficients recursively, multiply (p.5H) on the left by the partial inverse
Qr(1,€), using the identity in @), to obtain for j > 1.

(I-Tg)a; = iQrL(0r,0x)aj—1. (5.8)
Projecting () on the kernel yields,
Iz £(0),05)a; =0.
Writing a; as
aj =Mza; + (I —1g)a;, vyields IIz L(0),05) Iz a; = =1 L(Oy,05) (I —1Iz)ay.
This is again a transport equation, but with a righthand side,
Olca; +v-0,1za; + g Bllga; = =1z L(0,0,) (I —1z) a,. (5.9)
(b.§) and (F.9) permit to calculate the coefficients recursively, knowing the initial values. m|

Next apply the above algorithm to the PML operator L. Fix (1,€) € Char L and seek asymptotic
solutions

—+oo
Us ~ e/¢ Zsj&j(t, x), with the phase S(t,z) = tr+ax-&. (5.10)
=0

Corollary 5.1. Suppose Problem () is strongly well-posed, (1,&) € CharL satisfies the smooth variety
hypothesis, and 0 is a semi-simple eigenvalue of L(T,§).

(i) If the coefficients a; satisfy the recursion relation

ao(t,z) € Ker Ly (7€), (5.11a)
Oz a; +v - 0,105 aj + B(x) I a; = —11; L(y, 0,)(I — 113) @y (5.11c)

then (b.10) is an infinitely accurate approzimate solution of ([L.3).

(it) If gj(z) =117 §; € Cg°(RY) are supported in a fived compact K, then there is one and only one family
of a; satisfying (b.11)) together with the initial conditions, 11 (7,£)a;(0,x) = g; and the polarization
I (7,&)a0 = ao. They have support in the tube of rays with feet in K and speed of propagation
v = —07(§).

(i11) The principal term ag s a solution of the transport equation

d
o + v - Opio + B(x)ag = 0, with P(x) = > (5.12)

Proof. We need only identify the constant term in (E) Use the form of the projector given in Propo-
sition @, to obtain

; B(x); = B(x); 0

5.3. Amplifying layers

The coefficient oy(x1) > 0 is introduced with the idea that waves will be damped in the layer. In this
section, we show that sometimes the anticipated decay is not achieved, and waves may be amplified. This
was observed in [E] The authors analysed the phenomenon for ¢ constant in the layer. They showed that
in an infinite layer solutions can in certain cases grow infinitely large. We present a related analysis using
WKB solutions which has three advantages,

1. The analysis is valid for variable coefficients oy (z1) which corresponds to common practice.
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Fig. 1. Amplified outgoing wave numbers in bold

b, ) outgoing
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2. The growth is seen immediately and not expressed in terms of large time asymptotics.
3. The analysis in [E] was in part restricted to d = 2 and eigenvectors of multiplicity one. We remove
these restrictions.

Theorem 5.2. Suppose (1,£) € Char(L) satisfies the smooth variety hypothesis and 3(x) is as in (p.12).
Suppose in addition there is an interval on a ray
to

I:={(0,z) +t(1,-0¢7(§)), 0<t<tp}, so that, Bz —tde7(€))) dt < 0.
0

Then the corresponding WKB solution grows in the layer.

Proof. The solution of the transport equation (p.12) is,

t
ao(t,z) = exp (/ Bl - 8357(5))))618) ao (0, z + 109 7(£))- (5.13)
0
The exponential is strictly greater than 1, so

|ao(t, z + t9¢7(£))| > |ao(0,z)]. (5.147

Example 5.1 (No amplification for Maxwell/D’Alembert). If the disperion relation is 72 = |¢|?
and o > 0 then there is no amplification since,

g = ZUJ‘(%‘)W >0
j=1

Example 5.2 (Amplification is common). For the dispersion relation 72 = ¢(£) where ¢ is a positive
definite quadratic form so that the £ axes are not major and minor axes of the ellipse ¢ = 1, there are
always 7 > 0, & so that x; layers with oy > 0 are amplifying ([ff]). There are two lines on {r = ¢(¢)'/?}
where 0q/0¢; = 0. The half cone on which dq/0¢ < 0 corresponds to rays on which x; is increasing so
they enter a layer x; > 0. The half cone {Jq/0¢; < 0} is divided into two sectors by the plane & = 0.
The sector on which & > 0 (resp. & < 0) corresponds to growing (resp. decaying) solutions (see figure
@ on the left). This example shows that amplification is very common. Consequently for the dispersion
relation 72 = ¢(€) it is wise to align coordinates along the major and minor axes of the ellipse to avoid
amplification. However, if (72 — ¢1)(72 — ¢2) divides the characteristic polynomial and the axes of ¢; and
g2 are distinct from each other then no linear change of coordinates can avoid amplification in the layer.

A second example from [@] is the linearized compressible Euler equation with nonzero background
velocity (¢, 0),c > 0 for which amplified wave numbers at a right hand boundary are indicated in bold in
the right hand figure @

Summary. There is no amplification when the characteristic polynomial is a product of factors 7 and
72 — ¢ where ¢ is a positive definite quadratic form with axes of inertia parallel to the coordinate axes. This
includes the cases of Maxwell’s equations in vacuum, for which the method was developed by Bérenger,
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the linearized Euler equations about the stationary state, and the linear elasticity equations. For these
the quadratic forms ¢ are multiples of |£|?.

Example 5.3 (Methods related to Berenger, continued). For the model developed in Section
for the Maxwell equations, one can compute

&+
2

B =2

3
Z O'j($j)§]2< > 0.
j=1

Thus, this model has exactly the same good properties as Berenger’s, and is strongly well-posed. For
Maxwell equations, it is therefore an attractive alternative. The advantage is two fold. The system with
the auxiliary variable P is very compact. And it is strongly well-posed, even for discontinuous o.

On the surface this result sounds almost too good to be true. However the Bérenger system in the case
of Maxwell’s equations has almost exactly the same structure. The energy method proof when U}' € L™
shows that there is a large vector V consisting of the components of U together with differential operators
P, (D) applied to U and a strongly well-posed equation for V. This means that if one were to introduce
the additional variables in V one obtains a system with some of the desirable properties of SPML (strong
PML). However, the SPML reduction is much more compact, and, has a good energy estimate even
when o is discontinuous. The extension of this strategy to other equations is not straightforward. For
elastodynamic models, see [E]

6. Harmoniously matched layers.

This section introduces a new absorbing layer method. It is based on the following strategy. Start with
an operator L = L1(0) on the left and consider a smart layer on the right

R(t,2,0) = L1(0) + C(t,x), € = alwn)(me(A) +vr_(4)),  swpoc 0,00 (6.1)
generalizing (B) This method is embedded in a family of absorbing layers parameterized by p > 0,
RV = LY := Ly + uC. (6.2)

The method is nonreflective when p = 0 and is both reflective and dissipative for ¢ > 0. When o
is discontinuous the leading order reflection coefficient for wave packets of amplitude 1 oscillating as
elTtt28)/e g of the form epr(r,£). The leading order reflections can be removed by an extrapolation
method using two values of p. This simultaneously removes the leading reflections at all angles of incidence.
We call the resulting method the harmoniously matched layer.

6.1. Reflection is linear in p by scaling.

In this subsection the linearity in p of leading order reflections by the layer with R* := L* is demonstrated
by a scaling argument when the o (1) = 1,,>0. In the next subsection the reflection is computed exactly
for Maxwell’s equations yielding additional information.

If (Ly + C)U = 0 then

Ut,x) :=U(t/p,x/ 1), satisfies L"U = 0.

Suppose that U has an incoming wave of wavelength ¢ and reflected waves U, with amplitudes pye.
Then U has an incoming wave with wavelength g := &/u. The reflected waves have amplitudes
€
PLe = pep— = prpe.
1
Denote by p , the reflection coefficient of L”. The leading amplitude of the reflected ¢ wave is then p E-

The preceding identity shows that p ) = Pei showing that the reflection coefficients are linear in pu. ﬁ

PThis argument can be made rigorous under the following conditions. The incoming wave is a wave packet with oscillatory
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6.2. Reflection for Maxwell with smart layers

In this section £ may denote one of two distinct operators. One option is the Maxwell operator L from
(B.2) for the C? valued field E + iB. The lower order term is B := uC from the smart layer (B.1).
Alternatively £ may denote the Berenger operator operator L with lower order term B = u C with

U(ml)IdN 0 ...0
C = : o ., suppo C [0, 00[.
0 ... 00

In both cases the absorption term is linear in p. We compute the dependence of the reflection coefficient
on fi.

Lemma @ shows that the Cauchy problem is equivalent to homogeneous problems in each half-space
with a transmission condition on I' := {z; = 0},

[AiU]. = 0. (6.3)

In order to cover both cases the operator, coefficients, and unknown are indicated with round letters.

We study the reflection of high frequency waves in 21 < 0 which approach the boundary x; = 0. The
incident wave has phase S’(t,x) := 7t + &'z, where 7 # 0 and 7(£) = £|¢|. The phase is chosen so that
the group velocity v = —¢/7 satisfies v; > 0. Denote 2’ := (22, z3), & = (£2,&3). Theorem [.]] applies to
the incident wave with B=10. In z; <0,

U = S (te)/ a'(t,x,e), "(t,x,€) Z ga L1(0y,05) U = O(). (6.4)

Suppose that the amplitudes a; are supported in a tube, 7, of rays with compact temporal crossections
TNn{t=0} cC {z1 <0}.

We construct an infinitely accurate approximate solution which gives the continuation of this incoming
wave. The solution is composed of three waves, the incoming wave, a transmitted wave with the same
phase, and a reflected wave with phase S"(t, x) := 7t + ", with £ := (=&, £’). We first show that there
are uniquely determined reflected and transmitted waves. Then we compute exactly the leading terms in
their asymptotic expansions.

The input is Y€ in @) Seek a family of solutions of the transmission problem which at ¢t = 0 differs
from this solution by O(£°°). The solution we construct is the sum of three waves. The first is the incoming
wave.

The second is a reflected wave V* which is also supported in z; < 0. The group velocity for the
reflected wave is equal to v := (—v1,0’), and in 27 <0

00
Ve =St ODE g (g e),  at(tae) ~ Y al(ta), L0, 0:)VF = O(%). (6.5)
j=0
The third wave is the transmitted wave. It has the same phase as the incoming wave and is supported in
T Z 0

We = 1 )/E (T (¢ g e), T(t,x,¢) Z ela L(Dy, 8,)VF = O(e™). (6.6)

Theorem 6.1.

part ei(TtH8)/¢ with (1,€) € CharL. Denote (7,¢’) the part determining the oscillations in z1 = 0. Consider the roots &1 of
each of the equation, det L1 (7, £1,£’) = 0. The nonreal roots are called elliptic. They lead to waves which have the structure
of a boundary layer of thickness ~ €. The real roots are called hyperbolic. The favorable situation is when all the hyperbolic
roots are at smooth points of the characteristic variety and the group velocities are transverse to the boundary. In that case
one can construct infinitely accurate asymptotic solutions of the transmission problem consisiting of incoming, reflected,
and transmitted wave packets corresponding to the hyperbolic roots, and, a finite number of boundary layers corresponding
to elliptic roots. As this is a long story, we content ourselves with the Maxwell computation of the next subsection.
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(i) Given the incoming amplitudes aj there are uniquely determined amplitudes aj and aj so that

for any choice of the a® %1 (t,x,e) ~ > &l al- BT (t,x), the U, V¢ and W? are infinitely accurate
solutions of the differential equations and the transmission condition is also satisfied to infinite
order,

V(t, ') eRxR2  Ay(UE + V(4,0 7)) = A (W)(E,0,.2)) +O0(EX).  (6.7)

(i) In the case of Bérenger’s PML, the coefficients &f vanish identically for j > 0.
(iii) For the smart layer with o = 1,, 0, the coefficient al® vanishes identically. The reflection coeffi-
cient of the layer is equal to

. & —r? o(l+v)v? -1
R = 1 = .
(1,6) to(l+v) S . 2

That is, if af(¢t,0_,2") = a(t,2")P(7,£) € Ker L(7,§), then
a"(t,0_,2") = eR(1,&)a(t,a’) ®(r,€") + O(?)

Furthermore, the amplitudes a™® are such that on the interface T', we have for all (i,j) € N2,
i>1andj >0,

olal —0lal € p(CormlWl €CY),  daf € p(Cipymll®CY.  (68)
(iv) The smart layer with o(x1) satsifying 0(0) = --- = o*=1(0) = 0, (¥ (0) # 0 is nonreflecting at
order k for any angle of incidence, i.e. if al(t,0_,2") = a(t,a")®(7,&), there exists R (T,§) such

that

a®(t,0_,2") = *a®(0) Ri(r, &) alt,z’) ®(r,€7) + O(*F+1).

Furthermore the amplitudes a™ ™ are linear functions of p on the interface I'. That is denoting

¢i'(p) = af | and ¢f (1) = af \p — aj p, we have for all i >k in N,

(1) € p(Cimalp] ®C?).

Remark 6.1. 1. There exist choices of a’*»T so that &, V¢, and W¢ is an exact solution. Since the
transmission problem is well-posed, there is a uniquely determined corrector ¢ smooth and infinitely
small on both sides so that adding ¢° yields an exact solution. Adding ¢® to the left corresponds to
adding the infinitely small term ¢* e*® "/ to a! with a similar remark on the right.

2. Part (iv) of the theorem with k& = 0 generalizes part (ii7) to discontinuous and variable o(xy).

3. The basis elements, er for by and ey for a; are homogeneous of degree 2 in 7, £. Doubling 7, £ and also
¢ leaves the incoming and reflected waves unchanged. Therefore e R(7, ) must be equal to 2eR(27, 2£).
This explains why R is homogeneous of degree -1.

4. The reflection coefficient vanishes when £ = 0. Since it is an even function of £, Ve R = 0 too.

Proof. The incoming solution is given.

(i) Seek the leading amplitudes af and af. We will show that af = 0 so it is actually af that is the
leading amplitude of the reflected wave. A jump discontinuity in a lower order coefficient does not lead
to reflection at leading order. Denote

L = 8t+A282+A363; Ly = L+ A0 ; L = L —I—MC.

Here C' is any constant matrix, and 7 := 0; + v20s + v30s is the tangential transport operator.

€C,[pu] denotes the space of polynomials of degree less than or equal to j with complex coefficients. C;[u] ® C? is the
corresponding space of polynomials with coefficients in C3.
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For the Maxwell equations, the matrix A; is singular, its one-dimensional kernel is spanned by e;.
For the Bérenger’s £1(7,£) the one-dimensional kernel is spanned by
2

.
& —
2 T i
O(r,8) = E——er+i—ENer = | i—& + & |- (6.9)
&1 &1 &
T
*15—152 + &3
By Theorem f.], the amplitudes are polarized, i.e. afy ™7 = Tzal ™7, and af (resp. af) satisfies a

forward transport equation in 3 > 0 (resp. backward in x; < 0) with zero initial values in time,
(1)1(91 + T) a{) =0, r1 € R,
(—v161 + T) a{j" =0, 1 € R_, (610)
(1101 + T + ol CTlg)al =0, z € Ry.

Therefore, to determine af and af everywhere, it suffices to know af (¢,0,,2') and af(¢,0_, 2"). These
values are determined from the transmission condition (f.3):

Ai(af(t,0_,2") + af(t,0_,2") = Aiaf(t,0,,2"). (6.11)
It is easy to see that (KerL(r,&) @& KerL(r,£")) N KerA; = 0. Therefore, AKerL(7,§) and
AiKer L(7,£") are complementary subspaces and generate Range A;. This proves that
af(t,0_,2") = 0, ab (t,0,.,2") — ab(t,0_,2") = 0. (6.12)
By the transport equation, we conclude that
aiy = 0, for 1 < 0. (6.13)
The reflected zeroth order term vanishes identically when = € R . We also deduce from the transport
equation (p.1() that
vi(O1ay — Ovay) + pllp Clpag = 0 on T (6.14)
Next determine inductively the correctors. For simplicity, throughout the proof we note Iz := I (7, £)

and T1% := ITy (7, £7). Write the recursion relation ([.J) for j > 1 for the incident, reflected and transmitted
waves. Split the amplitudes as

{“ﬂt,x) = Tea) " (o) + (I-TI) o} " (t,),

aj(t,r) = Mfaf(t,z) + (I —1}) af(t, ).

(I —Mg)aj(t,z) and (I —1IIF) aj(t,z) are determined directly by (6.9). To determine the projection on
the kernel, we split the transmission condition (f.3) and insert (f.§) on the interface to get,
Ai(Mgaj(t,0, x') — Hgaj(t,0., ') + Mjaj(t,0_, ') = (6.15)

— A((I —Tg) aj(t,0,2") — (I —TIg)aj(t,0,,2") + (I —1IE) aj(t,0_,2")).

As for the terms of order 0, this determines Ilzaj (¢,0,,2") and IIaf(¢,0_,2"). By (B.9), the projections
are solution of a transport equation, therefore uniquely determined by initial data and the values on the
boundary . Borel’s theorem allows one to construct

a'(t,x,e), a” (t,x,e), and, a®(t,x,e),
so that the transmission condition is exactly satisfied. With this choice the approximate solution satisfies

the transmission problem with infinitely small residual.

(#4) Theorem @ implies that the exact solution in 21 < 0 is equal to U +O(£°°). The error of the approxi-
mation is O(£>°) so the exact solution is equal to U +V*+0(e*). Therefore V¢ = (U +V°)—U* = O(e>)
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which is the desired conclusion.

(iii) Consider the sponge ([L.J) with o = 1,,50. We compute the first order term by (b.11) with j = 1.
First deduce from (f.§) that

(I —1f)af(t,z) = 0,
(I -1I1)ai(t,z) = iQrL1(0:,0y)al(t,x), (6.16)
(I-T1p)af(t,x) = iQL(L1(,0:) +a(C)af(t, ).

Replace in (p.16)) the z; derivatives using (f.10),
(I —Mr)aj(t,x) =iQr(Ly + A101) aj(t, x),

=1iQr (Lt — %Al’r) ap(t, x),
(I —p)ai (t,z) =iQr(Lr + A101 + 0C) ag (¢, z),
—iQ, (LT - vilAlT+ a(—v—llAll'IL CT, + 0)) Az (t, )
to obtain
(I —1Ip)aj(t,0,,2") — (I —1I)aj(t,0,2") = i0QrCiraf(t,0,z") (6.17)

1
with C; := C — — A1, C1Iy. Using (I —II)af = 0 in the transmission condition yields,
U1

Al(HLa]f + HLa{ —HLarlp) = ’iUAlQLCla(I). (618)
The eigenvalues of A; are +1, with associated eigenvectors ¢, = (0, 1,ii)/\/§. The projection is
4+ (A;) = @4 0%, Therefore C' = &, &% 4 v®_&* | and the projection on Ker L(7,§) is II, = %.
PP PP
I, CII, = D, P d_P*
L @*?( R T
|O* D |? + v|O*D_|?
= II.
PP
Therefore since
O P |2 O P_|?
| +| +V| | , HLCHL :’)/HL, (619)
O
we have
Ay (HLa]f + HLa{ — HLa{) = iaAlQLClaé . (620)

To compute the righthand side use

T — 24 u(r+ 2 1
_ ( 51) 47-2( 51) _ Z((1+U1)2+V(1*U1)2)7
0 0 0
v+1 . v-—1
C= 2 T2
v—1 v+1
0—1 5 5
0 0 0 00 0
vr+1 . v-—1
cp = |0 5 i ~ X loo-i
v—1 v+1 T \ogi 0
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Simplify to find

0 0 0 0 0 0
v+1 frv—1 ol ) v2 41
0 1 + — v+1 ;2L
Cl - 2 ( 2 1 = 2 0 ! ! 21)1
fv—1 v v+1 i+l
0— — - 00— L=
! ( T vl) 2 20,
Write af = a{®, and compute
g1 y
Cl(I) = (1+V) 47—62 \Ilv v = 627_261635
! §3T + 18283,
We obtain
2 _
Ay(Tpa® + Tpal —TlpaT) = io(1+ v) 51475; ol 41Qp (6.21)
TSl

Next compute @, ¥. First compute a basis of eigenvectors for L(7, ). @2 is such that L(7, )Py = 7P,
®3 is such that L(1,£)P3 = 27P3. Choose

Py =, P53 = O(—7,¢).
Note that
U =78 —&(re1 +i€ Aey),
and

o = 5——(761715/\61) 5*—(T€1+Z§/\€1)
& &

which gives
(te1 +i€Nep) = %(5 — ®3),

and

\I/:’Tg*gl(g @):72;51 51

Since @y, is the left inverse of L, we have Q. = %f, and QP35 = 5@3, which gives

§+

QL‘II — T _516 + 61 (D

Write the coefficients of I" as
HL (Ta 517 52)0’5 = O‘{Y i (7_7 517 52); HL (Ta gR)af - O[lf(I)(’T, gR) 9

and inject into the transmission condition

R R I T _ 5% -7 1 51 51
af Ay ®(7,£") + (o1 — ap) A ®(7,§) =io(1 +v) Tare 2% Al( §+ @3)
1

Since the kernel of A; is e;, A; in the preceding identity may be replaced by the projection on (e, e3).
The projection of ® is ¢ = &' — igllg Ae1, and note that ®3 and @ (7, ") have the same projection, which
is o3 =& + iz-§ A er. We then write

R g-r g, &
afps + (o —a)p =io(l +v) 472 g ( 2 €+2 290)
) 5277_2 7_27 2 52
=io(l+v) 147'52 o ( 572 1(50+<,03)+2—;2503),
1
gl Alg
= 1 —
’LO’( +V) 47’5% O( 272 (10+2(10)
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_ 2 _ 2 . (€2 — 122
af = io(l+v) 187'75% 0 a] —af = —ic(1+v) ;_T Q) -

Now use the results in (ii) and prove (p.§) by induction on 4. From (5.13) we know that af = 0 for
z1 < 0. By (B.10), and (B.11)), we have at #1 = 0, afy ™ = Tzaf ",

01 (0108 — Drad) + T(ak — ab) + oy(ad — ab) + o9ah =0, @1 > 0.
By differentiation in x; several times, we see that & ad — & af) € 0C;j_1[0] ® C.
Assuming the inductive hypothesis is true for i we prove it for i + 1. Write () in the form
(I — 1 (Ta €R)) af—i—l(ta x) = iQL(Ta £R)(LT(875’ 696’) + Alal) az{ (t’ .Z'),
(I -1 (Ta 6)) a’z{-i—l (t7 .Z‘) = iQL(Ta E)(LT(ata az’) + Alal) az{(t’ x)a
(I =1p(1,8)aly (t,x) =iQr(7,§)(Lr(0r, 0pr) + A101 + 0C) af (t, ).
By induction, &) (I — T, (7,£%))af(t,z) € 0Ciyj_1[0] ® C? on the interface. Write
(I =11 (7,8)) (aiy1 —ai,)(t 2) = iQL (T, &) (Lr + A101+0C) (af —aj)(t, 2) +iQL(7,§)oC ai(t,z) (6.22)

By the inductive hypothesis, we have on T', & (Lp+ 419, +0C) (af —al) € 0Ciy j[0]®C? and & (cC al) €
0Cplo] ® C3. The result follows.
(v) Suppose now we are in the smooth case. Return to (6.10), from which we deduce that

ag ™" =Tpay ™", af =0, everywhere,
(%HL(IE; - 8{HLa6 = 0, j = 0, ce ,k, (6.23)
8f+1HLaa —8f+1HLa6 = —a(k)(O)lHLaé.
U1
From (f.29) derive that
af =Ilraf =0 everywhere
OI(I —Tp)al — (I —Ty)al =0, j=0,---,k—1, onTl (6.24)

ORI —TIp)al — OF(I —Tp) al =ioc™(0)QLCi I al on T.
Using the transmission conditions to obtain on the interface T,
Mpaf =0, Tpa; =Tpaf.
Insert into the transport equations @) to find,
HMpat —dMpal =0, j=0,---,k—1, onT

O pal — Oflpal = —TI A (OF (I —TI1) af — OF (I —111) a}) = ic™(0)QLCi T al on T. (6.25)
Recover
dal —dlal =0, j=0,-- k-1, onT
ofal — ofal = —ic® (0)TIL A,QrCi I Laf onT. (6.26)
Now proceed iteratively, to see that, for i < k + 1,
‘ af‘z Mral = everywhere,
&af —0dlal =0, j=0,---,k—i, onTl
NI~ M) af — OF (I — M) af = iQu A (9f " *?al, —0f~al,) onT,,  (627)

1
. . 1 . .
0y " el — oy el = —v—lnLAl(afﬂH([ —1g)af —0f (I —1L)a)).
Noting s; the value of ¥~ a7 — 98~ al on T, (6-27) gives the recursion relations
) 1
si =il — v—HLz‘h)QLAlSi—la
1

1
ay = —ic®(0)(I — U—HLAl)QLCJILaé.
1
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The first nonzero term is therefore ay, ;, and using the transmission condition leads to

J - R
ap, =lpag,
Al(HLa;:Jrl —I—HLafCJrl — HLaerl + Sk+1) = 0.

These are similar to (6.2(), and permit to express IT rajg,, in terms of
. 1
spr1 = o™ (0)MTIa}, M = (i(I - ,U_HLAl)QLAl)k+1QL01
1
as af = a(t,2')®, I af,, = o¥) R P -

We compute a geometric form of the reflection coefficient. 0 < 0§ < /2 is the angle of incidence
defined by cosf = v;. The reflection coefficient is equal to

1
o v tan? 6.
167

6.3. Harmoniously matched layers

Based on Theorem we construct an extrapolation method for symmetric hyperbolic operators with
smart layers which eliminates the leading order reflection. The resulting method has desirable stability
properties and is nearly as good as Bérenger’s algorithm for the Maxwell equations where his method is
at its best. We think that the new method provides a good alternative in situations where Bérenger’s
method is not so effective.

Consider the computational domain x; < b;. The domain of interest is rectangle 1 < a; < b;. The
absorbing layer is located in a1 < x1 < b;. The differential operator in the computational domain is
symmetric hyperbolic L with smart layer,

LU +01(x1)(7r+(A1)+1/7r,(A1))U =0, o1 >0, suppoy C {z1 > a1}.

At the outer boundary x1 = by of the absorbing layer impose the simplest weakly reflecting boundary
condition

m_(A)U =0 when x1 =b1.

This is a well-posed problem provided that A; has constant rank on z; = b;. When L = L;(9) has
constant coefficients it generates a contraction group in L*({z1 < b;}).

The hamoniously matched layer algorithms compute a smart layer with coefficient o7 and also
with coefficient 207. In view of Theorem B.I], subtracting the second from twice the first, 2U(o1) —
U(201), yields a field with one more vanishing term in the reflected wave at the interface x; = a;. This
extrapolation removes the leading reflection.

The harmonious matched layer algorithms in a rectangular domain R perform the same extrapolation
with absorptions in all directions. With

d
LU + Y oj(@)(mi(A)) +va(4)U =0,  0;>0,  suppo; C {|aj| > a;}.

j=1
with

m=(4;)U = 0 when x; = +b;.
This initial boundary value problem on a rectangle has solutions. When L = L;(9), the L?(R) norm is

nonincreasing in time. [] The extrapolation is 2U (o1, - -+ ,04) — U(201, - - - , 204).

dThis can be proved by penalisation. Denote by Q the rectangular computational domain. Add A 1ga\g to L and solve on
R%;d. The limit as A — oo provides a solution in L>([0,7] : L*(R)) [E}
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Open Problem. For discontinuous o, the uniqueness of solutions to the initial boundary value problem
on the rectangular computational domain is not known because of the discontinuity of the boundary space
ker A; at the corner. Solutions are typically discontinuous. Uniqueness of solutions with square integrable
trace at the boundary is routine by the energy method. Prove uniqueness of solutions with regularity not
exceeding that of solutions known to exist. Similar problems plague virtually all methods on rectangular
domains with absorbing boundary conditions imposed on the computational domain with corners. The
present problem is one of the simplest of its kind. The fact that algorithms designed to compute solutions
encounter no difficulties is reason for optimism.

6.4. Numerical experiments

Simulations are performed for the 2-D transverse electric Maxwell system in the (z,y) coordinates,

hEy — 0,H, =0
OBy + 0, H. =0 (6.28)
O H, + 0,E, — 0y,E, =0

in a rectangle, with boundary conditions n A E = 0 on the west, north and south boundaries. The layer
will be imposed on the east boundary. Maxwell Bérenger is given by

0By — 0, H, =0

OEy +0,H, +0(x)E, =0

Oty + 0,y + o) e =0 (6.29)
O H., — 0,E, =0

E& :‘H2z4‘£ky

For the computation, these equations are used in the whole rectangle (see the discussion in the introduc-
tion), with boundary conditions n A E = 0 on all boundaries, and o = 0 outside the layer. On the east
boundary we use

E, =H,, E,=0.

Since Iy (Ay) = (E,+ H.)/2 | 1| and I_(A4y) = (E, — H.)/2 | 1 |, the smart layers are:
-1

OBy — 0,H. =0
OBy + 0, H, + (B, + H. + v(E, — H.)) =0 (6.30)
O H. — OyEy + 0, By + @(Ey +H. —v(Ey — H.)) =0,

with boundary conditions n A 2 = 0 on all boundaries except the east where,
E,=H, FE,=0.

The Yee scheme for Maxwell is
n—1 n—3 n—3
(Ez)ﬁ%’j B (EZ)H-%J ( Z)i+;j+§ — Z)z'+;j—é

— =0
At Ay
-1 n—i n—1
(Ey)ZjJr% - (Ey)zj_,_% " (Hz)i_.,_;j_,_% - (HZ)i—;j-i-% -0
At Az
() ey — L) (Bl — (B (B ) — (B
*litg.+3 *litg.0+3 YVitl,j+3 Vigty Vi g+l it g,

=0.

At * Az Ay
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The Yee scheme for Maxwell Berenger using the notations o; = o(x;) and 0,1 = o(z;, 1) is,

1

1 n—sz n—
(Be)iyy — By, (Ha)iy £0y = )i 5oy
_ — 07
At Ay
By — (B (H)E L — (H)F (By)7s, 1+ (B
YVij+3g YVijt3g L it3.0+3 *li-g.+3 I Bi+3 Yiits _
At Ax ! 2 o
n+l n—1 n+l n—4i
(H“)H;ﬂ% o (H“)H;ﬂ% + (Ey)?+1,j+% - (Ey)?,ﬁé 4 oius (H”)z‘+%2,j+% + (H“)H;H% — 0
At Az “+a 2 ’
n+l n—1
( Zy)i+;j+% B (sz)i+;j+% (Ew)?+%,j+1 B (EZ)?%,J‘
_ — 0,
At Ay
n+ n+ 3 n+3
(Hz)i+%2,j+% - (H“)i+;,j+% + (sz)i+%2,j+§ :
The Yee scheme for the smart layers is
1 n—z n—1
(E””)?Jré,j B (EI)Z‘%J (Hz)i+%2,j+% B (HZ)H;J‘—%
At - Ay = 07 (Ssmart‘a)
n—1 n—4i n—i
(Ey)7j+§ (Ey)”Jr% n (Hz)i+%2,j+% - (HZ),L,%QJ;FE
At Ax
(B, s+ (B O ()T 4oy s (H) 2
(1 +v)o; \Fv)ijed v)ij+i (1—v)%i+3 2l t 41 -3\ )i st 0
2 2 2 2 ’
(Ssmart'b)
n+l n—4i
( Z)ZJ’,%QJJ’,% 7( Z)z+%2]+% + ( y)?+1_’j+% ( y)?]Jr% ( Z)?+%7j+1 _( $)?+%7j
At Az Ay
E,)" )" H)" 2 H.)""F
4 (171/) Ji+1( y)i+17j+% +0'i( y)i7j+% + (1+V)0‘1-+% ( z)i+%7j+% +( Z)i+%_’j+% -0
2 2 2 2 ’
(Ssmart'c)

The schemes are implemented using time windows to save memory.
The harmoniously matched layers can be implemented in several ways that we compare. The function
o(x) is the same as above.

HML Version 1. Global extrapolation. Compute the solution of () with an absorption of o,
(E',H") and 20, (E? H?) over the whole time window. Then E,, = 2+ E, — E2  and
H,=2xH!— H2.

HML Version 2. Local extrapolation. Compute at each time step the solution of (Sypar) with an
absorption of o, (E',H') and 20, (E?, H?) over the whole time interval. Then E,, = 2 x
El,—EZ,and H, =2« H! — HZ. Save computation by taking advantage of the fact that the
computation of E, does not involve the absorption parameter. At each time step,

(1) E, is computed by (Semnar-4),

(2) two values of E, are computed by () E;; with an absorption parameter equal to o,
E; with an absorption parameter equal to 20.

(3) two values of H, are computed by () H! with an absorption parameter equal to o,
H? with an absorption parameter equal to 20.

ThenEy:2*E;—E§ andHZ:2*HZl—H§.

HML Version 3. Split field local extrapolation. At each time step,
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(1) E, is computed by Ssmare-4),
(2) two values of E, are computed by () E; with an absorption parameter equal to o,
E? with an absorption parameter equal to 20. Then E, = 2% E, — E;..

(3) two values of H, are computed by () H! with an absorption parameter equal to o,
H? with an absorption parameter equal to 20. Then H, =2+ H! — H2.

We perform a series of experiments to illustrate the transmission properties of the layers. The coef-
ficient v is meant to achieve backward absorption and is taken equal to zero. The domain of interest is
(0,6) x (0,10), the coefficient o(z) is supported in 6 < x < 10. The time of computation is 4, the initial
electric field is zero. The initial transverse magnetic field,

— X,

€T
C|) cos (k7 v- ) X|@—.|<r

|z —x
r

is compactly supported in the ball B(x.,r), with . = (5,5) and r = 0.8.

The time of computation is fixed such that there is no reflection on the exterior walls. The initial
mesh is taken to be Ax = Ay = 0.1, At = 0.0702, and then divided by 2 twice.

In the first set of experiments, the absorption coefficient is constant in the layer, equal to 2. The initial
magnetic field hits the layer at incidence 0°( v = (1,0)) or 45° (v = (1,1)).

In Table Ijl we compare the performances on a high frequency wave (k = 10), while in Table E we

consider a low frequency wave (k = 1).

normal incidence 45° incidence

refinement 0 1 2 0 1 2

Berenger || 9.4e-02 |3.9e-02 | 7.9e-03 || 1.3e-01 |2.9e-02| 5.6e-03
Smart 5.2e-02 | 1.3e-02 | 5.1e-04 || 6.2e-02 | 1.1e-02 | 5.3e-03
HMLV1 3.4e-02 | 3.1e-03 | 2.1e-05 || 4.5e-02 | 1.2e-03 | 5.5e-04
HMLV2 2.5e-02 | 6.0e-03 | 1.2e-03 || 7.4e-02 | 1.1e-02 | 1.7e-03
HMLV3 || 2.1e-02 |4.2e-03| 5.1e-04|4.5e-02 |5.3e-03| 5.7e-04

Table 1. Comparison of the L errors for high frequency, discontinuous absorption.

normal incidence 45° incidence
refinement 0 1 2 0 1 2
Berenger || 1.5e-02 | 7.1e-03 | 3.5e-03 || 1.3e-02 | 6.1e-03 | 3.0e-03
Smart 2.0e-02 | 2.0e-02 [2.01e-02|| 4.3e-02 | 4.2e-02 | 4.2e-02
HMLV1 1.7e-02 | 1.60e-02| 1.6e-02 || 3.4e-02 | 3.3e-02 | 3.2e-02
HMLV2 || 1.8e-02 | 1.1e-02 | 6.7e-03 || 3.1e-02 | 1.9e-02 | 1.1e-02
HMLV3 ||4.3e-03|2.6e-03|1.4e-03 | 8.2e-03 |4.8e-03 |2.6e-03

Table 2. Comparison of the L errors for low frequency, discontinuous absorption.

In Tables E and @, we perform the same set of experiments, but the absorption coefficient is now a

third degree polynomial in the layer, equal to (z — 6)3/8.
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normal incidence 45° incidence
refinement|| 0 [ 1 2 0 1 [ 2
Berenger || 3.8e-05|1.9e-07|2.1e-09 | 2.0e-04|9.1e-07 | 1.6e-09
Smart 2.7e-05 | 2.2e-07 | 1.7e-07 || 1.7e-04 | 9.0e-07 | 3.1e-08
HMLV1 || 5.5e-07 | 6.0e-08 | 5.6e-08 || 5.6e-06 | 1.2e-08 | 4.7e-09
HMLV2 || 6.8e-07 | 6.5e-08 | 3.1e-08 || 2.6e-06 | 8.1e-09 | 2.8e-09
HMLV3 || 5.8e-08|2.4e-09|1.1e-09 |/ 1.5e-06 | 9.5e-10|9.0e-11

Table 3. Comparison of the L errors for high frequency, continuous absorption.
g Y.

normal incidence 45° incidence
refinement 0 1 2 0 1 2
Berenger || 6.2e-07 | 3.2e-08| 7.8e-010|| 5.2e-07 | 2.9e-08 | 6.5e-010
Smart 5.3e-04 | 5.3e-04 | 5.2e-04 || 3.9e-04 | 3.8e-04 | 3.7e-04
HMLV1 1.6e-04 | 1.6e-04 | 1.5e-04 || 8.6e-05 | 8.3e-05 | 8.2e-05
HMLV2 || 4.1e-04 | 2.0e-04 | 9.6e-05 || 2.0e-04 | 9.8e-05 | 4.8e-05
HMLV3 ||1.1e-05|5.4e-06| 2.7e-06 || 5.9e-06|2.9e¢-06| 1.4e-06

Table 4. Comparison of the L°° errors for low frequency, continuous absorption.

y

The Berenger layer performs well on every frequency and every angle of incidence. Among the 3

versions for the HML, the third version is the best, which should be analyzed thoroughly.

Next compare the method on a gaussian initial value, supported in (0,6) x (0,10). Table ﬂ uses a

constant absorption in the layer, while Table E uses the same smooth absorption as before.

Table 5. Comparison of the L errors for a gaussian initial magnetic field, constant absorption.

Table 6. Comparison of the L°° errors for a gaussian initial magnetic field, continuous absorption.

refinement || 0 | 1 2 |
Berenger || 1.5e-02 | 6.7e-03 3.3 e-03
Smart 3.4 e-02 | 3.4e-02 3.3e-02
HML V1 3.0e-02 2.9e-02 2.8e-02
HML V2 3.6e-02 2.5e-02 1.6e-02
HML V3 1.0e-02 | 6.6e-03 3.9e-03

refinement || 0 1 2
Berenger || 7.5e-07 | 2.0e-08 | 8.3e-10
Smart 4.3e-04 4.2e-04 4.1e-04
HMLV1 1.3e-04 1.2e-04 1.2e-04
HMLV2 3.0e-04 1.5e-04 7.3e-05
HMLV3 8.8e-06 | 4.3e-06 | 2.1e-06

Finally, take unstructured random initial value, supported in the ball centered at (5,5) and of radius
1. In Table ﬁ, the absorption coefficient is constant in the layer, equal to 3.
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| refinement || 0 1 2

Berenger || 5.7e-02 | 4.9e-02 4.4e-02
Smart 6.7 e-02 | 6.3e-02 5.4e-02
HML V1 5.1e-02 | 4.5e-02 4.0e-02
HML V2 6.4e-02 3.0e-02 1.9e-02
HML V3 3.2e-02 | 1.5e-02 | 6.7e-03

Table 7. Comparison of the L errors for a random initial magnetic field, constant absorption.

In Table E, the absorption coefficient is a function of x in the layer, equal to (z — 6)3/8.

refinement || 0 1 2 |

Berenger | 1.1e-04 | 5.0e-05 4.4e-06
Smart 7.2e-04 6.9e-04 6.4e-04
HMLV1 2.1e-04 2.2e-04 2.0e-04
HMLV?2 5.0e-04 2.7e-04 1.2e-04
HMLV3 1.5e-05 | 7.9e-06 | 3.7e-06

Table 8. Comparison of the L errors for a random initial magnetic field, continuous absorption.

Summary. When comparing the reflection properties, the harmoniously matched layer, version 3, is
competitive with the Berenger layer. For very regular data, the Berenger layers outperform everything.
The performance of the HMLV3 gives hope the method with its stronger well-posedness, more robust
absorption, and small reflection at all angles will be a good method where Berenger has proven less good.
For example, for non constant coefficients and nonlinear problems. We have taken pains to make the
comparison where Berenger is at its best. In 2D with a layer in a single direction the HML has an extra
cost. Since there are 5 quantities to compute at each time step instead of 4 for Berenger. This is no longer
the case in three dimensions, since both strategies have to split 6 unknowns.

Open problems. 1. Our analysis does not explain the much better behavior with continuous absorption,
nor the advantages of HMLV3. 2. A comparison with other methods where only supplementary ordinary
differential equations are added should be made.
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