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MULTI-OPERATOR SCALING RANDOM FIELDS

HERMINE BIERMÉ, CÉLINE LACAUX, AND HANS-PETER SCHEFFLER

Abstract. In this paper, we define and study a new class of random fields called harmonizable
multi-operator scaling stable random fields. These fields satisfy a local asymptotic operator scal-
ing property which generalizes both the local asymptotic self-similarity property and the operator
scaling property. Actually, they locally look like operator scaling random fields whose order is
allowed to vary along the sample paths. We also give an upper bound of their modulus of conti-
nuity. Their pointwise Hölder exponents may also vary with the position x and their anisotropic
behavior is driven by a matrix which may also depend on x.

1. Introduction

Self-similar random processes and fields are required to model numerous natural phenomena,

e.g. in internet traffic, hydrology, geophysics or financial markets, see for instance [27, 18, 1].

A very important class of such fields is given by fractional stable random fields (see [25]). In

particular, the well-known fractional Brownian field BH is a Gaussian H-self-similar random field

with stationary increments. It is an isotropic generalization of the famous fractional Brownian

motion ([19, 12]). Self-similar isotropic α-stable fields have been extensively used to propose

an alternative to Gaussian modeling (see [21, 27] for instance) to mimic heavy-tailed persistent

phenomena.

However, isotropy property is a serious drawback for many applications in medicin [8], in

geophysics [22, 9] and in hydrology [5], just to mention a few. Recently, an important class of

anisotropic random fields has been studied in [7]. These fields are anisotropic generalizations of

self-similar stable random fields. They satisfy an operator scaling property which generalizes the

classical self-similarity property. More precisely, for E a real d×d matrix with positive real parts

of the eigenvalues, a scalar valued random field (X(x))x∈Rd is called operator scaling of order E

and H > 0 if for every c > 0

{X(cEx); x ∈ Rd}
(fdd)
= {cHX(x); x ∈ Rd}, (1)

where
(fdd)
= means equality of finite dimensional distributions and as usual cE = exp(E log c). Let

us recall that the self-similarity property corresponds to the case where E is the identity matrix.

Let us also remark that up to consider the matrix E/H, we may and will assume, without

loss of generality, that H = 1. The anisotropic behavior of operator scaling random fields with
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stationary increments is then driven by a matrix. In particular, when θj is an eigenvector of E

associated with the eigenvalue λj, any operator scaling random field for E is 1/λj-self-similar in

direction θj. Furthermore, the critical global and directional Hölder exponents of harmonizable

operator scaling stable random fields are given by the eigenvalues of E (see [6]). Let us empha-

size that these exponents and the directions of self-similarity do not vary according to the position.

Moreover, the self-similarity is a global property which can be too restrictive for applications.

Actually, numerous phenomena exhibit scale invariance that may vary according to the scale

or to the position and are usually called multifractal (see [10, 24, 22] for examples). To allow

more flexibility, [4] has introduced the local asymptotic self-similarity property. This property

characterizes random fields that locally seem self-similar but whose local regularity properties

evolve. Since then, many examples of locally asymptotically self-similar random fields have been

introduced and studied, e.g. in [4, 23, 3, 2, 15, 26].

In this paper, we introduce the local asymptotic operator scaling property which generalizes

both the local asymptotic self-similarity property and the operator scaling property. A scalar

valued random field X is locally asymptotically operator scaling at point x of order A(x) if

lim
ε→0+

(
X(x + εA(x)u) − X(x)

ε

)

u∈Rd

(fdd)
= (Zx(u))u∈Rd , (2)

with Zx a non degenerate random field. Let us first remark that the local asymptotic self-

similarity property of exponent h(x) corresponds to the local asymptotic operator self-similarity

of order A(x) = Id/h(x) with Id the identity matrix of order d. Moreover, operator scaling

random fields of order E are locally asymptotically operator scaling at point 0 of order E. Of

course, if they have also stationary increments, they are locally asymptotically operator scaling

at any point x. In addition, if (2) is fulfilled, the random field Zx is operator scaling of order

A(x). In other words, a local asymptotic multi-operator random field locally looks like an

operator scaling random field whose order is allowed to vary along the sample paths.

Then, we focus on harmonizable multi-operator scaling stable random fields, which generalize

harmonizable operator scaling stable random fields. A harmonizable multi-operator scaling stable

random field X satisfies the local asymptotic self-similarity property (2) with Zx a harmonizable

operator scaling stable random field of order A(x). Moreover, its local sample path properties

at point x are the same as those of Zx which have been established in [7, 6]. Hence, its local

regularity varies with the position x and its anisotropic behavior is driven by a matrix which

depends on x. In particular, for any eigenvector θj(x) of A(x) associated with the real eigenvalue

λj(x), the random field X admits Hj(x) = 1/λj(x) as pointwise Hölder exponent in direction

θj(x) at point x. Let us point out that we establish an accurrate upper bound for the modulus

of continuity. Such upper bound has already been given for real harmonizable fractional stable
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motions in [14], for some Gaussian random processes in [13] and for harmonizable operator scaling

stable random fields in [6]. Then, in this paper, we generalize these results to harmonizable

multi-operator scaling stable random fields. To study the sample paths in the case of α-stable

random fields with α ∈ (0, 2), we use a LePage series representation (see [17, 16] for details on

such series) which is chosen to be conditionnally Gaussian as in [14, 6].

Harmonizable multi-operator scaling stable random fields are defined in Section 2. In this

section, we also state all the assumptions we will need and present many examples that fulfill

them. Section 3 is devoted to the properties of the polar coordinates: these coordinates are one

of the main tools we use to study the sample paths as in [7, 6]. In Section 4, we state the sample

path properties of the class of random fields under study (modulus of continuity and pointwise

directional Hölder exponents). Section 5 is devoted to the local asymptotic operator self-similar

property. Some technical proofs are postponed to the Appendix.

Throughout this paper, B(x, γ) denotes the closed Euclidean ball of center x and radius γ.

2. Harmonizable representation

Harmonizable stable random fields are defined as stochastic integrals of deterministic kernels

with respect to a stable random measure. In this paper we will always assume that the following

assumption holds:

Assumption 1. Let α ∈ (0, 2] and Wα be a complex isotropic α-stable random measure with

Lebesgue control measure (see [25] p.281 for details on such measures). Note that W2 is an

isotropic complex Gaussian random measure.

Let us recall (see [25]) that the stochastic integral

Wα(f) :=

∫

Rd

f(ξ)Wα(dξ)

is well-defined if and only if f ∈ Lα
(
Rd

)
. Furthermore, for f ∈ Lα

(
Rd

)
, Wα(f) is a stable

complexed-valued random variable whose characteristic function is given by

∀z ∈ C, E(exp (i Re (zWα(f)))) = exp (−sα‖Wα(f)‖α
α |z|

α)

where

‖Wα(f)‖α =

(∫

Rd

|f(ξ)|αdξ

)1/α

and sα =
1

2π

∫ π

0

|cos (ξ)|αdξ.

Note that if α = 2, for each square integrable function f , the stochastic integral W2(f) is a

centered Gaussian random variable.

According to [7], a harmonizable operator scaling stable random field X = (X(x))x∈Rd is defined

by

X(x) = Re

∫

Rd

(
ei〈x,ξ〉 − 1

)
ψ(ξ)−1−trace(E0)/α Wα(dξ), (3)
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with E0 a d× d real matrix whose eigenvalues have real parts greater than 1 and ψ : Rd → [0,∞)

is a continuous E0-homogeneous function, that is ψ(cE0ξ) = cψ(ξ) for all c > 0 and x ∈ Rd, such

that

∀ξ 6= 0, ψ(ξ) 6= 0.

In order to obtain a field whose local behavior is given by a harmonizable operator scaling stable

random field, we replace in (3) the matrix E0 (respectively the function ψ) by a matrix E(x)

(respectively a function ψx) which depends on the position x. In this approach, the function ψx

is E(x)-homogeneous. This leads us to consider

Xα,ψ(x) = Re

∫

Rd

(
ei〈x,ξ〉 − 1

)
ψx(ξ)

−1−trace(E(x))/α Wα(dξ).

This approach has already been used to define the multifractional Brownian field in [4, 23].

To ensure that the field Xα,ψ is well-defined, we only have to assume that (E(x), ψx) satisfies

the assumptions of [7] for any x. Before we state these assumptions, let us introduce several

notations we will use throughout the paper.

Notations. We denote M>0
(
Rd

)
the space of all d × d real matrix whose eigenvalues have

positive real parts. In the following, for any x ∈ Rd, E(x) ∈ M>0
(
Rd

)
. The eigenvalues of E(x)

are denoted by λ1(x), . . . , λd(x). For each j = 1, . . . , d and each x ∈ Rd, we set

aj(x) = Re (λj(x)), Hj(x) =
1

aj(x)
, H(x) = max

1≤i≤d
Hi(x) and H(x) = min

1≤i≤d
Hi(x). (4)

The multi-operator scaling random field Xα,ψ is well-defined as soon as the two following

assumptions are fulfilled. These assumptions come from [7] when E and ψ do not vary with the

position x.

Assumption 2. Assume that

∀x ∈ Rd, min
1≤j≤d

aj(x) > 1

with aj defined by (4).

Assumption 3. For every x ∈ Rd, let ψx : Rd → [0, +∞) be a continuous function, E(x)-

homogeneous which means according to Definition 2.6 of [7] that

ψx(c
E(x)ξ) = cψx(ξ) for all c > 0 and ξ ∈ Rd.

Let us also assume that ψx(ξ) 6= 0 for ξ 6= 0.

Following ideas of [2], let us now define generalized multi-operator scaling stable random fields.

These fields will be useful in the study the sample paths of harmonizable multi-operator scaling

stable random fields.
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Theorem 2.1. Assume that Assumptions 1, 2 and 3 are fulfilled. Then, the random field

Yα,ψ(x, y, z) = Re

∫

Rd

(
ei〈x,ξ〉 − 1

)
ψy(ξ)

−βα(z) Wα(dξ), x, y, z ∈ Rd, (5)

where

βα(z) = 1 +
q(z)

α
with q(z) = trace(E(z)) (6)

is well-defined on the non empty set

U =

{
(x, y, z) ∈ R3d : 0 < 1 + (q(z) − q(y))/α < min

1≤j≤d
Re (λj(y)) =

1

H(y)

}
.

The random field Yα,ψ is called generalized multi-operator scaling stable random field.

Proof. Let x, y, z ∈ Rd and H = 1 + (q(z) − q(y))/α. Since βα(z) = H + q(y)/α, according to

Theorem 4.1 of [7] (applied with ψ = ψy), the random variable Yα,ψ(x, y, z) is well-defined as soon

as

0 < H < min
1≤j≤d

Re (λj(y)) =
1

H(y)
,

which holds for any (x, y, z) ∈ U . ¤

We now introduce the class of harmonizable multi-operator scaling random fields which will

study in this paper.

Definition 2.1. Assume that Assumptions 1, 2 and 3 are fulfilled. Then, the random field

Xα,ψ(x) = Yα,ψ(x, x, x) = Re

∫

Rd

(
ei〈x,ξ〉 − 1

)
ψx(ξ)

−βα(x) Wα(dξ) , x ∈ Rd, (7)

with βα defined by (6), is well-defined and is called harmonizable multi-operator scaling stable

random field.

Remark 2.1. If α = 2, Xα,ψ is a real-valued centered Gaussian random field.

Remark 2.2. Assume that Assumptions 1, 2 and 3 are fulfilled. Let

∀x ∈ Rd, ∀ξ ∈ Rd, ψ̃x(ξ) =
1

2
(ψx(ξ) + ψx(−ξ)).

Then, for each x ∈ Rd, ψ̃x is an even function. Since Assumption 3 is also fulfilled by (x, ξ) 7→ ψ̃x,

the harmonizable multi-operator scaling stable random fields Xα,ψ and Xα,ψ̃ are well-defined by (7).

Moreover, one can easily see that

{
Xα,ψ(x); x ∈ Rd

} (fdd)
=

{
Xα,ψ̃(x); x ∈ Rd

}
.

Therefore, the function ψx will be chosen even for any x ∈ Rd in all the examples we will give.

Let us emphasize that to study the sample paths of Xα,ψ, we need the functions ψ and E to

be sufficiently regular. We introduce now all the assumptions we will use in sequel.
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Assumption 4. Let T =
d∏

i=1

[bi, di] with bi < di for 1 ≤ i ≤ d. Let us assume that the function

(x, ξ) 7→ ψx(ξ) is locally Lipschitz on T ×Rd\{0}, that is for every compact set K ⊂ T ×Rd\{0},

there exists a finite positive constant c2,1 = c2,1(K) such that

|ψx1(ξ1) − ψx2(ξ2)| ≤ c2,1 (‖x1 − x2‖ + ‖ξ1 − ξ2‖)

for every (x1, ξ1), (x2, ξ2) ∈ K.

Assumption 5. Let T =
d∏

i=1

[bi, di] with bi < di for 1 ≤ i ≤ d. Let us assume that the map

E : x 7−→ E(x) is a Lipschitz function on T : there exists a finite positive constant c2,2 = c2,2(T )

such that, for x1, x2 ∈ T

‖E(x1) − E(x2)‖ ≤ c2,2 ‖x1 − x2‖ .

Assumption 6. Let T =
d∏

i=1

[bi, di] with bi < di for 1 ≤ i ≤ d. Let us assume that for any

x, y ∈ T , E(x) and E(y) are commuting matrices:

E(x)E(y) = E(y)E(x).

We now conclude this section by several examples. We first give two straightforward classes

of examples. The first one is given by harmonizable operator scaling stable random fields. The

second one includes the classical multifractional Brownian field as defined in [4].

Example 2.1 (Operator scaling random fields). Let E0 be a d×d real matrix whose eigenval-

ues have real parts greater than 1. Let us consider a function ψ : Rd → [0,∞) E0-homogeneous,

locally Lipschitz on Rd\{0} and such that

∀ξ 6= 0, ψ(ξ) 6= 0.

For all x, ξ ∈ Rd, let

E(x) = E0 and ψx = ψ.

Then, Assumptions 2-6 are fulfilled and under Assumption 1, Xα,ψ is a harmonizable operator

scaling stable random field for Et
0 with stationary increments, see [7]. In particular, Xα,ψ satisfies

the operator-scaling property (1) for Et
0 (and H = 1).

Example 2.2 (Multifractional operator scaling random fields). Let E0 and ψ be as in

Example 2.1 and let h : Rd −→ (0, 1) be a locally Lipschitz function. For all x ∈ Rd, let us define

E(x) =
1

h(x)
E0 and ψx = ψh(x).

Then, Assumptions 2-6 are fulfilled and under Assumption 1, the random field Xα,ψ given by (7)

is well-defined. In particular, if E0 = Id is the identity matrix and if ψ = ‖·‖2 is the Euclidean

norm on Rd, then Xα,ψ is a multifractional harmonizable stable random field, called multifractional

Brownian field if α = 2 (see [4]).
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Remark 2.3. Let us focus on the special case d = 1. If we assume that ψx is an even function

for any x ∈ Rd, Assumption 3 implies that there exists a positive function c such that

ψx(ξ) = c(x)|ξ|h(x), for any x, ξ ∈ Rd,

where h = 1/E. Hence, if d = 1, under Assumptions 1-3, the random process Xα,ψ is a multi-

fractional harmonizable stable random motion, up to a deterministic multiplicative function.

Example 2.3. For every 1 ≤ j ≤ d, assume that Hj is a locally Lipschitz function on Rd with

values in (0, 1). Assume also that

inf
x∈Rd

min
1≤j≤d

Hj(x) > 0.

Consider the map

E = diag (1/H1, . . . , 1/Hd)

defined on Rd with values in the space of diagonal matrices. Let ρ ∈ (0, inf
x∈Rd

min
1≤j≤d

Hj(x)] and

ψx(ξ) =
(
|ξ1|

2H1(x)
ρ + · · · + |ξd|

2Hd(x)

ρ

)ρ/2

,

for every x, ξ ∈ Rd. Then, Assumptions 2-6 are fulfilled such that, under Assumption 1, the

random field Xα,ψ given by (7) is well-defined.

Example 2.4. Let E and ψx as in Example 2.3. Let P ∈ GLd(R) be an invertible matrix. Then

the map

x 7→ P−1E(x)P

satisfies Assumptions 2, 5 and 6. Moreover, the function

ϕ : (x, ξ) 7→ ψx(Pξ)

satisfies Assumptions 3 and 4. Then, the harmonizable multi-operator scaling stable random field

Xα,ϕ is well defined by (7).

Example 2.5. Let d = 2. Let us consider the map

x 7→ E(x) = a(x)

(
cos(θ(x)) sin(θ(x))

− sin(θ(x)) cos(θ(x))

)

where a and θ are locally Lipschitz functions on Rd. Assume that

∀x ∈ Rd, a(x) cos (θ(x)) > 1.

For every x ∈ Rd and ξ ∈ Rd, let

ψx(ξ) = ‖ξ‖1/(a(x) cos(θ(x)))
2 .

Then Assumptions 2-6 are fulfilled such that, under Assumption 1, the random field Xα,ψ given

by (7) is well-defined.
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Example 2.6. Let Ei : Rd → M>0(Rd) satisfy Assumption 2 for i ∈ {1, 2} and let ψ(i) satisfying

Assumption 3 with respect to Ei for i ∈ {1, 2}. Consider the map

E = E11[0,1]d + E21Rdr[0,1]d .

and for any x ∈ Rd, the function

ψx(ξ) = ψ(1)
x (ξ)1[0,1]d(x) + ψ(2)

x (ξ)1Rdr[0,1]d(x).

Then ψ satisfies Assumption 3 with respect to E. The random fields Xα,ψ(1), Xα,ψ(2) and Xα,ψ are

well defined by (7) and

Xα,ψ = Xα,ψ(1)1[0,1]d + Xα,ψ(2)1Rdr[0,1]d .

The approach proposed in this example allows to define harmonizable stable random fields which

are piecewise operator scaling.

In the next section we recall one of the main tools needed to study operator scaling random

fields, in particular a change of variables formula with respect to adapted polar coordinates.

3. Polar coordinates

Let us recall the main properties of polar coordinates adapted to a single matrix as introduced

in [20]. Let M ∈ M>0
(
Rd

)
. As in Chapter 6 of [20], let us consider the norm ‖ · ‖M defined by

‖x‖M =

∫ 1

0

∥∥tMx
∥∥dt

t
, ∀x ∈ Rd (8)

where ‖ · ‖ is the Euclidean norm on Rd. Then, according to Chapter 6 of [20], ‖ · ‖M is a norm

on Rd such that the map

ΨM : (0, +∞) × SM −→ Rd \ {0}
(r, θ) 7−→ rMθ

is a homeomorphism, where

SM = {ξ ∈ Rd : ‖ξ‖M = 1} (9)

is the unit sphere for ‖ · ‖M . Hence we can write any ξ ∈ Rd\{0} uniquely as

ξ = τM(ξ)MℓM(ξ) (10)

with τM(ξ) > 0 and ℓM(ξ) ∈ SM . Here, for any ξ ∈ Rd\{0}, τM(ξ) should be interpreted as the

radial part of ξ with respect to M and ℓM(ξ) ∈ SM as its directional part with respect to M .

Let us now recall the formula of integration in polar coordinates established in [7].

Proposition 3.1. There exists a unique finite Radon measure σM on the unit sphere SM defined

by (9) such that for all f ∈ L1(Rd, dξ),
∫

Rd

f(ξ) dξ =

∫ +∞

0

∫

SM

f(rMθ) σM(dθ) rtrace(M)−1 dr.
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The main difficulty in our setting is that we do not consider a single matrix but a family

(E(x))x∈Rd of matrices. Hence we need uniform controls on the polar coordinates. These will

follow from the next Lemmas.

Lemma 3.2. Let T =
d∏

i=1

[bi, di] with bi < di for 1 ≤ i ≤ d. Assume that E : T → M>0(Rd) is

continuous on T and satisfies Assumption 6 on T . Then the map

P : [0, +∞) × T −→ M
(
Rd

)

(t, x) 7−→ tE(x)

is continuous on [0, +∞) × T (with convention 0E(x) = 0).

Proof. According to Proposition 2.2.11 of [20], since E : T → M>0
(
Rd

)
is continuous on T ,

the map P is continuous on (0, +∞) × T . Therefore, the main problem is to prove that P is

continuous at (0, x) for any x ∈ T .

Let us fix x ∈ T . Then, let δ > 0 such that the real parts of all the eigenvalues of E(x) are greater

than 2δ, that is such that

H(x) = min
1≤j≤d

Hj(x) > 2δ.

It follows from Theorem 2.2.4 of [20] that

sup
‖θ‖=1

t2δ‖t−E(x)θ‖ −−−−→
t→+∞

0.

Then, by continuity of t 7→ t−E(x) on [1, +∞[, one can find a finite positive constant c such that

∀t ∈ [1, +∞), ‖t−E(x)‖ := sup
‖θ‖=1

‖t−E(x)θ‖ ≤ ct−2δ.

Now, since E is continuous on T , there exists rδ ∈ (0, +∞) such that

∀y ∈ B(x, rδ) ∩ T, ‖E(x) − E(y)‖ ≤ δ,

where B(x, rδ) is the Euclidean closed ball centered at point x with radius rδ.

Therefore for any s ∈ (0, 1] and any y ∈ B(x, rδ) ∩ T , according to Assumption 6

‖sE(y)‖ = ‖sE(y)−E(x)sE(x)‖ ≤ ‖sE(y)−E(x)‖‖sE(x)‖ ≤ cs−‖E(y)−E(x)‖s2δ.

Hence, for any s ∈ (0, 1] and any y ∈ B(x, rδ) ∩ T ,

‖sE(y)‖ ≤ csδ,

which also holds for s = 0 by convention and concludes the proof. ¤

Let us remark that one can establish the continuity of P on [0, +∞)×T without Assumption 6.

However, without Assumption 6, the proof is very long and this assumption will be needed in

sequel.
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Lemma 3.2 leads to an uniform control of
∥∥tE(x)

∥∥ with respect to the eigenvalues of E(x), which

proof is postponed to the Appendix.

Lemma 3.3. Let T =
d∏

i=1

[bi, di] with bi < di for 1 ≤ i ≤ d. Let H and H be defined by (4).

Assume that E : T → M>0(Rd) is continuous on T and satisfies Assumption 6. Then, for any

δ > 0 and r0 > 0, there exist some finite constants c3,1 = c3,1(T, δ, r0) > 0 and c3,2 = c3,2(T, δ, r0)

such that for any x ∈ T ,

(i) for all t ∈ [0, r0],

t1/H(x) ≤ ‖tE(x)‖ ≤ c3,1 t1/H(x)−δ;

(ii) for all t ∈ [r0, +∞),

t1/H(x) ≤ ‖tE(x)‖ ≤ c3,2 t1/H(x)+δ.

Moreover, Lemma 3.2 leads also to an uniform control of ‖·‖
E(x)

with respect to the Euclidean

norm, stated in the next lemma, which proof is again postponed to the Appendix.

Lemma 3.4. Let T =
d∏

i=1

[bi, di] with bi < di for 1 ≤ i ≤ d. Assume that E : T → M>0(Rd)

is continuous on T and satisfies Assumption 6. Then there exist two finite positive constants

c3,3 = c3,3(T ) and c3,4 = c3,4(T ) such that

∀x ∈ T, ∀ξ ∈ Rd, c3,3‖ξ‖E(x)
≤ ‖ξ‖ ≤ c3,4‖ξ‖E(x)

and such that

∀x ∈ T, c3,3 ≤ σ
E(x)

(
S

E(x)

)
≤ c3,4

with σE(x) the measure introduced in Proposition 3.1.

Using Lemmas 3.3 and 3.4 we can compare uniformly the radial parts with the Euclidean norm.

The following proposition, which proof is postponed to the Appendix, is one of the main tools to

obtain Hölder regularity of multi-operator scaling stable random fields.

Proposition 3.5. Let T =
d∏

i=1

[bi, di] with bi < di for 1 ≤ i ≤ d. Let H and H be defined by (4).

Assume that E : T → M>0(Rd) is continuous on T and satisfies Assumption 6. Then, for any

δ ∈ (0, min
x∈T

H(x)), there exist two finite positive constants c3,5 = c3,5(T, δ) and c3,6 = c3,6(T, δ) such

that for all x ∈ T and ‖ξ‖ ≤ 1,

c3,5‖ξ‖
H(x)+δ ≤ τ

E(x)
(ξ) ≤ c3,6‖ξ‖

H(x)−δ, (11)

and, for all ‖ξ‖ ≥ 1,

c3,5‖ξ‖
H(x)−δ ≤ τ

E(x)
(ξ) ≤ c3,6‖ξ‖

H(x)+δ. (12)

Let us mention that for any fixed x ∈ Rd, the inequality (11), respectively (12), holds true

with | log(‖ξ‖)|d instead of ‖ξ‖−δ, respectively instead of ‖ξ‖δ, with constants c3,5 , c3,6 depending
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on x (see [6] for a proof).

We end this section by comparing the radial parts τ
E(x)

(ξ) and τ
E(y)

(ξ), uniformly in ξ, if x

and y are closed enough. This result will be useful to obtain an upper bound for the modulus of

continuity of multi-operator scaling stable random fields. Its proof is postponed to the Appendix.

Proposition 3.6. Let T =
d∏

i=1

[bi, di] with bi < di for 1 ≤ i ≤ d. Assume that E : T → M>0(Rd)

is continuous on T and satisfies Assumption 6. Then, for any ε ∈ (0, 1), there exists γ > 0 such

that for all x, y ∈ T with ‖x − y‖ ≤ γ,

c3,7τE(y)
(ξ)1+ε ≤ τ

E(x)
(ξ) ≤ c3,8τE(y)

(ξ)1−ε, ∀‖ξ‖ ≤ 1 (13)

and,

c3,7τE(y)
(ξ)1−ε ≤ τ

E(x)
(ξ) ≤ c3,8τE(y)

(ξ)1+ε, ∀‖ξ‖ ≥ 1 (14)

where c3,7 = c3,7(T ) and c3,8 = c3,8(T ) are two finite positive constants that only depend on T .

Let us emphasize that all these results depend only on the eigenvalues of the matrices. Therefore

they also hold when the map E is replaced by Et : x 7→ E(x)t, where E(x)t is the transpose matrix

of E(x).

4. Sample paths Regularity of multi-operator scaling stable random fields

4.1. Preliminary result on the scale parameter. In order to study the regularity of the

sample paths of Xα,ψ defined by (7), we consider the increments

Xα,ψ(u) − Xα,ψ(v) = Yα,ψ(u, u, u) − Yα,ψ(v, v, v),∀u, v ∈ Rd

with Yα,ψ defined by (5). Observe that

Xα,ψ(u) − Xα,ψ(v) = Y1,α,u(u, v) + Y2,α,u(u, v) + Y3,α,v(u, v),

with 



Y1,α,x(u, v) = Yα,ψ(x, u, u) − Yα,ψ(x, u, v),
Y2,α,x(u, v) = Yα,ψ(x, u, v) − Yα,ψ(x, v, v),
Y3,α,x(u, v) = Yα,ψ(u, x, x) − Yα,ψ(v, x, x).

By Theorem 2.1, the random variables Y1,α,x(u, v) and Y2,α,x(u, v) are well-defined as soon as

x ∈ Rd and

|q(v) − q(u)| < α min
(
1/H(u) − 1, 1/H(v) − 1, 1

)
. (15)

Note that for every x, u, v ∈ Rd, Y3,α,x(u, v) is also well-defined and is an increment of a

harmonizable operator scaling stable random field with exponent E = E(v)t and kernel function

ψ(ξ) = ψv(ξ) (see [7]).

In this section, we compare the scale parameter

‖Xα,ψ(u) − Xα,ψ(v)‖α,
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with τ
E(v)t

(u−v) uniformly in u, v. In order to obtain our estimates, we study the scale parameters

of Y1,α,x(u, v), Y2,α,x(u, v) and Y3,α,x(u, v). The controls of these parameters are stated in the three

following lemmas, whose proofs are postponed to the Appendix.

Lemma 4.1. Assume that Assumptions 1-6 are fulfilled and let K ⊂ Rd be a compact set of Rd.

Then, for γ > 0 small enough, there exists c4,1 = c4,1(K,T, γ) a finite positive constant such that,

for every x ∈ K, u, v ∈ T with ‖u − v‖ ≤ γ, Y1,α,x(u, v) is well-defined and

‖Y1,α,x(u, v)‖α
α ≤ c4,1‖u − v‖α.

Lemma 4.2. Assume that Assumptions 1-6 are fulfilled and let K ⊂ Rd be a compact set of Rd.

Then, for γ > 0 small enough, there exists c4,2 = c4,2(K,T, γ) a finite positive constant such that,

for every x ∈ K, u, v ∈ T with ‖u − v‖ ≤ γ, Y2,α,x(u, v) is well-defined and

‖Y2,α,x(u, v)‖α
α ≤ c4,2‖u − v‖α.

Lemma 4.3. Assume that Assumptions 1-6 are fulfilled and let K ⊂ Rd be a compact set of Rd.

Then, there exist two finite positive constants c4,3 = c4,3(K) and c4,4 = c4,4(K) such that for every

x ∈ K and every u, v ∈ Rd,

c4,3τE(x)t
(u − v)α ≤ ‖Y3,α,x(u, v)‖α

α ≤ c4,4τE(x)t
(u − v)α.

From the three previous lemmas, an uniform control of the scale parameter of

Xα,ψ(u) − Xα,ψ(v)

can be stated. The local behavior of this scale parameter is closely linked to the Hölder regularity

of the sample paths of the multi-operator stable random field Xα,ψ. Actually, in the Gaussian

case the Hölder regularity is characterized by the local behavior of this scale parameter; in the

α-stable case (α < 2), the next theorem leads to an upper bound for the Hölder regularity.

Theorem 4.4. Assume that Assumptions 1-6 are fulfilled. Then, for γ > 0 small enough there

exist two finite positive constants c4,5 = c4,5(T, γ) and c4,6 = c4,6(T, γ) such that

‖Xα,ψ(u) − Xα,ψ(v)‖α
α




≥ c4,5 max

(
τ

E(v)t
(u − v), τ

E(u)t
(u − v)

)α

≤ c4,6 min
(
τ

E(v)t
(u − v), τ

E(u)t
(u − v)

)α

,

for every u, v ∈ T such that ‖u − v‖ ≤ γ.

Proof of Theorem 4.4. Let u, v ∈ T such that ‖u − v‖ ≤ γ with γ ∈ (0, 1) . Then, for γ small

enough, by Lemmas 4.1 and 4.2, Y1,α,u(u, v) and Y2,α,u(u, v) are well-defined. Note that Y3,α,v(u, v)

is also well-defined. Then, we can write

Xα,ψ(u) − Xα,ψ(v) = Y1,α,u(u, v) + Y2,α,u(u, v) + Y3,α,v(u, v).

Hence, for γ small enough,

‖Xα,ψ(u) − Xα,ψ(v)‖α
α

{
≥ 2−2α‖Y3,α,v(u, v)‖α

α − ‖Y1,α,u(u, v)‖α
α − ‖Y2,α,u(u, v)‖α

α

≤ 22α
(
‖Y1,α,u(u, v)‖α

α + ‖Y2,α,u(u, v)‖α
α + ‖Y3,α,v(u, v)‖α

α

)
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By applying Lemmas 4.1, 4.2 and 4.3, for γ small enough,

‖Xα,ψ(u) − Xα,ψ(v)‖α
α

{
≥ 2−2αc4,3τE(v)t

(u − v)α − (c4,1 + c4,2)‖u − v‖α

≤ 22α
(
c4,4τE(v)t

(u − v)α + (c4,1 + c4,2)‖u − v‖α
)

.

Since H := max
z∈T

H(z) < 1, we can choose δ ∈ (0, minz∈T H(z)) such that

∀z ∈ T, H(z) + δ ≤ H + δ < 1.

By Proposition 3.5, there exists a finite constant c3,5 = c3,5(T, δ), such that

‖u − v‖α ≤ c−α
3,5

‖u − v‖α(1−(H+δ))τ
E(v)t

(u − v)α.

Then, one can choose γ small enough such that

(c4,1 + c4,2)‖u − v‖α ≤ 2−2α−1c4,3τE(v)t
(u − v)α

for every u, v ∈ T such that ‖u − v‖ ≤ γ. Therefore we can choose c4,5 = 2−2α−1c4,3 and

c4,6 = 22αc4,4 + 2−2α−1c4,3 . ¤

From the previous theorem, we easily deduce the stochastic continuity of a harmonizable multi-

operator scaling stable random field.

Corollary 4.5. Assume that Assumptions 1-6 are fulfilled. Then the harmonizable multi-operator

scaling stable random field Xα,ψ defined by (7) is stochastically continuous on T .

Proof. By Theorem 4.4, there exists γ ∈ (0, 1) and a finite positive constant c4,6 such that

‖Xα,ψ(u) − Xα,ψ(v)‖α
α ≤ c4,6τE(v)t

(u − v)α.

for any u, v ∈ T satisfying ‖u − v‖ ≤ γ.

Let δ ∈ minx∈T H(x). By Proposition 3.5, there exists a finite positive constant c3,6 = c3,6(T, δ)

such that

‖Xα,ψ(u) − Xα,ψ(v)‖α
α ≤ c4,6 cα

3,6
‖u − v‖α(H(v)−δ)

for any u, v ∈ T satisfying ‖u − v‖ ≤ γ. In particular, since α(H(v) − δ) > 0,

∀v ∈ T, lim
u→v

‖Xα,ψ(u) − Xα,ψ(v)‖α
α = 0,

which implies the stochastic continuity of Xα,ψ on T (see Proposition 3.5.1 of [25]). ¤

Let us also mention that in a special case, when the field Xα,ψ has stationary increments, Yimin

Xiao proves in Theorem 3.6 of [29] a strong local non-determinism property that enables him to

study their local times.
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4.2. Modulus of continuity. In this section, we give an upper bound on the modulus of con-

tinuity of a harmonizable multi-operator scaling stable random field Xα,ψ around the position x.

Let us emphasize that we control the behavior of an increment

Xα,ψ(x + u) − Xα,ψ(x + v)

using the polar coordinate τE(x)t with respect to the matrix E(x)t, which takes into account the

anisotropic behavior of Xα,ψ around x. As in [14, 6], one of the main tools we use is a LePage

series representation (see [17, 16] for details on such series) which is a conditionally Gaussian

series. Since E may vary with the position x, the main difference to [6] is that we need some

uniform controls of the polar coordinates and an uniform comparison of the radial parts with

respect to E(x)t and E(y)t (see Section 3). This leads to an upper bound less accurate than the

upper bound given in [6] in the case of operator scaling harmonizable stable random fields. The

difference is a log term but our upper bound is sufficient to obtain the pointwise Hölder exponents.

Let us also point out that our modulus of continuity is local and not uniform in contrast to [28].

Theorem 4.6. Assume that Assumptions 1-6 are fulfilled on T . There exists a modification X∗
α,ψ

of Xα,ψ on T such that almost surely, for all x ∈ T , for all ε > 0,

lim
γ↓0

sup
‖u‖≤γ,‖v‖≤γ

x+u,x+v∈T

∣∣X∗
α,ψ(x + u) − X∗

α,ψ(x + v)
∣∣

τ
E(x)t

(u − v)1−ε
= 0.

Proof. For every k ∈ N\{0} and j = (j1, . . . , jd) ∈ Zd we set

xk,j =
j

2k
and Dk =

{
xk,j : j ∈ Zd ∩ 2kT

}
.

Let us remark that the sequence (Dk)k is increasing and set D =
∞⋃

k=1

Dk, which is dense in T .

First Step: In this step, we assume that α ∈ (0, 2).

Let us fix x0 ∈ T ∩D. Following [14, 6], we consider a Lepage series representation of Xα,ψ which

is a conditionally Gaussian series. This series depends on the position x0 we have fixed.

Let (Tn)n≥1, (gn)n≥1 and (ξn)n≥1 be independent sequences of random variables.

• Tn is the nth arrival time of a Poisson process with intensity 1.

• (gn)n≥1 is a sequence of i.i.d. Gaussian complex isotropic random variables so that gn
(d)
=

eiθgn for any θ ∈ R.

• (ξn)n≥1 is a sequence of i.i.d. random variables with common law µx0(dξ) = mx0(ξ)dξ.

with

mx0(ξ) =
ca,x0

τ
E(x0)

(ξ)q(x0)
∣∣∣log τ

E(x0)
(ξ)

∣∣∣
1+a ,

where a > 0, q is defined by (6) and ca,x0 is chosen such that

∫

Rd

mx0(ξ)dξ = 1.
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Let

dα = E(|Re (g1)|
α)

−1/α

(
1

2π

∫ π

0

|cos (x)|αdx

)1/α(∫ +∞

0

sin (x)

xα
dx

)−1/α

and

fα(x, ξ) =
(
ei〈x,ξ〉 − 1

)
ψx(ξ)

−1−q(x)/α, ∀x, ξ ∈ Rd. (16)

According to Proposition 4.1 of [6], for every x ∈ Rd

Zα(x) = dα Re

(
+∞∑

n=1

T−1/α
n mx0(ξn)−1/αfα(x, ξn)gn

)
,

converges almost surely and Zα
(fdd)
= Xα,ψ. Then, conditionally to (Tn, ξn)n, Zα(u) − Zα(v) is a

real centered Gaussian random variable with variance

v2
α((u, v) | (Tn, ξn)n) =

d2
α

2
E

(
|g1|

2)
+∞∑

n=1

T−2/α
n mx0(ξn)−2/α|fα(u, ξn) − fα(v, ξn)|2. (17)

Second Step: Let us now assume that α ∈ (0, 2] and set Z2 = X2,ψ. For k ∈ N\{0, 1} and

(i, j) ∈ Zd, we consider the set

Ek
i,j =

{
{ω : |Zα(xk,i) − Zα(xk,j)| > vα((xk,i, xk,j) | (Tn, ξn)n) ϕ(‖xk,i − xk,j‖)} if α ∈ (0, 2)
{
ω : |Z2(xk,i) − Z2(xk,j)| > ‖Z2(xk,i) − Z2(xk,j)‖2 ϕ(‖xk,i − xk,j‖)

}
if α = 2

where, as in [13],

ϕ(t) =

√
2d log

1

t
, t > 0.

Then, for every (k, i, j),

P
(
Ek

i,j

)
= P(|N | > ϕ(‖xk,i − xk,j‖)),

where N is a real centered Gaussian random variable with variance 1. Let us choose δ ∈ (0, 1/3)

and set for k ∈ N\{0, 1}, δk = 2−(1−δ)k and

Ik =
{
i ∈ Zd ∩ 2kT : ‖xk,i − x0‖ ≤ δk

}
.

For every (i, j) ∈ I2
k , since ϕ is a decreasing function

P
(
Ek

i,j

)
≤ P(|N | > ϕ(2δk)) ≤

√
2

π

e−ϕ2(2δk)/2

ϕ(2δk)
=

2d2−(1−δ)kd

√
2d((1 − δ)k − 1) log 2

.

Note that card Ik ≤ cT 2δkd with cT a finite positive constant which only depends on T . Hence,

since δ < 1/3

+∞∑

k=2

∑

(i,j)∈Ik

P
(
Ek

i,j

)
≤

2d

√
2d(1 − 2δ) log 2

+∞∑

k=2

2−(1−δ)kd card I2
k < +∞.

Therefore, by the Borel-Cantelli Lemma, almost surely there exists an integer k∗(ω) such that for

every k ≥ k∗(ω),

|Zα(u) − Zα(v)| ≤ vα((u, v) | (Tn, ξn)n) ϕ(‖u − v‖) (18)

as soon as u, v ∈ Dk with ‖u − x0‖ ≤ δk and ‖v − x0‖ ≤ δk.
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Third Step: We now give an upper bound of the conditional variance vα when α ∈ (0, 2) and of

the variogram of Z2. For the sake of clearness, the proof of the following lemma is postponed to

the Appendix.

Lemma 4.7. Let ǫ ∈ (0, 1).

(1) If α ∈ (0, 2), almost surely there exists γ > 0, such that for all u, v ∈ B(x0, γ),

vα((u, v) | (Tn, ξn)n) ≤ τ
E(x0)t

(u − v)1−ǫ.

(2) If α = 2, for all u, v ∈ B(x0, γ),

‖Z2(u) − Z2(v)‖2 ≤ τ
E(x0)t

(u − v)1−ǫ.

Let ε ∈ (0, 1). Let us apply the previous lemma with ǫ = ε/2 and choose γ = γ(ǫ) small enough

such that

τ
E(x0)t

(u − v)1−ε/2ϕ(‖u − v‖) ≤ τ
E(x0)t

(u − v)1−ε

for all u, v ∈ B(x0, γ). Moreover, let us choose k∗(ω) = k∗(ω, ε) such that δk∗(ω) ≤ γ. Hence, for

all α ∈ (0, 2], by equation (18), almost surely, for every k ≥ k∗(ω),

|Zα(u) − Zα(v)| ≤ τ
E(x0)t

(u − v)1−ε

as soon as u, v ∈ Dk with ‖u − x0‖ ≤ δk and ‖v − x0‖ ≤ δk. Then, let

Ω∗
x0

=
⋂

ε∈Q∩(0,1)

+∞⋃

n=1

⋂

k≥n

⋂

u,v∈Dk
u,v∈B(x0,δk)

{
|Xα,ψ(u) − Xα,ψ(v)| ≤ τ

E(x0)t
(u − v)1−ε

}
.

Since Xα,ψ and Zα have the same finite dimensional margins, we have proved that P

(
Ω∗

x0

)
= 1.

Therefore, P(Ω∗) = 1 with Ω∗ =
⋂

x0∈D

Ω∗
x0

.

Similar arguments as in Step 4 of [6] lead to the existence of a finite positive constant C =

C(T ) > 0 such that almost surely, for all x0 ∈ D, for all ε ∈ Q ∩ (0, 1), there exists k∗ =

k∗(ω, ε, x0) > 0 such that for all u, v ∈ D with u, v ∈ B(x0, δk∗),

|Xα,ψ(u) − Xα,ψ(v)| ≤ Cτ
E(x0)t

(u − v)1−ε. (19)

Fourth Step: We now define a modification of Xα,ψ. Let ω ∈ Ω∗. First, we set

X∗
α,ψ(y)(ω) = Xα,ψ(y)(ω),∀y ∈ D ∩ T.

Let ε ∈ Q ∩ (0, 1) and x ∈ T . Then, one can find x0 ∈ D and γ = γ(x, ε, ω) ∈ (0, 1) such that

B(x, γ) ⊂ B(x0, δk∗(ω,ε,x0)).

Let us now consider y ∈ B(x, γ) and y(n) ∈ D such that limn→+∞ y(n) = y. In view of (19), for

all n,m such that y(n), y(m) ∈ B(x, γ),
∣∣X∗

α,ψ

(
y(n)

)
(ω) − X∗

α,ψ

(
y(m)

)
(ω)

∣∣ ≤ Cτ
E(x0)t

(
y(n) − y(m)

)1−ε
,



MULTI-OPERATOR SCALING RANDOM FIELDS 17

such that
(
X∗

α,ψ

(
y(n)

)
(ω)

)
n

is a Cauchy sequence and hence converges. We set

X∗
α,ψ(y)(ω) = lim

n→+∞
X∗

α,ψ

(
y(n)

)
(ω).

Remark that this limit does not depend on the choice of
(
y(n)

)
, nor of the choice of ε ∈ Q∩ (0, 1).

Observe that X∗
α,ψ is then well defined on B(x, γ). Then, by (19) and continuity of τ

E(x0)t
,

∀u, v ∈ B(x, γ),
∣∣X∗

α,ψ(u)(ω) − X∗
α,ψ(v)(ω)

∣∣ ≤ Cτ
E(x0)t

(u − v)1−ε. (20)

By Proposition 3.6, up to change γ,

∀u, v ∈ B(x, γ),
∣∣X∗

α,ψ(u)(ω) − X∗
α,ψ(v)(ω)

∣∣ ≤ Cc3,8τE(x)t
(u − v)1−2ε.

where c3,8 does not depend on (u, v).

To conclude the proof, let us emphasize that X∗
α,ψ is a modification of Xα,ψ since Xα,ψ is stochas-

tically continuous (by Corollary 4.5). ¤

4.3. Hölder exponents. In this section, we are interested in the global and directional Hölder

regularity of the sample paths of a harmonizable multi-operator scaling stable random field Xα,ψ.

We first prove that Xα,ψ admits a modification whose sample paths are “globally” Hölder on T .

This is a consequence of Theorem 4.6 and of the comparison of the radial part τEt(x) with the

Euclidean norm.

Corollary 4.8. Assume that Assumptions 1-6 are fulfilled and let Xα,ψ be the harmonizable multi-

operator scaling stable random field defined by (7). Then, there exists a modification of Xα,ψ which

has H-Hölder sample paths on the compact set T for any H ∈ (0, miny∈T H(y)).

Proof. It is sufficient to prove that for every x ∈ T and every H ∈ (0, miny∈T H(y)), there exists

a modification of Xα,ψ which has H-Hölder sample paths on B(x, γx)∩T for a well chosen radius

γx. Then, let us fix x ∈ T and ε ∈ (0, 1). By Theorem 4.6, there exists a modification X∗
α,ψ of

Xα,ψ on T , γ = γ(x, ε) ∈ (0, 1/2) and a finite positive constant c= c(x, T, γ) such that
∣∣X∗

α,ψ(u) − X∗
α,ψ(v)

∣∣ ≤ cτ
E(x)t

(u − v)1−ε

for any u, v ∈ T such that ‖x − u‖ ≤ γ and ‖x − v‖ ≤ γ.

By Proposition 3.5, for any δ ∈ (0, minv∈T H(v)), there exists a finite positive constant c3,6 =

c3,6(T, δ) such that
∣∣X∗

α,ψ(u) − X∗
α,ψ(v)

∣∣ ≤ c c3,6‖u − v‖(H(x)−δ)(1−ε)

for any u, v ∈ T such that ‖x − u‖ ≤ γ and ‖x − v‖ ≤ γ.

Therefore, for any u, v ∈ T such that ‖x − u‖ ≤ γ and ‖x − v‖ ≤ γ,
∣∣X∗

α,ψ(u) − X∗
α,ψ(v)

∣∣ ≤ c c3,6‖u − v‖(miny∈T H(y)−δ)(1−ε)

since ‖u − v‖ < 1. Hence, X∗
α,ψ has H-Hölder sample paths on B(x, γ(x, ε)) ∩ T for any H <

miny∈T H(y)(1 − ε). This leads to the conclusion. ¤
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As already mentioned, the Hölder sample paths regularity of a continuous modification of Xα,ψ

may vary both with the position and with the direction. At position x, the dependence on the

directions is characterized by the Jordan decomposition of E(x).

Notation Let x ∈ Rd. Let us consider the Jordan decomposition of E(x) as in [6]. Hence,

E(x) = P (x)−1




J1(x) 0 . . . 0

0 J2(x) 0
...

...
. . . . . . 0

0 . . . 0 Jpx(x)


 P (x). (21)

We can assume that each Jj(x) is associated with aj(x) = 1/Hj(x), the real part of the eigenvalue

λj(x). Observe that

H(x) = min
1≤j≤px

Hj(x) and H(x) = max
1≤j≤px

Hj(x).

We denote by (e1, . . . , ed) the canonical basis of Rd and set fj(x) = P (x)−1ej for every j = 1, . . . , d.

Hence, (f1(x), . . . , fd(x)) is a basis of Rd. For all j = 1, . . . , px, let

Wj(x) = span

(
fk(x) ;

j−1∑

i=1

di + 1 ≤ k ≤

j∑

i=1

di

)
(22)

where di is the size of Ji(x). Then, Rd =
px⊕

j=1

Wj(x). Moreover each Wj(x) is an E(y)-invariant

set when y ∈ Rd is such that E(x)E(y) = E(y)E(x).

When v varies in Wj(x), [6] proved that the behavior of the radial part τE(x)t(v) around v = 0

is characterized by Hj(x). Then, if we only consider X∗
α,ψ on a straight line driven by u ∈ Wj(x),

Corollary 4.8 can be strenghtened.

Corollary 4.9. Let x ∈ Rd. Assume that Assumptions 1-6 are fulfilled with T = [x − η, x +

η] =
∏d

j=1[xj − η, xj + η] for η > 0. Let u ∈ Wj(x)\{0} where Wj(x) is defined by (22) and

1 ≤ j ≤ px. Then, there exists a modification X∗
α,ψ of Xα,ψ on T such that the random process(

X∗
α,ψ(x + tu)

)
t∈R

has H-Hölder sample paths in a neighborhood of t = 0 for any H ∈ (0, Hj(x)).

Proof. Let ε ∈ (0, 1). By Theorem 4.6, we can consider a modification X∗
α,ψ of Xα,ψ on T which

has continuous sample paths on T . Moreover, by Theorem 4.6, there exists γ = γ(x, ε) ∈ (0, 1/2)

and a finite positive constant c1 = c1(x, T, γ) such that

∣∣X∗
α,ψ(x + tu) − X∗

α,ψ(x + su)
∣∣ ≤ c1τE(x)t

((t − s)u)1−ε

for any s, t ∈ R such that |t| ≤ γ/‖u‖ and |s| ≤ γ/‖u‖.

Then by Corollary 3.4 of [6], applied to E(x)t and r = 2γ, there exists a finite positive constant

c2 = c2(x, γ) and lj = lj(x) ∈ N∗ such that

∣∣X∗
α,ψ(x + tu) − X∗

α,ψ(x + su)
∣∣ ≤ c1c2‖u‖

(1−ε)Hj(x)|t − s|(1−ε)Hj(x)|log (|t − s|‖u‖)|(lj−1)Hj(x)
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for any s, t ∈ R such that |t| ≤ γ/‖u‖ and |s| ≤ γ/‖u‖. Therefore, for δ > 0 small enough,(
X∗

α,ψ(x + tu)
)

t∈R
has (Hj(x) − εHj(x) − δ)-Hölder sample paths in a neighborhood of t = 0,

which concludes the proof. ¤

We now focus on Hölder directional and global pointwise exponents. Let us first define these

exponents.

Definition 4.1. Let x ∈ Rd, (X(y))y∈Rd be a real-valued random field and Sd−1 be the Euclidean

unit sphere of Rd. Assume that X∗ is a modification of X which has continuous sample paths in

a neighborhood of x.

(1) The Hölder pointwise exponent of X at point x is

HX(x) = sup

{
H > 0, lim

y→0

X∗(x + y) − X∗(x)

‖y‖H
= 0

}
.

(2) Moreover, the directional Hölder pointwise exponent HX(x, u) of the random field X at

point x in direction u ∈ Sd−1 is the Hölder pointwise exponent at point x of the process

(X(x + tu))t∈R, that is

HX(x, u) = sup

{
H > 0, lim

t→0

X∗(x + tu) − X∗(x)

|t|H
= 0

}
.

Note that Corollaries 4.8 and 4.9 give lower bounds of these exponents. Moreover, since the

harmonizable random field Xα,ψ is a stable random field, an upper bound can be deduced from

the behavior of the scale parameter

‖Xα,ψ(u) − Xα,ψ(v)‖α

when u and v are close to x. More precisely, we use the lower bound stated in Theorem 4.4 and

the comparison of the radial part τE(x)t with the Euclidean norm.

Corollary 4.10. Let x ∈ Rd. Assume that Assumptions 1-6 are fulfilled with T = [x−η, x+η] =
∏d

j=1[xj − η, xj + η] for η > 0. Let us consider X∗
α,ψ a continuous modification of Xα,ψ on T .

(1) Let u ∈ Wj(x) ∩ Sd−1 where Wj(x) is defined by (22), 1 ≤ j ≤ px. Then the directional

pointwise Hölder exponent of the random field X∗
α,ψ at point x in direction u is almost

surely Hj(x), that is

HX∗
α,ψ

(x, u) = sup

{
H > 0, lim

λ→0

X∗
α,ψ(x + λu) − X∗

α,ψ(x)

‖λ‖H
= 0

}
= Hj(x) almost surely.

(2) Moreover, the pointwise Hölder exponent of the random field X∗
α,ψ at point x is almost

surely H(x), that is

HX∗
α,ψ

(x) = sup

{
H > 0, lim

y→0

X∗
α,ψ(x + y) − X∗

α,ψ(x)

‖y‖H
= 0

}
= H(x) = min

1≤j≤d
Hj(x) almost surely.

Proof. Let X∗
α,ψ be a modification of Xα,ψ which has continuous sample paths on T (see Theo-

rem 4.6).
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(1) Let x ∈ T and u ∈ Wj(x) ∩ Sd−1. By Corollary 4.9, it is clear that almost surely,

HXα,ψ
(x, u) ≥ Hj(x).

By Theorem 4.4, there exists γ ∈ (0, 1) and c4,1 = c4,1(T, γ) a finite positive constant such

that

c4,1τE(x)t
(tu)α ≤ ‖Xα,ψ(x + tu) − Xα,ψ(x)‖α

α =
∥∥X∗

α,ψ(x + tu) − X∗
α,ψ(x)

∥∥α

α

for any t ∈ R such that |t| ≤ γ. Hence, by Corollary 3.4 of [6], for any H > Hj(x), there

exists a finite positive constant c such that

c|t|αH ≤
∥∥X∗

α,ψ(x + tu) − X∗
α,ψ(x)

∥∥α

α

for any t ∈ R such that |t| ≤ γ. Therefore, for any H > Hj(x),

lim
t→0

∥∥∥∥
X∗

α,ψ(x + tu) − X∗
α,ψ(x)

|t|H

∥∥∥∥
α

α

= +∞,

which implies that
X∗

α,ψ(x+tu)−X∗
α,ψ(x)

|t|H
is almost surely unbounded as t → 0 since X∗

α,ψ is an

α-stable random field. This leads to

HXα,ψ
(x, u) = Hj(x) almost surely.

(2) Let x ∈ T . By Corollary 4.8 and continuity of H, it is clear that almost surely,

HXα,ψ
(x) ≥ H(x) = min

1≤j≤d
Hj(x).

Moreover, by definition of the directional exponents HXα,ψ
(x, u), u ∈ Sd−1,

HXα,ψ
(x) ≤ min

u∈Sd−1
HXα,ψ

(x, u).

Then, since for any 1 ≤ j ≤ px, Wj ∩ Sd−1 6= ∅, assertion (i) implies

HXα,ψ
(x) ≤ min

1≤j≤px

Hj(x) = H(x)

almost surely, which concludes the proof.

¤

Let us now illustrate the previous results.

Example 4.1. Let E0 be a matrix of size d× d whose eigenvalues have real parts greater than 1.

We denote by H
(0)
1 , . . . , H

(0)
d the inverse of the real parts of the eigenvalues of E0. Let W1, . . . ,Wp

the subspaces associated to the Jordan’s decomposition of E0 as (22) and let h, E and ψ be as in

Example 2.2. Observe that for any x ∈ Rd,

Wj(x) = Wj

since E(x) = E0/h(x). Then, according to Corollary 4.10, if u ∈ Wj ∩ Sd−1, for any x ∈ Rd,

HX∗
α,ψ

(x, u) = h(x)H
(0)
j almost surely.

Note that the map

s ∈ R 7→ HX∗
α,ψ

(x + su, u) = h(x + su)H
(0)
j
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is positive and continuous on R. Therefore, according to Corollary 3.15 of [11], for the Gaussian

process
(
X∗

2,ψ(x + su)
)

s∈R
,

almost surely,∀s ∈ R, HX∗
2,ψ

(x + su, u) = h(x + su)H
(0)
j .

Similarly, for all x ∈ Rd,

HX∗
α,ψ

(x) = h(x) min
1≤j≤d

H
(0)
j almost surely

such that, still according to Corollary 3.15 of [11],

almost surely,∀x ∈ Rd, HX∗
2,ψ

(x) = h(x) min
1≤j≤d

H
(0)
j .

Example 4.2. Assume that for every 1 ≤ j ≤ d, Hj is a locally Lipschitz function on Rd with

values in (0, 1). We assume moreover that inf
x∈Rd

H(x) > 1. Let us consider

E = P−1diag (1/H1, . . . , 1/Hd) P,

with P ∈ GLd(R) an invertible matrix, and Xα,ϕ as in Example 2.4. Let (ej)1≤j≤d be the canonical

basis of Rd and fj = P−1ej for all 1 ≤ j ≤ d. Then, according to Corollary 4.10, for all 1 ≤ j ≤ d,

for any x ∈ Rd,

HX∗
α,ϕ

(x, fj/‖fj‖) = Hj(x) almost surely.

Once again we get in the Gaussian case that almost surely,

∀s ∈ R, HX∗
2,ϕ

(x + sfj, fj/‖fj‖) = Hj(x + sfj).

Similarly, for all x ∈ Rd, almost surely HX∗
α,ϕ

(x) = H(x) and almost surely

∀x ∈ Rd, HX∗
2,ϕ

(x) = H(x).

Example 4.3. Let d = 2. Let us consider as in Example 2.5 the map

x 7→ E(x) = a(x)

(
cos(θ(x)) sin(θ(x))

− sin(θ(x)) cos(θ(x))

)

where a and θ are locally Lipschitz functions on Rd such that ∀x ∈ Rd, a(x) cos (θ(x)) > 1, and

Xα,ψ the associated random field. Then, for every x ∈ Rd and u ∈ Sd−1, almost surely

HX∗
α,ψ

(x, u) = HX∗
α,ψ

(x) =
1

a(x) cos (θ(x))

with almost surely ∀x ∈ Rd, HX∗
2,ψ

(x) = 1/(a(x) cos (θ(x))).

5. Local Operator scaling property

In general, harmonizable multi-operator scaling random fields are not operator scaling: they do

not satisfy the global property (1) for any fix matrix E. However, they satisfy a weak property

we call local asymptotic operator scaling property, which we introduce in the next definition.
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Definition 5.1. Let x ∈ Rd and A(x) be a d×d real matrix. A random field (X(y))y∈Rd is locally

asympotically operator scaling of order A(x) at point x if

lim
ε→0+

(
X(x + εA(x)u) − X(x)

ε

)

u∈Rd

(fdd)
= (Zx(u))u∈Rd , (23)

with Zx a non degenerate random field. Moreover a random field X which satisfies (23) is called

multi-operator random field of order A.

As mentioned in the introduction, the local asymptotic operator scaling property generalizes

both the operator scaling property and the local asymptotic self-similarity property. On the one

hand, an operator scaling random field X with stationary increments is locally asymptotically

operator scaling at any point x. On the other hand, a locally asymptotically self-similar random

field at point x with order h(x) is locally asymptotically operator scaling at point x of order

Id/h(x).

Note also that the local asymptotic self-similarity property can not capture the operator scal-

ing property since it only reveals local self-similarity which is not sufficient to characterize the

anisotropy. Actually, let X be an operator scaling random field of order E0. Assume that the

Jordan’s decomposition of E0 is given by (21) with H = min
1≤j≤p

Hj = H1 such that J1 = 1
H1

Id1 and

let W1 be the corresponding eigenvector space (see (22)). Then, writing for u ∈ Rd =
p⊕

j=1

Wj,

u = u1 + v with u1 ∈ W1, it is clear that, for any ε > 0, ε1/H1u = εE0
(
u1 + ε1/H1−E0v

)
with

ε1/H1−E0v −→
ε→0+

0

since v ∈
p⊕

j=2

Wj, with min
2≤j≤p

Hj > H1. Then, by operator scaling property, if X is stochastically

continuous,

lim
ε→0+

(
X(εu)

εH1

)

u∈Rd

(fdd)
= (X(πW1u)))u∈Rd

with πW1 the projection on W1. In other words, if X is non degenerated on W1, X is locally

asymptotically self-similar of order H1 at point 0 with tangent field (X(πW1u))u∈Rd .

The following remark gives some properties of the random field Zx, which are immediate con-

sequences of (23).

Remark 5.1. Assume that (23) is fulfilled. Then Zx is operator scaling of order A(x), that is

∀c > 0,
(
Zx

(
cA(x)u

))
u∈Rd

(fdd)
= c (Zx(u))u∈Rd .

Moreover, if θ ∈ Rd is an eigenvector of A(x) associated with a real eigenvalue λ, then

lim
ε→0+

(
X(x + εtθ) − X(x)

ε1/λ

)

t∈R

(fdd)
= (Zx(tθ))t∈R .
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The main result of this section is stated in the next theorem. As expected, a harmonizable

multi-operator scaling stable random field Xα,ψ locally looks like a harmonizable operator scaling

stable random field.

Theorem 5.1. Let x ∈ Rd. Assume that Assumptions 1-6 are fulfilled on T = [x − η, x + η] =
∏d

j=1[xj − η, xj + η]. Then, the random field Xα,ψ is locally asymptotically operator scaling at

point x of order E(x)t in the sense that

lim
ε→0+

(
Xα,ψ(x + εE(x)t

u) − Xα,ψ(x)

ε

)

u∈Rd

(fdd)
= (Xψx(u))u∈Rd , (24)

where Xψx is a harmonizable α-stable operator scaling field with respect to E(x)t and ψx in the

sense of Theorem 4.1 in [7].

Remark 5.2. In the case where α = 2, one can prove that (24) holds in distribution on the space

of continuous functions endowed with the topology of the uniform convergence on compact sets.

Actually, in this case, one can applied the classical criterion of tightness based on second moments

of increments. However, if α ∈ (0, 2), proving tightness is much harder and an open problem.

Proof. Let x ∈ Rd and u ∈ Rd. Then, for ε > 0 small enough, the random variables

Y1,α,x+εE(x)tu

(
x + εE(x)t

u, x
)

and Y2,α,x+εE(x)tu

(
x + εE(x)t

u, x
)

are well-defined. Then, for ε > 0

small enough, using the notation of section 4.1, we get

Xα,ψ(x + εE(x)t

u) − Xα,ψ(x) = Y1,α,x+εE(x)tu

(
x + εE(x)t

u, x
)

+ Y2,α,x+εE(x)tu

(
x + εE(x)t

u, x
)

+Y3,α,x

(
x + εE(x)t

u, x
)
. (25)

By Lemma 4.1, for ε > 0 small enough,
∥∥∥Y1,α,x+εE(x)tu

(
x + εE(x)t

u, x
)∥∥∥

α

α
≤ c4,1

∥∥∥εE(x)t

u
∥∥∥

α

where the finite positive constant c4,1 does not depend on ε. Therefore, by Lemma 3.3, for ε > 0

small enough and δ > 0 small enough
∥∥∥Y1,α,x+εE(x)tu

(
x + εE(x)t

u, x
)∥∥∥

α

α
≤ c4,1c

α
3,1
‖u‖αεα/H(x)−αδ

where the finite positive constant c3,1 does not depend on ε. Since Y1,α,x+εE(x)tu

(
x + εE(x)t

u, x
)

is

an stable random variable and since H(x) < 1, the previous inequality leads to

lim
ε→0+

Y1,α,x+εE(x)tu

(
x + εE(x)t

u, x
)

ε
= 0 in probability. (26)

Using Lemma 4.2 and Proposition 3.3, the same arguments yield that

lim
ε→0+

Y2,α,x+εE(x)tu

(
x + εE(x)t

u, x
)

ε
= 0 in probability. (27)

Observe that the random field
(
Xψx(v)

)
v∈Rd = (Yα,ψ(v, x, x))v∈Rd
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is well-defined and is is a harmonizable α-stable operator scaling field with respect to E(x)t and

ψx in the sense of Theorem 4.1 in [7]. Moreover,

∀v ∈ Rd, Y3,α,x(v, x) = Xψx(v) − Xψx(x).

Then, by stationarity of the increments of Xψx and the operator scaling property (see Corollary

4.2 of [7]), (
Y3,α,x

(
x + εE(x)t

v, x
))

v∈Rd

(fdd)
= ε(Xψx(v))v∈Rd . (28)

From Equations (25), (26), (27) and (28), one easily deduces that

lim
ε→0+

(
Xα,ψ(x + εE(x)t

u) − Xα,ψ(x)

ε

)

u∈Rd

(fdd)
= (Xψx(u))u∈Rd .

¤

6. Proofs

6.1. Polar coordinates.

Proof of Lemma 3.3. Let δ > 0 and r0 > 0. Let us recall that tλj(x), 1 ≤ j ≤ d are eigenvalues of

tE(x). Then, for every j = 1, . . . , d,
∣∣tλj(x)

∣∣ = tRe (λj(x)) ≤
∥∥tE(x)

∥∥,

which leads to the lower bounds since 1/H(x) = max1≤j≤d Re (λj(x)) and 1/H(x) =

min1≤j≤d Re (λj(x)). Let us now prove the upper bounds.

(i) Since δ > 0 and since E is continuous on T and satisfies Assumption 6, the map x 7→

E(x) −
(
1/H(x) − δ

)
Id is also continuous on T , satisfies Assumption 6 and takes values in

M>0
(
Rd

)
. Then, by Lemma 3.2, the function

(t, x) 7→ tE(x)−(1/H(x)−δ)Id

is continuous on [0, +∞) × T and thus bounded on the compact set [0, r0] × T . Therefore,

there exists a finite constant c3,1 = c3,1(T, δ, r0) > 0 which only depends on δ, T and r0 such

that

∀(t, x) ∈ [0, r0] × T,
∥∥∥tE(x)−(1/H(x)−δ)Id

∥∥∥ ≤ c3,1 .

Since for t > 0, tE(x)−(1/H(x)−δ)Id = tδ−1/H(x)tE(x), the last inequality leads to

∀(t, x) ∈]0, r0] × T,
∥∥tE(x)

∥∥ ≤ c3,1t
1/H(x)−δ.

This inequality is obviously fulfilled for t = 0 since 0E(x) = 0 by convention.

(ii) Since δ > 0 and since E is continuous on T and satisfies Assumption 6, the map x 7→

−E(x)+ (1/H(x) + δ)Id is also continuous on T , satisfies Assumption 6 and takes values in

M>0
(
Rd

)
. Then, using the same arguments as in the proof of assertion (i), there exists a

finite constant c3,2 = c3,2(T, δ, r0) > 0 which only depends on δ, T and r0 such that

∀(u, x) ∈ [0, 1/r0] × T,
∥∥u−E(x)+(1/H(x)+δ)Id

∥∥ ≤ c3,2 .



MULTI-OPERATOR SCALING RANDOM FIELDS 25

Hence,

∀(t, x) ∈ [r0, +∞) × T,
∥∥tE(x)−(1/H(x)+δ)Id

∥∥ ≤ c3,2 ,

that is

∀(t, x) ∈ [r0, +∞) × T,
∥∥tE(x)

∥∥ ≤ c3,2t
1/H(x)+δ.

The proof is then complete.

¤

Proof of Lemma 3.4. Since E is continuous on T and satisfies Assumption 6, one can easily see

that the map

N : T × Rd −→ [0, +∞)
(x, ξ) 7−→ ‖ξ‖

E(x)
,

where ‖·‖M is defined by (8), is continuous using Lemma 3.2, Lemma 3.3 and dominated conver-

gence. Furthermore,

∀x ∈ T, ∀ξ ∈ Rd\{0}, ‖ξ‖
E(x)

= ‖ξ‖

∥∥∥∥
ξ

‖ξ‖

∥∥∥∥
E(x)

= ‖ξ‖N

(
x,

ξ

‖ξ‖

)
.

Since N is continuous and positive on the compact set T × Sd−1, we have

0 < mT = inf
T×Sd−1

N (y, θ) ≤ MT = sup
T×Sd−1

N (y, θ) < +∞.

Hence for every x ∈ T and every ξ ∈ Rd\{0},

‖ξ‖
E(x)

MT

≤ ‖ξ‖ ≤
‖ξ‖

E(x)

mT

. (29)

This inequality is obviously fulfilled for ξ = 0 since ‖0‖ = ‖0‖E(x) = 0.

Let us now focus on σE(x)

(
SE(x)

)
. Applying Proposition 3.1, one obtains that

∀x ∈ T, σ
E(x)

(S
E(x)

) =

∫

S
E(x)

σ
E(x)

(dθ) = q(x)

∫

Rd

1{τ
E(x)

(ξ)≤1}dξ

where q is defined by (6). By definition of ‖ · ‖
E(y)

(see (8)), for any y ∈ T and ξ ∈ Rd,

‖ξ‖
E(y)

≤ 1 if and only if τ
E(y)

(ξ) ≤ 1,

which leads to

∀x ∈ T, σ
E(x)

(S
E(x)

) = q(x)

∫

Rd

1‖ξ‖E(x)≤1dξ.

Then, using (29) and the continuity of the positive function q on the compact set T , one easily

finds two positive finite constants c, C such that

∀x ∈ T, c ≤

∫

S
E(x)

σ
E(x)

(dθ) = σ
E(x)

(
S

E(x)

)
≤ C.

Therefore Lemma 3.4 holds with c3,3 = min(1/MT , c) and c3,4 = max(1/mT , C). ¤
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Proof of Proposition 3.5. Let r0 = inf‖ξ‖≥1 infx∈T τE(x)(ξ). First, let us prove that τ
E(x)

(ξ) is

uniformly bounded below for x ∈ T and ‖ξ‖ ≥ 1, that is r0 > 0. Otherwise, for any ε ∈ (0, 1),

one could find x ∈ T and ξ ∈ Rd such that ‖ξ‖ ≥ 1 and

τ
E(x)

(ξ) ≤ ε < 1.

Since E is continuous, H is also continuous and we can choose η > 0 such that 2η < minx∈T
1

H(x)
.

Then, according to Lemma 3.3 there would exist c3,1(T, δ, 1) such that

‖τ
E(x)

(ξ)E(y)‖ ≤ c3,1τE(x)
(ξ)η ≤ c3,1ε

η.

However, this would imply that

1 ≤ ‖ξ‖ = ‖τ
E(y)

(ξ)E(y)ℓ
E(y)

(ξ)‖ ≤ c3,1c3,4ε
η

according to Lemma 3.4, which is impossible for ε small enough. Hence r0 > 0.

Let x ∈ T and ξ ∈ Rd such that ‖ξ‖ ≥ 1. Let δ ∈ (0, min
x∈T

H(x)) and δ1 = min
x∈T

δ
H(x)(H(x)−δ)

. Using

again Lemma 3.3, there exists a finite positive constant c3,2 = c3,2(T, δ1, r0) which only depends

on T , δ and r0 such that

‖ξ‖ = ‖τ
E(x)

(ξ)E(x)ℓ
E(x)

(ξ)‖ ≤ c3,2c3,4τE(x)
(ξ)1/H(x)+δ1

where the finite positive constant c3,4 is given by Lemma 3.4 and only depends on T . Therefore,

the lower bound of equation (12) holds with c3,5 = min
x∈T

(
1

c3,2c3,4

)1/(1/H(x)+δ1)

.

Moreover, by Lemma 3.3, for δ2 = min
x∈T

δ
H(x)(H(x)+δ)

there exists c3,1 = c3,1(K, δ2, r
−1
0 ) such that

c3,3 ≤ ‖ℓ
E(x)

(ξ)‖ = ‖τ
E(x)

(ξ)−E(x)ξ‖ ≤ c3,1τE(x)
(ξ)−1/H(x)+δ2‖ξ‖

where the finite positive constant c3,3 is given by Lemma 3.4 and only depends on T . Therefore,

the upper bound of equation (12) holds with c3,6 = max
x∈T

(
c3,1

c3,3

)1/(1/H(x)−δ2)

.

The proof of equation (11), that is the case where ‖ξ‖ ≤ 1, is similar. ¤

Proof of Proposition 3.6. Let ε ∈ (0, 1). Then, since E is continuous on T , there exists γ =

γ(ε) > 0 such that

‖E(x) − E(y)‖ ≤ ε (30)

for x, y ∈ T with ‖x − y‖ ≤ γ.

Let x, y ∈ T such that ‖x − y‖ ≤ γ and let ξ ∈ Rd such that 0 < ‖ξ‖ ≤ 1. Let us write

ξ = τ
E(y)

(ξ)E(y)ℓ
E(y)

(ξ). Then, Assumption 6 implies that

ξ = τ
E(y)

(ξ)E(x)τ
E(y)

(ξ)E(y)−E(x)ℓ
E(y)

(ξ),

which leads to

τ
E(x)

(ξ) = τ
E(y)

(ξ)τ
E(x)

(
τ

E(y)
(ξ)E(y)−E(x)ℓ

E(y)
(ξ)

)
(31)
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by definition of τM (see (10)).

Let us first assume that τ
E(y)

(ξ) ≤ 1. Then

‖τ
E(y)

(ξ)E(y)−E(x)ℓ
E(y)

(ξ)‖ ≤ τ
E(y)

(ξ)−‖E(y)−E(x)‖
∥∥∥ℓ

E(x)
(ξ)

∥∥∥.

Hence, by (30) and by Lemma 3.4,

‖τ
E(y)

(ξ)E(y)−E(x)ℓ
E(y)

(ξ)‖ ≤ c3,4τE(y)
(ξ)−ε

where c3,4 is a finite positive constant which only depends on T . Note that we can assume that

c3,4 ≥ 1. Let us now choose δ ∈ (0, minv∈T H(v)) such that

max
v∈T

H(v) + δ < 1.

Since c3,4τE(y)
(ξ)−ε ≥ 1 and since H(x) − δ ≤ H(x) + δ, using Proposition 3.5, we obtain that

τ
E(x)

(τ
E(y)

(ξ)E(y)−E(x)ℓ
E(y)

(ξ)) ≤ c3,6

(
c3,4τE(y)

(ξ)−ε
)H(x)+δ

where c3,6 is a finite positive constant which only depends on T and δ. Then, since H(x) + δ < 1

and since c3,4τE(y)(ξ)
−ε ≥ 1,

τ
E(x)

(τ
E(y)

(ξ)E(y)−E(x)ℓ
E(y)

(ξ)) ≤ c3,6c3,4τE(y)
(ξ)−ε.

Hence, by Equation (31),

τ
E(x)

(ξ) ≤ c3,6c3,4τE(y)
(ξ)1−ε.

Let us now assume that τ
E(y)

(ξ) ≥ 1. Since ‖ξ‖ ≤ 1 and τ
E(y)

(ξ)1−ε ≥ 1,

τ
E(x)

(ξ) ≤ c3,6 ≤ c3,6τE(y)
(ξ)1−ε.

Therefore, for any x, y ∈ T such that ‖x − y‖ ≤ γ, for any ξ ∈ Rd such that 0 < ‖ξ‖ ≤ 1,

τ
E(x)

(ξ) ≤ c3,8τE(y)
(ξ)1−ε

where the finite positive constant c3,8 = max(c3,6c3,4 , c3,6) = c3,6c3,4 does not depend on x, y ∈ T ,

nor on ε, γ. Note that the last inequality also holds for ξ = 0 since τ
E(x)

(0) = τ
E(y)

(0) = 0.

Moreover, by symmetry in τ
E(x)

(ξ) and τ
E(y)

(ξ), one can easily find a finite positive constant c3,7

which only depends on T such that

c3,7τE(y)
(ξ)1+ε ≤ τ

E(x)
(ξ)

for any x, y ∈ T such that ‖x − y‖ ≤ γ, for any ξ ∈ Rd such that ‖ξ‖ ≤ 1. The proof of (13) is

then complete. The proof of (14) is similar. ¤

6.2. Results on the scale parameter. This section is devoted to the proof of Lemmas 4.1, 4.2

and 4.3. We begin with two auxiliary lemmas:

Lemma 6.1. Let T =
d∏

i=1

[bi, di] with bi < di for 1 ≤ i ≤ d. Assume that E : T → M>0(Rd)

is continuous on T and satisfies Assumptions 2 and 6. Let α ∈ (0, 2]. Then, for all ε ∈
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(0, min
w∈T

(1/H(w) − 1) there exist two finite positive constants γ1 = γ1(ε) and c6,1 = c6,1(T, ε)

such that ∫

τ
E(u)

(ξ)≤η

min (‖ξ‖α, 1)τ
E(u)

(ξ)−αβα(u)−αεdξ ≤ c6,1 ηαγ1

for every η ∈ (0, 1] and u ∈ T .

Proof. Let ε ∈ (0, min
w∈T

(1/H(w) − 1), u ∈ T and η ∈ (0, 1]. We set

Iε(η, u) =

∫

τ
E(u)

(ξ)≤η

min (‖ξ‖α, 1)τ
E(u)

(ξ)−αβα(u)−αεdξ.

By definition of τ
E(u)

(see (10)) and of βα (see (6)), Proposition 3.1 (applied with M = E(u))

leads to

Iε(η, u) ≤

∫ η

0

∫

S
E(u)

∥∥rE(u)θ
∥∥α

r−α(1+ε)−1σ
E(u)

(dθ)dr

Let δ ∈ (0, minw∈T (1/H(w) − 1) − ε). Applying Lemma 3.3 (with r0 = 1) and Lemma 3.4, one

obtains that for any w ∈ T , any r ∈ (0, η] and any θ ∈ S
E(w)

,
∥∥rE(w)θ

∥∥ ≤
∥∥rE(w)

∥∥‖θ‖ ≤ c3,1c3,4‖θ‖E(u)r
1/H(w)−δ = c3,1c3,4r

1/H(w)−δ

where the finite positive constants c3,1 = c3,1(T, δ) and c3,4 = c3,4(T ) do not depend on (w, r, θ).

Therefore,

Iε(η, u) ≤
(
c3,1c3,4

)α
σ

E(u)

(
S

E(u)

)∫ η

0

rα(1/H(u)−1−ε−δ)−1dr.

Since δ < min
w∈T

(1/H(w)− 1)− ε and since u ∈ T , we get 1/H(u)− 1− ε− δ > 0. Then, applying

again Lemma 3.4, one easily sees that

Iε(η, u) ≤
cα

3,1
cα+1

3,4
ηα(1/H(u)−1−ε−δ)

α(1/H(u) − 1 − ε − δ)
.

Since η ∈ (0, 1],

Iε(η, u) ≤ c6,1η
αγ1

with

c6,1 =
cα

3,1
cα+1

3,4

α minw∈T (1/H(w) − 1 − ε − δ)
∈ (0, +∞)

and

γ1 = min
w∈T

(1/H(w) − 1 − ε − δ) ∈ (0, +∞).

Note that c6,1 and γ1 are well-defined by continuity of H on the compact set T . ¤

Lemma 6.2. Let T =
d∏

i=1

[bi, di] with bi < di for 1 ≤ i ≤ d. Assume that E : T → M>0(Rd) is

continuous on T and satisfies Assumptions 2 and 6. Let α ∈ (0, 2]. Then, for all ε ∈ (0, 1) there

exist two finite positive constants γ2 = γ2(ε) and c6,2 = c6,2(T, ε) such that
∫

τ
E(u)

(ξ)>A

min (‖ξ‖α, 1)τ
E(u)

(ξ)−αβα(u)+αεdξ ≤ c6,2 A−αγ2

for every A ≥ 1 and u ∈ T .
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Proof. Let A ∈ [1,∞), u ∈ T , ε ∈ (0, 1) and

Ĩε(A, u) =

∫

τ
E(u)

(ξ)>A

min (‖ξ‖α, 1)τ
E(u)

(ξ)−αβα(u)+αεdξ.

Let us first observe that

Ĩε(A, u) ≤

∫

τ
E(u)

(ξ)>A

τ
E(u)

(ξ)−αβα(u)+αεdξ.

Then, applying as in the proof of Lemma 6.1 Proposition 3.1 with M = E(u) and Lemma 3.4,

one obtains that

Ĩε(A, u) ≤ c3,4

∫ ∞

A

r−α(1−ε)−1dr

with c3,4 = c3,4(T ) a finite positive constant which only depends on T . Then since ε < 1,

Ĩε(A, u) ≤
c3,4

α(1 − ε)
A−α(1−ε),

which concludes the proof. ¤

Proof of Lemma 4.1. Since Assumption 5 is fulfilled, q and H are uniformly continuous on the

compact set T . Then we can consider ε ∈
(
0, min

(
minw∈T 1/H(w) − 1, 1

))
and there exists

γ = γ(ε) ∈ (0, 1) such that

|q(u) − q(v)| < αε,

for any u, v ∈ T with ‖u − v‖ ≤ γ. Henceforth, by continuity of H on the compact set T , for any

u, v ∈ T with ‖u − v‖ ≤ γ, (15) holds and then Y1,α,x(u, v) is well-defined for any x ∈ Rd.

Let us now consider x ∈ K and u, v ∈ T such that ‖u − v‖ ≤ γ. Then,

Y1,α,x(u, v) = Re

∫

Rd

f1,α,x(u, v, ξ)Wα(dξ)

where

f1,α,x(u, v, ξ) =
(
ei〈x,ξ〉 − 1

)(
ψu(ξ)

−βα(u) − ψu(ξ)
−βα(v)

)
. (32)

Therefore, by definition of ‖ · ‖α,

‖Y1,α,x(u, v)‖α
α =

∫

Rd

|f1,α,x(u, v, ξ)|αdξ. (33)

Moreover, for any ξ ∈ Rd\{0}, by Assumption 3, ψu(ξ) 6= 0 and then by the Mean Value Theorem,
∣∣ψu(ξ)

−βα(u) − ψu(ξ)
−βα(v)

∣∣ = ψu(ξ)
−βα(u)|βα(u) − βα(v)|ψu(ξ)

−βξ,u,v |ln |ψu(ξ)|| (34)

for some |βξ,u,v| ∈ [0, |βα(v) − βα(u)|]. Furthermore, since βα = 1 + q/α,

|βα(w) − βα(w′)| < ε

for any w,w′ ∈ T with ‖w − w′‖ ≤ γ. Then, since T is a compact set, one can easily find a finite

positive constant c1 = c1(T, γ(ε)) such that
∣∣∣ψw(ξ)−βξ,w,w′ ln |ψw(ξ)|

∣∣∣ ≤ c1 max
(
ψw(ξ)−1, ψw(ξ)

)ε
(35)
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for any ξ ∈ Rd\{0} and any w,w′ ∈ T with ‖w − w′‖ ≤ γ.

Moreover, for any w ∈ T , since ψw is E(w)-homogeneous,

∀ξ ∈ Rd\{0}, ψw(ξ) = τ
E(w)

(ξ)ψw

(
lE(w)(ξ)

)
.

By Assumptions 3 and 4, the function ψ is positive and continuous on the compact set
{

(w, θ) ∈ T × Rd; ‖θ‖
E(w)

= 1
}

.

Then, there exists two finite positive constants c2 = c2(T ), c3 = c3(T ) such that

∀w ∈ T, ∀ξ ∈ Rd\{0}, c2τE(w)
(ξ) ≤ ψw(ξ) ≤ c3τE(w)

(ξ). (36)

Let us also remark that since K is a compact set, there exists a finite positive constant c4 = c4(K)

such that

∀y ∈ K, ∀ξ ∈ Rd,
∣∣ei〈y,ξ〉 − 1

∣∣ ≤ c4 min(‖ξ‖, 1), (37)

Therefore, by (32), (34), (35), (36) and (37), for any ξ ∈ Rd\{0}

|f1,α,x(u, v, ξ)| ≤ c5|βα(u) − βα(v)|min(‖ξ‖, 1)τ
E(u)

(ξ)−βα(u) max(τ
E(u)

(ξ)−1, τ
E(u)

(ξ))ε (38)

where the finite positive constant c5 does not depend on (x, u, v, ξ).

Then, by (33),

‖Y1,α,x(u, v)‖α
α ≤ cα

5 |βα(u) − βα(v)|α
∫

Rd

min(‖ξ‖α, 1)τ
E(u)

(ξ)−αβα(u) max(τ
E(u)

(ξ)−1, τ
E(u)

(ξ))αεdξ.

Since ε < min(minw∈T 1/H(w) − 1, 1), Lemma 6.1 applied with η = 1 and Lemma 6.2 applied

with A = 1 lead to

‖Y1,α,x(u, v)‖α
α ≤ cα

5

(
c6,1 + c6,2

)
|βα(u) − βα(v)|α

where c6,1 and c6,2 does not depend on (x, u, v). One easily concludes the proof since by Assump-

tion 5, q and then βα = 1 + q/α is Lipschitz on the compact set T . ¤

Proof of Lemma 4.2. From the proof of Lemma 4.1, we can choose γ small enough such that (15)

holds for any u, v ∈ T with ‖u − v‖ ≤ γ. Hence, Y2,α,x(u, v) is well-defined for any x ∈ Rd, and

u, v ∈ T with ‖u − v‖ ≤ γ.

Let us now consider x ∈ K and u, v ∈ T with ‖u − v‖ ≤ γ. Then,

Y2,α,x(u, v) = Re

∫

Rd

f2,α,x(u, v, ξ)Wα(dξ),

where

f2,α,x(u, v, ξ) =
(
ei〈x,ξ〉 − 1

)(
ψu(ξ)

−βα(v) − ψv(ξ)
−βα(v)

)
. (39)

Therefore, by definition of ‖ · ‖α,

‖Y2,α,x(u, v)‖α
α =

∫

Rd

|f2,α,x(u, v, ξ)|αdξ.

Let ξ 6= 0 and let us split

gα(u, v, ξ) =
∣∣∣ψu(ξ)

−βα(v) − ψv(ξ)
−βα(v)

∣∣∣
= g1,α,η(u, v, ξ) + g2,α,η(u, v, ξ)
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with

g1,α,η(u, v, ξ) =
(
1τ

E(v)
(ξ)<η + 1τ

E(v)
(ξ)>1/η

)
gα(u, v, ξ)

and

g2,α,η(u, v, ξ) = 1η≤τ
E(v)

(ξ)≤1/ηgα(u, v, ξ),

where η ∈ (0, 1).

First Step: Study of g1,α,η and choice of η.

By Assumption 5, βα = 1 + q/α is continuous on T and we can consider

βα = max
w∈T

βα(w) ∈ (1, +∞).

Let us choose ε = ε(α, T ) > 0 such that ε < βα min(minw∈T 1/H(w) − 1, 1). Then, according to

Proposition 3.6, up to change γ, we can assume γ = γ(ε) > 0 and for all ξ 6= 0 and w,w′ ∈ T

such that ‖w − w′‖ ≤ γ,

τ
E(w)

(ξ) ≥ c3,7τE(w′)
(ξ) min(τ

E(w′)
(ξ)−1, τ

E(w′)
(ξ))ε/βα ,

where the finite positive constant c3,8 = c3,8(T, ε) does not depend on w,w′ and ξ. Then, by

(36) (see the proof of Lemma 4.1) and continuity of βα, there exists a finite positive constant

C1 = C1(T, ε), which does not depend on (x, u, v, ξ), such that

g1,α,η(u, v, ξ) ≤ C1

(
1τ

E(v)
(ξ)<η + 1τ

E(v)
(ξ)>1/η

)
τ

E(v)
(ξ)−βα(v) max(τ

E(v)
(ξ)−1, τ

E(v)
(ξ))ε. (40)

Then, combining Equations (40) and (37), according to Lemma 6.1 and Lemma 6.2, there exist

two finite positive constants ν = ν(ε) and C2 = C2(K,T, ε), which do not depend on (u, v, x),

such that for all η ∈ (0, 1] one has

I1,α,η(x, u, v) =

∫

Rd

∣∣ei〈x,ξ〉 − 1
∣∣αg1,α,η(u, v, ξ)αdξ ≤ C2η

αν .

Choosing η = η(ε, u, v) = ‖u − v‖1/ν , one gets that I1,α,η(x, u, v) ≤ C2‖u − v‖α.

Second Step: Study of g2,α,η.

Now let us focus on g2,α,η for this particular choice of η. By homogeneity of ψu and ψv,

g2,α,η(u, v, ξ) = 1η≤τ
E(v)

(ξ)≤1/ητE(v)
(ξ)−βα(v)

∣∣∣∣ψu

(
τ

E(v)
(ξ)−E(u)τ

E(v)
(ξ)E(v)ℓ

E(v)
(ξ)

)−βα(v)

−ψv

(
ℓ

E(v)
(ξ)

)−βα(v)
∣∣∣∣ .

By Lemma 3.4, there exist two finite positive constants c3,3 = c3,3(T ) and c3,4 = c3,4(T ) such that

∀w ∈ T, c3,3 ≤
∥∥∥ℓ

E(w)
(ξ)

∥∥∥ ≤ c3,4 .

Then, since ξ 6= 0 and v ∈ T ,
∥∥∥ℓ

E(v)
(ξ) − τ

E(v)
(ξ)−E(u)τ

E(v)
(ξ)E(v)ℓ

E(v)
(ξ)

∥∥∥ ≤ c3,4

∥∥∥I − τ
E(v)

(ξ)−E(u)τ
E(v)

(ξ)E(v)
∥∥∥.

By Assumption 6, E(u)E(v) = E(v)E(u) and then
∥∥∥I − τ

E(v)
(ξ)−E(u)τ

E(v)
(ξ)E(v)

∥∥∥ =
∥∥∥I − τ

E(v)
(ξ)E(v)−E(u)

∥∥∥.
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Therefore,
∥∥∥I − τ

E(v)
(ξ)−E(u)τ

E(v)
(ξ)E(v)

∥∥∥ ≤ ‖E(v) − E(u)‖
∣∣∣ln τ

E(v)
(ξ)

∣∣∣ max
(
τ

E(v)
(ξ), τ

E(v)
(ξ)−1

)‖E(v)−E(u)‖

,

since
∥∥eM − eM ′

∥∥ ≤ ‖M − M ′‖e‖M‖+‖M ′‖, for any M,M ′ ∈ M(Rd) such that MM ′ = M ′M .

Then, since η ≤ τ
E(v)

(ξ) ≤ 1/η,
∥∥∥I − τ

E(v)
(ξ)−E(u)τ

E(v)
(ξ)E(v)

∥∥∥ ≤ ‖E(v) − E(u)‖|ln η|η−‖E(v)−E(u)‖.

Hence, according to Assumption 5, there exists c2,2 = c2,2(T ) such that
∥∥∥I − τ

E(v)
(ξ)−E(u)τ

E(v)
(ξ)E(v)

∥∥∥ ≤ c2,2‖u − v‖| ln η|η−c2,2‖u−v‖

since η ≤ 1. Finally, since η = ‖u − v‖1/ν , one can choose γ small enough such that
∥∥∥I − τ

E(v)
(ξ)−E(u)τ

E(v)
(ξ)E(v)

∥∥∥ ≤
c3,3

2c3,4

≤
1

2
,

which implies that
∥∥∥ℓ

E(v)
(ξ) − τ

E(v)
(ξ)−E(u)τ

E(v)
(ξ)E(v)ℓ

E(v)
(ξ)

∥∥∥ ≤
c3,3

2
≤

c3,4

2
.

Then,
c3,3

2
≤

∥∥∥τ
E(v)

(ξ)−E(u)τ
E(v)

(ξ)E(v)ℓ
E(v)

(ξ)
∥∥∥ ≤

3c3,4

2
.

Using the Mean Value Theorem for t 7→ t−βα(v), the continuity of βα and Assumption 4 with

K = T ×

{
y ∈ Rd;

c3,3

2
≤ ‖y‖ ≤

3c3,4

2

}
,

one can find two finite positive constants C3 and C4 that only depend on T and γ such that
∣∣∣∣ψu

(
τ

E(v)
(ξ)E(v)−E(u)ℓ

E(v)
(ξ)

)−βα(v)

− ψv

(
ℓ

E(v)
(ξ)

)−βα(v)
∣∣∣∣

≤ C3

∣∣∣ψu

(
τ

E(v)
(ξ)E(v)−E(u)ℓ

E(v)
(ξ)

)
− ψv

(
ℓ

E(v)
(ξ)

)∣∣∣

≤ C4‖u − v‖
(
1 +

∣∣∣ln τ
E(v)

(ξ)
∣∣∣ max(τ

E(v)
(ξ)−1, τ

E(v)
(ξ))c2,2‖u−v‖

)
.

To conclude let us recall that we have chosen ε ∈ (0, min(minw∈T 1/H(w)−1, 1)). Up to choose γ

smaller we may assume that c2,2γ < ε. Then, one can find a finite positive constant C5 = C5(T, ε)

such that

g2,α,η(u, v, ξ) ≤ C5‖u − v‖τ
E(v)

(ξ)−βα(v) max(τ
E(v)

(ξ)−1, τ
E(v)

(ξ))ε,

for all ξ 6= 0 and u, v ∈ T such that ‖u − v‖ ≤ γ. Then by Lemmas 6.1 and 6.2 and (37), there

exists a finite positive constant C6 = C6(T,K, ε) such that

I2,α,η(x, u, v) =

∫

Rd

∣∣ei〈x,ξ〉 − 1
∣∣αg2,α,η(u, v, ξ)αdξ ≤ C6‖u − v‖α,

for all x ∈ K and all u, v ∈ T such that ‖u − v‖ ≤ γ. The conclusion follows from

‖Y2,α,x(u, v)‖α
α = I1,α,η(x, u, v) + I2,α,η(x, u, v).

¤
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Proof of Lemma 4.3. Let x ∈ Rd. Then, the random field
(
Xψx(v)

)
v∈Rd = (Yα,ψ(v, x, x))v∈Rd

is well-defined and is a harmonizable operator scaling α-stable random field in the sense of The-

orem 4.1 of [7] with respect to E(x)t. Moreover,

Y3,α,x(u, v) = Xψx(u) − Xψx(v).

Then, by stationarity of increments of Xψx and the operator scaling property (see Corollary 4.2

of [7]), when u 6= v

‖Y3,α,x(u, v)‖α
α = τ

E(x)t
(u − v)αJα

(
x, ℓE(x)t(u − v)

)

where

∀θ ∈ S
E(x)t

, Jα(x, θ) =

∫

Rd

∣∣ei〈θ,ξ〉 − 1
∣∣αψ−αβ(x)

x (ξ)dξ.

Since Jα is positive and continuous on the compact set
{

(y, θ) ∈ Rd × Rd; y ∈ K, and θ ∈ S
E(y)t

}
,

there exist c4,3 = c4,3(α,K) and c4,4 = c4,4(α,K) two finite positive constants such that

∀y ∈ K, ∀θ ∈ S
E(y)t

, c4,3 ≤ Jα(x, θ) ≤ c4,4 ,

which concludes the proof. ¤

6.3. Modulus of continuity.

Proof of Lemma 4.7. If α = 2, assertion (2) is a direct consequence of Theorem 4.4. Let us now

assume that α ∈ (0, 2). Then, according to (17)

v2
α((u, v) | (Tn, ξn)n) =

d2
α

2
E

(
|g1|

2)
+∞∑

n=1

T−2/α
n mx0(ξn)−2/α|fα(u, ξn) − fα(v, ξn)|2

where fα is defined by (16). Similarly to the proof of Theorem 4.4 we write

fα(u, ξn) − fα(v, ξn) = f1,α,u(u, v, ξn) + f2,α,u(u, v, ξn) + f3,α,v(u, v, ξn)

where f1,α,u is defined by (32), f2,α,u by (39) and

f3,α,y(u, v, ξ) =
(
ei〈u,ξ〉 − ei〈v,ξ〉

)
ψy(ξ)

−βα(y).

We then denote for j ∈ {1, 2},

v2
j,α((u, v) | (Tn, ξn)n) =

d2
α

2
E

(
|g1|

2)
+∞∑

n=1

T−2/α
n mx0(ξn)−2/α|fj,α,u(u, v, ξn)|2

and

v2
3,α((u, v) | (Tn, ξn)n) =

d2
α

2
E

(
|g1|

2)
+∞∑

n=1

T−2/α
n mx0(ξn)−2/α|f3,α,v(u, v, ξn)|2.

Hence,

v2
α((u, v) | (Tn, ξn)n) ≤ 4

3∑

j=1

v2
j,α((u, v) | (Tn, ξn)n).



34 HERMINE BIERMÉ, CÉLINE LACAUX, AND HANS-PETER SCHEFFLER

Let ε1 ∈ (0, min
(
minw∈T 1/H(w) − 1, 1

)
).

First Step: Study of v1,α

Using (38), Proposition 3.6 and the Lipschitz property of βα on T , one can find γ = γ(ε1) ∈

(0, 1) and a finite positive constant c1 = c1(T, ε1) such that

|f1,α,u(u, v, ξ)| ≤ c1‖u − v‖min (1, ‖ξ‖) τ
E(x0)

(ξ)−βα(x0) max(τ
E(x0)

(ξ)−1, τ
E(x0)

(ξ))ε1/3

for any ξ ∈ Rd\{0} and any u, v ∈ T such that ‖u − x0‖ ≤ γ and ‖v − x0‖ ≤ γ. Hence, almost

surely

v2
1,α((u, v) | (Tn, ξn)n) ≤ ‖u − v‖2W

where

W = c1

+∞∑

n=1

T−2/α
n ζn (41)

with ζn = mx0(ξn)−2/α min
(
1, ‖ξn‖

2) τ
E(x0)

(ξn)−2βα(x0) max(τ
E(x0)

(ξn)−1, τ
E(x0)

(ξn))2ε1/3.

One easily checks that ζn, n ∈ N\{0} are i.i.d. integrable random variables and then that

W < ∞ almost surely (since Tn/n → 1 almost surely and 2/α > 1).

Second Step: Study of v2,α Following the proof of Lemma 4.2, one can choose two finite

positive constants ν = ν(ε1) and c2 = c2(T, ε1) such that for η small enough,
∫

Rd

(
‖ξ‖21τ

E(x0)
(ξ)<η + 1τ

E(x0)
(ξ)>1/η

)
τ

E(x0)
(ξ)−2β2(x0) max

(
τ

E(x0)
(ξ), τ

E(x0)
(ξ)−1)

)ε1

≤ c2η
2ν . (42)

Moreover, following the proof of Lemma 4.2 and using Proposition 3.6, choosing γ = γ(ε1)

smaller if necessary, one can also find a finite positive constant c3 = c3(T, ε1) such that for

‖u − x0‖ ≤ γ/2 and ‖v − x0‖ ≤ γ/2,

v2
2,α((u, v) | (Tn, ξn)n) ≤ c3

(
‖u − v‖2W + σ2

2(‖u − v‖)
)
,

where W is defined by (41) and for all h ≥ 0,

σ2
2(h) =

+∞∑

n=1

T−2/α
n mx0(ξn)−2/α min

(
‖ξn‖

2, 1
) (

1τ
E(x0)

(ξn)<h1/ν + 1τ
E(x0)

(ξn)>h−1/ν

)
τ

E(x0)
(ξn)−2βα(x0)

×max(τ
E(x0)

(ξ)−1, τ
E(x0)

(ξ))2ε1/3.

Let us recall that the density function of ξn is mx0 . Then, using the definition of mx0 , of βα and

β2, one can easily find a finite positive constant c4 = c4(T, ε1) such that for h ≥ 0 small enough,

E
(
σ2

2(h)|(Tn)n

)
≤ c4ς2(h)2

+∞∑

n=1

T−2/α
n

with

ς2(h)2 =

∫

Rd

min
(
‖ξ‖2, 1

)(
1τ

E(x0)
(ξ)<h1/ν + 1τ

E(x0)
(ξ)>h−1/ν

)
τ

E(x0)
(ξ)−2β2(x0) max(τ

E(x0)
(ξ)−1, τ

E(x0)
(ξ))ε1 .
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Then, (42) leads to the existence of a finite positive constant c5 = c5(ε1) such that almost surely

for h ≥ 0 small enough,

E
(
σ2

2(h)|(Tn)n

)
≤ c5h

2

+∞∑

n=1

T−2/α
n .

Then, since h 7→ σ2
2(h) is monotone, almost surely

lim
h→0

σ2
2(h)

h2−ε
= 0

for any ε ∈ (0, 1) (see for instance [6]).

Third Step: Study of v3,α

Using Proposition 3.6, there exist γ = γ(ε1) ∈ (0, 1) and a finite positive constant c6 = c6(T, ε1)

such that for any ‖u − x0‖ ≤ γ/2 and ‖v − x0‖ ≤ γ/2,

v2
3,α((u, v) | (Tn, ξn)n) ≤ c6σ

2
3(τE(x0)t

(u − v)),

where, for all h ≥ 0,

σ2
3(h) =

+∞∑

n=1

T−2/α
n mx0(ξn)−2/α min

(∥∥hE(x0)ξn

∥∥2
, 1

)
τ

E(x0)
(ξn)−2βα(x0) max(τ

E(x0)
(ξ), τ

E(x0)
(ξ)−1)2ε1/3.

Following the proof of Lemma 5.2 of [6], one obtains that

E
(
σ2

3(h)|(Tn)n

)
≤ c7h

2−ε1

+∞∑

n=1

T−2/α
n ,

where the finite positive constant c7 = c7(ε1) does not depend on h. Therefore, almost surely

lim
h→0

σ2
3(h)

h2−ε
= 0

for all ε ∈ (0, ε1).

Proposition 3.5, Step 1, 2 and 3 lead to the conclusion. ¤
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[6] H. Biermé and C. Lacaux. Hölder regularity for operator scaling stable random fields. Stoch. Proc. Appl.,

119(7):2222–2248, 2009.
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36 HERMINE BIERMÉ, CÉLINE LACAUX, AND HANS-PETER SCHEFFLER

[9] T. Candela, F. Renard, M. Bouchon, A. Brouste, D. Marsan, J. Schmittbuhl, and Voisin C. Characterization of
fault roughness at various scales: Implications of three-dimensional high resolution topography measurements.
Pure and Applied Geophysics, 166(4), 2009.

[10] P. Chainais, E. Koenig, V. Delouille, and J.-F. Hochedez. Virtual super resolution of scale invariant textured
images using multifractal stochastic processes. Journal of Mathematical Imaging and Vision, online first, 2010.
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[14] N. Kôno and M. Maejima. Hölder continuity of sample paths of some self-similar stable processes. Tokyo J.

Math., 14(1), 1991.
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(ÃLańcut, 1987), volume 1391 of Lecture Notes in Math., pages 148–163. Springer, Berlin, 1989.
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