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Introduction

In this abstract, we combine work from [Lagarde
et al., 2010] and [Calinon et al., 2009] for learning
and reproduction of, respectively, navigation tasks
on a mobile robot and gestures with a robot arm.
Both approaches build a sensory motor map under
human guidance to learn the desired behavior. With
such a range of actions possible at the same time, the
selection of action becomes a real issue and needs a
higher level controller.

Several solutions exist to this problem : hierar-
chical architecture, parallel modules including archi-
tectures or even a mix of both [Bryson, 2000]. In
navigation, a temporal sequence learner or a state-
action association learner [Lagarde et al., 2010] en-
ables to learn a sequence of directions in order to
follow a trajectory. These solutions can be extended
to action sequence learning. The main challenge we
tried to solve in this work is having a simple architec-
ture based on perception-action that is able to pro-
duce complex behaviors from the incremental learn-
ing from demonstration of a combination of differ-
ent simple tasks, by combining two different learning
sub-systems. Then we discuss advantages and limita-
tions of this architecture, that raises many questions.

1. Description of the Task

The desired behavior is that the robot navigates to
a fixed point, where it must wait until an object is
placed in its gripper. According to the size of the
object, the robot must navigate to different places
and perform different actions. An overview of the
task is shown on Figure 1.

The purpose of this experiment is to mix several
simple tasks items in a complex sequence of behav-
iors, the combination of those simple tasks being
taught to the robot by interaction with a human
teacher.

Human
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Figure 1: Overview of the task. At the grasping point, the
robot chooses one side given the size of the grasped object.
The self-localization of the robot is based on vision which en-
ables a robust navigation.

2. A simple reactive architecture for
action-selection

At any moment, the robot has to choose from a set
of possible actions. The relevance of each action de-
pends on the context of the robot which corresponds
to the global state of the robot. Each sensory modal-
ity (ultrasound sensor, obstacle proximity, aperture
of the gripper) has been categorized. The localiza-
tion of the robot and the last action performed by the
arm are also categorized. The context of the robot is
the conjunction of all these categorizations. There-
fore, each context neuron C;, where ¢ is the neuron
index, corresponds to a unique state of the robot.
In a given context, the robot must select an action
to perform. The implemented strategy is a simple
reactive architecture (Figure 2) based on a gradient
descent derived from Least Mean Square minimiza-
tion [Widrow and Hoff, 1988]. Interaction with hu-
mans generates an unconditional stimulus D; that
supervises the learning so that the predicted output
Of for jth neuron in the conditioning group con-
verges to the desired output. When the same con-
text neuron C; as the one activated during learning
is active, the system is able to predict the correct
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Figure 2: Model of the neural network for action selection.
A context is the conjunction of all the categorized sensory
inputs. The guidelines are determined using some sensory
inputs such as joystick actions, or sensors on the gripper (for
grasp or release guidelines). A classical conditioning enables
to associate a selected behavior with a sensory context.

behavior.

The unconditional stimulus D; also modulates the
learning rate p(t) so that there is only conditioning
when there is interaction. Learning is made on the
weights W; ; connecting the sensory context C; to
the predicted output OJP .

dej = p(t) - (D; — Of) -G (1)

When interacting with the robot, the human pro-
vides a guideline D; to the robot, in order to asso-
ciate the desired behavior with the current context.
For instance, noticing that an object which was hold
firmly has been removed is associated to the guide-
line “Release the object”. 6 possible guidelines are
currently pre-wired as variations of specific sensory
inputs : Navigation, Waiting until an object is given
or Opening the hand, and the 3 learned manipulation
gestures.

A competition on the output predicted by the
conditioning determines which behavior is activated.
Other modules are thus inhibited. In the case of ges-
ture reproduction, each gesture has been taught sep-
arately to the system using the approach described
in [Calinon et al., 2009].

3. Discussion And Conclusion

In this paper, we developed a neural architec-
ture that integrates two complementary task-solving
modules into a unique controller : arm manipulation
and navigation. The system has been tested on the
described task. It was successfully taught, with on-
line learning and correction to grasp and dispatch
objects at different location based on their size. In
further work we plan to measure the performance of
the learning system in term of ease of use and re-
quired number of required demonstrations.
Learning is made on context neurons which en-

codes a singular state of the robot. If another con-
text neuron is activated, another learning round is re-
quired. Hence, generalization abilities of this system
are limited. An alternative could consist in recruiting
context neurons on demand (when the teacher gives
a directive), so that the number of neurons will be re-
duced. Then, with a competition between most plau-
sible contexts, the robot could then present better
generalization abilities. Another possibility is direct
connection between sensory cues and the condition-
ing neural group, instead of using the conjunction. It
would enable more generalization at the expense of a
slower convergence and stability issues for learning.
Furthermore, this may lead to non-linearly separable
problems, requiring an additional hidden layer.

With the presented system, the robot is immedi-
ately able to demonstrate the learned behavior, al-
lowing the teacher to directly correct it. The teach-
ing process is then less tedious for the human, as
he/she can see directly the current knowledge of the
system. However, such a fast learning does not en-
sure the stability and the consistency of the learning.

In [Ogata et al., 2004], the author notices that
in interaction, especially when continued over a long
time, the lack of stability and generalization in learn-
ing is noticeable by the human which interacts with
the robot. Memory consolidation appears to be es-
sential in the learning processes. Memory consolida-
tion is present in human beings : During sleep short
term memory is transferred and re—encoded in neo-
cortex to become long term memory. Such a system
in our architecture will enable reusing past experi-
ments to generalize, while being more robust to noise
disturbances in demonstrations.
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