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Abstract

Because of its practical significance, many different methods have been developed for the solution of the
time-harmonic Maxwell equations in an exterior domain at higher frequency. Often methods with compli-
mentary strengths can be combined to obtain an even better method. In this paper we provide a numerical
study of a method for coupling of the Ultra-Weak Variational Formulation (UWVF) of Maxwell’s equations,
a volume based method using plane wave basis functions, and an overlapping integral representation of the
unknown field to obtain an exact artificial boundary condition on an auxiliary surface that can be very
close to the scatterer. Combining the new algorithm with a multilevel fast multipole method we obtain an
efficient volume based solver with an exact auxiliary boundary condition, but without the need for singular
integrals.
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1 Introduction

At progressively higher frequencies, the problem of approximating the time-harmonic Maxwell equations in an
exterior domain is increasingly challenging because of the need for an increasingly large number of unknowns
per wavelength to maintain accuracy. Although many numerical schemes exist for this problem we will focus on
hybridizing two approaches with complementary advantages: a volume based method using finite element grids
and plane wave basis functions and an overlapping integral equation formulation. Volume methods are derived
from a three dimensional discretization of a portion of the exterior domain close to the scatterer and limited by
an artificial boundary. If a convenient local boundary condition is used the distance between the scatterer and
the artificial boundary must be taken sufficiently large to ensure accuracy. In addition the artificial boundary
must be convex. This leads to the expensive discretization of free space. However volume based methods
can easily handle non-constant material coefficients, and give rise to sparse matrices. In contrast an integral
formulations enables the restriction of the problem to the surface of the scatterer. However, integral techniques
require a homogeneous external media, and the evaluation of singular integrals. Both methods are often coupled
leading to a hybrid method that inherits the strengths of both component methods.

In this paper, we focus on coupling the Ultra-Weak Variational Formulation (UWVF) and a direct boundary
integral representation using a multilevel fast multipole method. The UWVF is a volume based numerical
method for solving the time-harmonic Maxwell system on a bounded domain developed by Després and Cessenat
[3, 2, 12]. It uses local plane wave solutions on a finite element mesh to approximate impedance traces of the
field on the skeleton of the mesh. By varying the number of plane wave basis functions from element to element
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the UWVF can discretize the electromagnetic field with a coarser volume mesh in comparison to more classical
methods low order finite elements or finite differences. It can handle general piecewise constant material
properties. However, to approximate scattering on an unbounded domain, the UWVF requires an artificial
boundary denoted Γext sufficiently far from the scatterer. The original UWVF uses a low order absorbing
boundary condition on Γext (but see [12] for use of the perfectly matched layer). To overcome the drawback of
needing a large distance between the scatterer and a convex artificial boundary, we suggested using an integral
representation of the unknown field on Γext.

In particular we shall use an overlapping scheme. A standard Galerkin volume equation combined with an
overlapping integral equation system was first proposed for Maxwell’s equations by Hazard and Lenoir [10]. A
finite element discretization of the method using edge elements was then analyzed by Hsiao, Monk and Nigam
[11]. In particular, Hazard and Lenoir proposed to use an integral representation of the field near the artificial
boundary Γext computed from unknown field values on a second artificial boundary Σ taken closer to the
boundary of the scatterer Γint (see Fig. 1 for a graphic of the relationship of various boundaries). This couples
the Cauchy data on Σ to the solution on Γext. The main constraint is that the domain between Σ and Γext

be homogeneous (i.e. the background medium). However the domain within Σ can be inhomogeneous. Upon
discretization, the well-known integral operators involved in this representation lead to expensive evaluations
by direct means (but do not involve singular integrals, or near interaction terms). Indeed the expense and
memory needed to compute the linear system resulted in no numerical results being presented in [11]. Clearly
the problem can potentially be solved using a fast multipole implementation of the integral equations. Note
that for standard edge finite elements this was the approach used by Liu and Jin [13]. However, the UWVF
can be more efficient than finite elements at higher wave number, and this motivates our investigations here.

The main aim of coupling the UWVF and a Fast Multipole Method (FMM) is to reduce the overall numerical
cost, and we have already introduced the coupled UWVF and FMM in several papers (see for example [4], [14],
[9]). In particular in [8], we used a one-level FMM. The numerical results show that the one-level FMM leads to
an algorithm with a cost comparable to the UWVF used in its original form. In [7], we gave a thorough study
of the complexity of that algorithm using either the one-level or multilevel fast multipole method in different
configurations. This paper is devoted to numerical tests of the multilevel version of the algorithm. We shall
show that the method can effectively solve several model problems, and give numerical evidence to support the
complexity estimates.

The plan of this paper is as follows. The next section gives a brief presentation of the UWVF. In Section 3,
we describe the use of the integral representation within the hybrid UWVF and integral representation (UWVF-
IR) algorithm, and recall the results on the complexity that were developed in [7]. The last section, which is the
focus of this paper, presents numerical results obtained using a multilevel FMM (MLFMM) and demonstrates
agreement with the study of complexity. These results show the improved efficiency of the novel algorithm
compared to the original UWVF.

2 Ultra-Weak Variational Formulation

Suppose we wish to solve the time harmonic Maxwell system in the unbounded exterior of a bounded scat-
terer (assumed to have connected complement and polyhedral surface Γint). Introducing a polyhedral artificial
boundary Γext containing the scatterer in its interior, we denote by Ω the bounded annular domain between
Γint and Γext (see Fig. 1). We denote by ν the outward normal to Ω.

To solve the time-harmonic Maxwell equations in a domain Ω we need to find the electric field E and
magnetic field H such that the following equations hold:

∇ ∧ E − ıωµH = m,
∇ ∧H + ıωεE = j ,

}
in Ω, (1)

where m and j are given data vector functions specifying the volume sources, ε and µ are positive piecewise
constant functions of position and ω > 0 is the angular frequency of the field. Although not required by the
method, we usually assume a source free region and select m = j = 0 (our numerical test will conform to this).

For the UWVF, it is convenient to specify the boundary condition on ∂Ω = Γint ∪ Γext in the following non
standard form ([3])

− |
√
ε | E ∧ ν + (| √µ | H ∧ ν) ∧ ν = Q(|

√
ε | E ∧ ν + (| √µ | H ∧ ν) ∧ ν) + g , (2)
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Figure 1: The computational domain Ω is the region outside the boundary of the impenetrable scatterer Γint

and inside the artificial boundary Γext. A second artificial boundary Σ inside Γext and containing the scatterer
(both impenetrable and penetrable components) in its interior is used in the integral representation of the field.
If the exterior domain is entirely homogeneous and isotropic, we can take Σ = Γext.

where Q = 0 gives the standard low order absorbing boundary condition on Γext and g is computed from
the incident wave. Since we model the total field, we choose g = 0 on Γint and use Q to set the boundary
condition. For example choosing Q = 1 gives the perfectly conducting boundary condition, while |Q| < 1 gives
an impedance condition. The choice Q = −1 gives a magnetic wall condition that is useful for symmetric
structures. We choose Q = 0 on Γext and g will be given by an integral operator.

The UWVF is based on the decomposition of the domain Ω into tetrahedra {Ωk}k=1,...,K and it computes
the impedance trace of the solution on the boundaries of all these tetrahedra (which can then be post processed
to give the solution in the entire element). This variational formulation is defined on the Hilbert space V =∏K

k=1 L
2
t (∂Ωk) where L2

t (∂Ωk) is the space of square integrable tangential fields on ∂Ωk the boundary of Ωk.
For this space the scalar product is given by

(X ,Y)V =
∑

k

∫

∂Ωk

X/∂Ωk
Y/∂Ωk

.

Under the assumption that ε and µ are positive constants on each element Ωk, (E,H) is found through the
restriction of the field (Ek, Hk) to ∂Ωk, where (Ek, Hk) = (E,H)/Ωk

. The method then solves for an unknown
function X ∈ V , defined element by element by the impedance trace X/∂Ωk

∈ L2
t (∂Ωk) on ∂Ωk and

X/∂Ωk
=
√
ε̃/∂Ωk

(Ek ∧ νk) +
√
µ̃/∂Ωk

((Hk ∧ νk) ∧ νk) . (3)

where ε̃/∂Ωk
and µ̃/∂Ωk

are quantities defined by the values of ε and µ on each side of ∂Ωk (see [8] for details),
and νk is the exterior normal to ∂Ωk.

The UWVF involves two operators Π and F defined in [3, 2]. The operator Π : V → V switches boundary
traces across faces shared by two tetrahedra and involves the boundary condition (2) through the function Q
on faces which contribute to the boundaries Γext and Γint. More precisely if elements Ωj and Ωk meet at a face
f then

ΠXj |fj,k = Xk|fj,k
and on a boundary face of an element Ωk, ΠXk|∂Ω = QXk|∂Ω. The operator F : V → V is a local operator
that links the outgoing and incoming impedance traces of the degrees of freedom on the interfaces between
tetrahedra. If (u, v) satisfy the Maxwell system on ΩK and Xk =

√
ε̃/∂Ωk

(u∧νk)+
√
µ̃/∂Ωk

((v∧νk)∧νk) . then

F (Xk) =
√
ε̃/∂Ωk

(u ∧ νk)−
√
µ̃/∂Ωk

((v ∧ νk) ∧ νk) .
The UWVF of Maxwell’s equations is as follows [3, 2]: Find X ∈ V such that

(X ,Y)V − (ΠX , FY)V = (̃b,Y)V for all Y ∈ V, (4)

for all Y ∈ V where g̃ is the extension by zero of g to a function in V .
Thus by taking a finite dimensional subspace Vh ⊂ V and using basis functions Zi, i ∈ J for Vh, a Galerkin

discretization of the formulation (4) leads to problem of finding Xh =
∑

i∈J XiZi ∈ Vh such that (Xh,Yh)V −
(ΠXh, FYh)V = (g̃,Yh)V for all Yh ∈ Vh.
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Equivalently, in matrix/vector form, we seek to compute X = [X1, · · · , Xcard(J)]
T such that

(D − C)X = b , (5)

where D is the matrix with (i, j)th entry (Zj , Zi)V and C has (i, j)th entry given by (ΠZj , FZi)V . The data
vector b is derived from the right hand side above in the same way.

As usual for the UWVF, to facilitate calculating the action of F , on each element Ωk we use a basis generated
by taking the impedance trace of pk plane waves satisfying the adjoint Maxwell system on Ωk (pk/2 directions
with two polarizations for each direction). In particular to discretize the problem, we follow [3] and use boundary
functions given by

Y/∂Ωk
=
√
ε̃/∂Ωk

(E′

k ∧ νk) +
√
µ̃/∂Ωk

((H ′

k ∧ νk) ∧ νk)

where the fields (E′

k, H
′

k) are taken from the span of a set of pk plane waves that satisfy the adjoint Maxwell
problem {

∇ ∧E′

k − ıωµΩk
H ′

k = 0 in Ωk,
∇ ∧H ′

k + ıωεΩk
E′

k = 0 in Ωk.

In (4), b̃ ∈ V is derived from the right hand side of (1) and from g given in (2). At least six plane waves (and
usually more) are used per element, counting polarizations.

The UWVF then leads to a sparse square system of size (
∑K

k=1 pk). The number of plane waves pk is chosen
depending on the local wavelength and diameter of the element (see [12]).

Compared to more classical volume methods, the UWVF enables one to reduce the number of elements in
the mesh. The complexity of the method is then linked to the number of elements in the mesh and the number
of basis functions per element. For concreteness, suppose the electromagnetic parameters of the domain are
constant and define the wave number κ = ω

√
εµ. Before a closer consideration of the complexity, we need to

introduce another parameter: K0 denotes the average number of tetrahedra taken in one dimension so that
K ∼ K3

0 . As a volume method, the UWVF method leads to a sparse system: The number of degrees of freedom
is of order K3

0 p and the complexity of the algorithm is O(K3
0 p

2) where p denotes the average number of basis
functions per tetrahedra which typically satisfies K0 p ∼ κ [12].

3 Use of an Integral Representation within the UWVF

To simplify the presentation we shall suppose that ε = µ = 1 so that the exterior domain is entirely homogeneous
and we use the perfectly conducting boundary condition on Γint (i.e. the scatterer is not penetrable and the
exterior medium is homogeneous). In this case we may take Σ = Γint (extensions to more general domains in
which Σ 6= Γint is then easy to understand). In this case the artificial boundary Γext can then be taken very
close to the boundary of the obstacle. Following Hazard and Lenoir [10], the hybrid scheme consists in replacing
the low order absorbing boundary condition −E ∧ ν + (H ∧ ν) ∧ ν = −E0 ∧ ν + (H0 ∧ ν) ∧ ν on Γext by the
boundary condition

−E ∧ ν + (H ∧ ν) ∧ ν = −Es ∧ ν +(Hs ∧ ν) ∧ ν −E0 ∧ ν +(H0 ∧ ν) ∧ ν ,

where (Es, Hs) are given by the Stratton-Chu formula ([5]) in terms of ν ×H and ν × E on Σ (i.e. under our
assumptions on Γint) via

Es(x) = ∇x ∧
∫

Γint

G(x, y) νΣ(y) ∧ E(y) dγ(y)

− 1

ı ω
∇x ∧∇x ∧

∫

Γint

G(x, y) νΣ(y) ∧H(y) dγ(y) , (6)

Hs(x) = ∇x ∧
∫

Γint

G(x, y) νΣ(y) ∧H(y) dγ(y)

+
1

ı ω
∇x ∧∇x ∧

∫

Γint

G(x, y) νΣ(y) ∧ E(y) dγ(y) , (7)
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where νΣ is the exterior normal to the surface Σ = Γint and G(x, y) = exp(ıκ|x − y|)/(4π|x − y|) is the
fundamental solution for the Helmholtz equation. Thanks to the structure of the unknowns of the UWVF, as
shown in [8], the fields in the integrands above can be computed directly from the degrees of freedom of the
UWVF (3) taking into account the convention for the direction of normals, and the boundary condition on Γint

(2) where g = 0.

The system (5) becomes (D−C− C̃)X = b where C̃ couples the degrees of freedom on Γint (more generally

Σ) and Γext. The matrix C̃ can be split into different discrete integral operators C̃i , i = 1, ..., 4 of the form

(C̃i Xh)kl =

∫

Σext
kk

ck Si(Xh) · FYkl dγext ,

where

· Σext
kk is the face on Γext of a tetrahedron intersects the exterior boundary,

· ck depends only on ε and µ on Σext
kk ,

· F is the local operator introduced in (4),

· Si is a global operator which comes from the right hand side of (6)-(7), for instance

(S1(X ))(x) =

(
−
∫

Γint

fQ(y)∇yG(x, y) ∧ X (y) dγ(y)

)
∧ ν(x) ,

where fQ is a function involving Q and ε. These integral operators can be evaluated by the FMM.

In this paper, the solution of the new system (D−C−C̃)X = b is obtained by the same method (BiCGStab)

as used for the classical UWVF system (D − C)X = b, considering C + C̃ as a small perturbation of C. It is
important to note that we never compute C̃ explicitly, but evaluate its action as needed by the FMM.

The integral representation aims to reduce the distance of the absorbing boundary from the scatterer to
a number of elements independent of κ. We then have a number of elements in the mesh of order K2

0 . This
reduces the complexity related to the volume calculation. The FMM is used to control the cost of the integral
calculation related to the integral operators which give rise to large dense blocks in the discrete system.

A rigorous expression of the algorithm complexity involves several parameters: the size of the mesh K ∼
K3

0 or K2
0 , the average number of basis functions per tetrahedron p, the wave number κ, with the correlation

K0p ∼ κ. Moreover, the integral representation involves oscillating functions such as the Green function, and
the exterior normal to the boundaries. Evaluation of these operators requires an accurate model of the boundary
which is assured by our assumption of a polyhedral domain. For more general surfaces it a possible modification
of our algorithm would be to use a coarse volume mesh for the UWVF and a finer surface mesh for the integral
calculations (the mesh used for the resolution of classical integral equations); this follows the double-mesh
concept introduced by Zhou et al. [1] and used in [6]. Furthermore, note that the FMM used here does not
involve very close interactions. Indeed, the integral operators link points on one boundary to points on another
boundary so the source points are not in the same domain as the target points. All these considerations lead to
different algorithms with different complexities. In Tab. 1, we give the results developed in [7] which suggest
that the UWVF with MLFMM and no close interactions should have attractive work estimates.

4 Numerical Results

In this section, we give numerical results with the new algorithm which couples the UWVF and the integral
representation using a MLFMM. Our first results are for the problem of approximating scattering by a perfectly
conducting unit sphere for Γint) with the wave numbers κ = 3m−1, 4m−1, 6m−1, 10m−1, 15m−1. The wavelength
is then λ = 2π/3 ≈ 2.09m, π/2 ≈ 1.6m, π/3 ≈ 1.05m, π/5 ≈ 0.63m, 2π/15 ≈ 0.42m. This very simple example
has the advantage that a Mie series solution is available for comparison.

We also note that the method easily extends to disconnected scatterers. If the scatterers are close together
(closer than approximately 4 elements in the mesh), we need to surround the scatterers by a single auxilary
boundary. In this case multiple scattering is taken into account by the UWVF. If the scatterers are sufficiently

5



Table 1: Complexity estimates for the various versions of the UWVF + IR
Method Number of elements Cost of the solution

UWVF K3
0 ∼ (κ/p)3 K3

0p
2 ∼ K0κ

2

UWVF + IR K2
0 ∼ κ2 K2

0p
2 +K4

0p
2 ∼ κ2 + κ4

UWVF + IR + 1-level FMM K2
0 ∼ κ2 K2

0p
2 +K3

0 p ∼ κ2 + κ3

UWVF + IR + multilevel FMM K2
0 ∼ κ2 K2

0p
2 +K2

0 ln
2(K0) p ∼ κ2 + κ2 ln2 κ

UWVF + IR + multilevel FMM
with double mesh

K2
0 ∼ (κ/p)2 K2

0p
2 + κ2 ln2(κ) p ∼ κ2 + κ2 ln2(κ)p

UWVF + IR + 1-level FMM
without close interaction

K
5/2
0 ∼ κ5/2 K

5/2
0 p2 +K3

0 p ∼ κ2 + κ3

UWVF + IR + multilevel FMM
without close interaction

K2
0 ∼ κ2 K2

0p
2 +K2

0 ln
2(K0) p ∼ κ2 + κ2 ln2 κ

Table 2: The meshes for the unit sphere.
Name S400 S200 S040 S025 S017 S010 S007
κ 4 4 3 4 6 10 15
Radius of Γext in m 5 3 1.40 1.25 1.17 1.10 1.07
Distance between Γint and Γext ≈ 2.5λ ≈ 1.3λ ≈ λ/7.5 ≈ λ/6.3 ≈ λ/6.4 ≈ λ/6.3 ≈ λ/6.6
Number of tetrahedra 16179 14526 5822 11008 8449 22630 44459
Number of basis functions
per tetrahedron 8 to 128 8 to 72 10 to 22 10 to 24 16 to 30 16 to 28 14 to 30
Number of DoF 880200 508450 101814 178146 183108 480226 989238

separated, we can use a thin layer of elements around each scatterer. In this case multiple scattering is taken
into account via the fast multipole method and hence dispersion error is reduced. We have not yet found it
necessary to precondition in a special way in these cases.

Results from three codes are presented: the classical UWVF with a Silver-Müller type low order auxilliary
boundary condition of order 0 (i.e the standard UWVF with the boundary condition described earlier setting
Q = 0), the code UWVF+FMM using a 1-level FMM and the code UWVF+MLFMM using a multi level FMM.
All the resuts in this paper were obtained on an Apple Mac Pro with 2×3GHz quad-core Xeon processors using
16 Gb RAM.

4.1 The unit sphere

For approximating scattering by the unit sphere, the exterior boundary Γext is taken to be a concentric sphere.
Obviously these are not polyhedral domains, but can be approximated using a sufficiently fine mesh near the
boundary. We have experimented with several exterior boundaries giving rise to different meshes as defined in
[8]. Table 2 describes those used in this paper. The names “Sxxx” denote the different meshes, where “xxx”
denotes one of the numbers 400, 200, 100, 075, 050, 025, 040, 017. This number gives the distance between Γint

and Γext in centimeters. For κ = 4 the distance from the perfect conductor to the artificial boundary ranges
from 0.16λ (S025) to 2.5λ (S400) where λ = 2π/κ is the wavelength.

All the meshes have been generated using COMSOL Multiphysics version 3.5a. The meshes S400 and S200
are appropriate for a classical use of the UWVF. The meshes S025, S040, S017, S010 and S007 have been
generated optimizing the ratio between the average edge-length h and the wavelength λ to h ≈ λ/5. These
meshes are quite uniform (the S400 and S200 meshes are graded to give larger elements away from the scatterer).
The large number of tetrahedra in S025 might appear to be a disadvantage for the UWVF+MLFMM method
(the number of tetrahedra is comparable to S400). However the number of Degrees of Freedom (DoF) is much
less than for S400 because fewer plane waves are used per element due to the smaller size of elements as shown
in the bottom row of Table 2.

We use the radar cross section (RCS) as a measure of the efficiency of the method since the RCS is often

6
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Figure 2: The TE-polarized RCS as a function of polar coordinate θ computed using the three codes in the
study, with κ = 4. Left: results for the classical UWVF code with meshes S400 and S200. Right: results for
the codes UWVF+FMM and UWVF+MLFMM with the mesh S025.

the desired output of the code. The RCS is obtained from the far field pattern of the dielectric field denoted
E∞ as follows:

RCS = 10 log10(2πκ ‖ E∞ ‖2).
We start by comparing the classical UWVF, the UWVF-FMM and UWVF-MLFMM at constant wave number
κ = 4. Figure 2 compares the results of our codes as a function of angle with the exact Mie series solution for
TE polarization, and Fig. 3 shows results for TM polarization, but only for UWVF-MLFMM. As is well known,
the classical UWVF code requires a large distance between Γint and Γext to obtain an accurate solution due to
its low order absorbing boundary condition. Figure 2 clearly shows the impact of the integral representation on
the accuracy of the results for the case κ = 4. The code UWVF+FMM gives results which fit with the Mie series
solution, even with the thin mesh S025. The results obtained with the code UWVF+MLFMM are comparable
to the those of the code UWVF+FMM, indicating that use of the multilevel scheme does not degrade the FMM
accuracy.

CPU-time, memory requirements and error measures are given in the case of the TE polarization in Table 3.
The results are given for the meshes S400 and S200 using the classical UWVF code and for the mesh S025 using
the codes UWVF+FMM and UWVF+MLFMM. In the table we use the following notation (units are seconds
and Giga-bytes):

• CPU time:

T00 = precalculation of the matrices C and D.

T0c (resp. T0f) = precalculation of the close (resp. far) interactions related to C̃.

TD (resp. TC) = one multiplication by D−1 (resp. C) (average).

TCc (resp. TCf) = one multiplication by C̃ close (resp. far) (average).

Tcg = Total CPU time for the solution of the system.

Ttot = Total CPU time required by the code.

• Nit = Number of iterations for the bi-conjuguate gradient.

• mem = Memory required by the code.

• Rel Err 2 = Relative quadratic error on RCS.
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Figure 3: The TM-polarized RCS against polar angle θ computed using the code UWVF+MLFMM (dashed
line) with the mesh S025 and the exact solution (solid line). Here κ = 4.

Table 3: Computational costs comparisons between the UWVF (S400; S200), UWVF+FMM (S025 - F) and
UWVF+MLFMM ( S025 - M) for scattering by a unit sphere at constant κ. For more details of the meshes see
Table 2. The RCS error is computed via the Mie series.

Case κ T00 T0c T0f TD TC TCc TCf Tcg Nit

S400 4 326 – – 1.2 7.6 – – 1399 156
S200 4 73.7 – – 0.4 1.99 – – 388 155

S025 - F 4 34 138.6 4.3 0.1 0.2 1 3.5 656 135
S025 - M 4 10.4 52 2.98 0.11 0.3 0.36 4.5 733 139

Case κ Ttot mem Rel Err 2 Rel Err ∞ RMS error

S400 4 1725 6.2 1.5 10−2 1.1 10−2 9.5 10−2

S200 4 462 1.8 3.2 10−2 2.5 10−2 2 10−1

S025 - F 4 838 2.8 4.6 10−3 5.1 10−3 2.8 10−2

S025 - M 4 798 1.6 1.7 10−2 1.1 10−2 1.1 10−1

• Rel Err ∞ = Relative infinity error on RCS.

• RMS error = Root mean square error on the scattering amplitude. Like in [15],

RMS error =

√√√√
(
1

n

) n∑

i=1

(RCS(i)− Exact-RCS(i))2

is used as a classical RCS error ([15]).

The RCS curve obtained with S200 using the UWVF code could be acceptable, however its accuracy is quite
poor in comparison with the one obtained with S025 using the codes UWVF+FMM and UWVF+MLFMM
hence we should compare results for S400 and S025 in Table 3. That case shows that the UWVF-MLFMM code
reduces computer time by approximately 50% and the memory needed by almost 75%. for roughly the same
RMS error.

Next we investigate the κ dependence of the method to determine how well Table 1 reflects the practical
work needed by the method. Of course, as κ increases the method needs to add degrees of freedom to maintain
accuracy. Moreover our crude geometry approximation requires a finer mesh as κ increases. Hence we use
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Figure 4: The RCS computed using UWVF+MLFMM with the mesh S040, with κ = 3. Left: TE-polarized
RCS. Right: TM-polarized RCS.
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Figure 5: The RCS computed using UWVF+MLFMM with the mesh S017, with κ = 6. Left: TE-polarized
RCS. Right: TM-polarized RCS.
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Figure 6: The RCS computed using UWVF+MLFMM with the mesh S010, with κ = 10. Left: TE-polarized
RCS. Right: TM-polarized RCS.
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Figure 7: The RCS computed using UWVF+MLFMM with the mesh S007, with κ = 15. Left: TE-polarized
RCS. Right: TM-polarized RCS.
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Table 4: Computational costs comparison for UWVF+MLFMM (S040 ; S025 - M ; S017 ; S010 ; S007) as κ
changes. For more details of the meshes see Table 2. All results are for the unit sphere and the RCS error is
computed via the Mie series.

Case κ T00 T0c T0f TD TC TCc TCf Tcg Nit

S040 3 6.81 80 2.7 0.06 0.18 0.5 3 469 125
S025 - M 4 10.4 52 2.98 0.11 0.3 0.36 4.5 733 139
S017 6 13.5 141 5.7 0.1 0.4 0.95 7.9 894 95
S010 10 35 467 15 0.3 1 3 19.6 2252 93
S007 15 76 921 66 1.3 4.5 16.7 61.5 8880 105

Case κ Ttot mem Rel Err 2 Rel Err ∞ RMS error

S040 3 558 1.5 1.2 10−2 1.2 10−2 7.3 10−2

S025 - M 4 798 1.6 1.7 10−2 1.1 10−2 1.1 10−1

S017 6 1054 2.99 6.4 10−3 4.5 10−3 4.1 10−2

S010 10 2770 8.38 5.5 10−3 4.1 10−3 3.6 10−2

S007 15 9944 17 1.3 10−2 1.1 10−2 8.5 10−2
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Figure 8: Number of degrees of freedom (left), CPU-time (middle) and memory requirements (right) with
respect to the wave number κ, using a log-log scale. We show the data from Table 4 marked with a symbol
in each case. The best fit line is shown as a solid line, and lines corresponding to O(κ), O(κ2) and O(κ3) for
comparison.

meshes S040, S035, S017, S010 and S007. Figures 3, 4 and 5 show the angular dependence of the RCS from our
UWVF-MLFMM code compared to the exact Mie series.

Memory, CPU and time requirements, together with quantitative error results are shown in Table 4. We
have tried to keep the RMS error roughly constant to enable comparison. We then plot the resulting number of
degrees of freedom, CPU and memory requirements against κ in Fig.8. We also consider reference lines to enable
comparison with results predicted in Table 4. These curves support the theoretical results on the complexity.

4.2 Multiple scatterers

In this subsection, we show results obtained on two different multiple-scatterers examples with the wave num-
ber κ = 4. The first result (Figure 10) is obtained with UWVF+MLFMM on a scatterer consisting of two
closely separated spheres using a mesh named 2S025. This scatterer consists of two unit spheres centered at
(±1.125, 0, 0), and compared to UWVF with 2S200 and 2S400 where the name of the meshes were chosen as
before. For the different cases, the artificial boundary is taken around the two spheres such that the domain is
as in the two leftmost panels of Figure 9. Because the scatterers are close together in comparison to our meshing
constraints (i.e. closer than 4 elements apart), we need to use a single mesh surrounding both scatterers. For
the meshes 2S200 and 2S400 that surround two balls, the error is given compared to the results obtained with
UWVF+MLFMM on 2S025. Indeed, in the case of scattering from two spheres, we consider our solution on
2S025 as the reference solution.
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Table 5: Computational costs comparison for the basic UWVF (2S400 ; 2S200) and the UWVF+MLFMM
(2S025; 4S025) for scattering from multiple objects.
Case T00 T0c T0f TD TC TCc TCf Tcg Nit

2S400 250 – – 1.12 7.4 – – 1172 136
2S200 93.5 – – 0.5 2.68 – – 424 130
2S025 17.29 187 5.73 0.17 0.52 1.28 7.25 1087 118

4S025 28 361 12.25 0.25 0.79 2.45 16.03 1675 86

Case Ttot mem Rel Err 2 Rel Err ∞ RMS error

2S400 1422 6.12 4.3 10−2 5.7 10−2 3.6 10−1

2S200 518 2.28 7.8 10−2 9.9 10−2 6.4 10−1

2S025 1297 3.34 – – –

4S025 2077 6.73 – – –
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Figure 9: Meshes 2S025, 2S200 and 4S025.

The second example (results in Figure 11) is a set of four unit spheres centered at (±1.8, 0,±1.8), and the
mesh is called 4S025. In this case, the spheres are well separated and so we can take the artificial boundary
to consist of four spheres of radius 1.5 m and centered at the same points as the spheres which contribute to
the scatterer. In this situation, the domain is a four-components domain, and multiple scattering is taken into
account by the integral equation. Figure 9 shows the domain. No error estimate is available for the case of
scattering by four balls (mesh 4S025).

5 Conclusion

We have described how to couple the UWVF and multi-level fast multipole scheme via an overlapping strategy.
This allows us to use non-convex artificial boundaries close to the scatterer, and hence decrease the memory
and CPU requirements for solving an exterior scattering problem. The main content of the paper is a series
of numerical tests that 1) demonstrate that the new method improves on the original UWVF when applied to
simple scatterers, 2) supports the predicted wave number dependence of the work estimates and 3) shows how
the method can handle multiple scatterers.

Clearly much more work is needed to make this method generally applicable. Error estimates should be
proved and a better preconditioner for the UWVF derived. In addition a subgrid boundary model needs to
be implemented to allow for a coarser volume grid near the boundary, and to allow a better approximation of
curved boundaries.
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Figure 10: The RCS computed using UWVF+MLFMM with the mesh 2S025 and using UWVF with the meshes
2S200 and 2S400, with κ = 4. Left: TE-polarized RCS. Right: TM-polarized RCS.
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Figure 11: The RCS computed using UWVF+MLFMM with the mesh 4S025, with κ = 4. Left: TE-polarized
RCS. Right: TM-polarized RCS.
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