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Abstract

The present work is concerned with the numerical integration of finite viscoelastic or viscoplastic models. A

numerical integration scheme based on the definition of a flow direction and a flow amplitude as in elastoplasticity

is proposed. The most original feature of this approach resides in a local correction of the direction and amplitude

with a sub-stepping strategy. Comparisons with the results obtained using a classical tensorial integrator based on a

Runge-Kutta-Fehlberg scheme are provided. The reliability of the present numerical scheme is investigated with three

rheological models two are viscoelastic (Zener and Poynting-Thomson) and one is viscoplastic.

Key words: finite strain, viscoelasticity, viscoplasticity, finite elements, integration scheme.

1. Introduction

Many rheological models based on the fundamental principles of thermodynamics and the multiplicative de-

composition of the strain gradient have been developed during the last twenty years, for simulating the behavior of

dissipative materials at large strains. These models are often an extension of small strain ones and in many cases a

numerical implementation has been proposed. However, these numerical schemes are not always discussed in terms

of their reliability (robustness, convergence, stability) and even less in terms of their numerical performances. As

the complexity of these models continued to increase, there is still a need for robust, efficient and generic numerical

schemes.

This paper focuses on a class of rheological models based on internal variables and evolution equations. An inter-

esting idea in this framework consists in decomposing the internal variable rates in terms of direction and magnitude.

This is a classical procedure in elasto-plasticity where an objective rate tensor of plastic deformation is decomposed in

this way. In the case of associative plasticity with J2 flow, the problem reduces to the determination of a scalar param-

eter. This process is known as the radial-return algorithm (see for instance [1, 2] for a finite strain implementation and

the references therein). In the case of viscoelasticity, the evolution of the internal variables is generally fully tensorial

and cannot therefore be reduced to a scalar equation. Many authors have developed tensorial integrators which are

based on a generalization of standard integration schemes. For example, [3] have used a Backward-Euler scheme in

the framework of the Poynthing-Thomson model, and [4] used an explicit Runge-Kutta scheme with the same model.

The main difficulty encountered with this schemes arises from the determination of the consistent tangential operator,

which is not a straightforward task. In the framework of a generalized Maxwell model, [5] proposed an application

of diagonal implicit Runge Kutta methods (DIRK). In this case, the discrete equilibrium equations and evolution laws

are assembled in a global differential algebraic system, which is solved by an implicit Runge Kutta algorithm. This
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method is robust and generic but it involves solving the evolution laws at the global level.

Besides the class of tensorial integrators, some authors have proposed specific algorithms based on exponential

mapping methods (see [6]). In the paper of [7], this technique was developed on a Zener model: by setting the evolu-

tion law in the principal space and using logarithmic principal stretches, the integration was reduced to determining a

non-linear system of three equations, using a local newton scheme. This scheme is very robust in the case of viscoelas-

tic and viscoplastic models, and since the earlier paper by [7], many authors have used this strategy (see for example

[8, 9, 10, 11]). For elastoplasticity, [12] have proposed an exponential mapping with a full tensorial integration and a

consistent linearization. However, these algorithms are approximate ones since the evolution equations cannot gener-

ally be expressed as a linear differential system, and it is therefore not easy to obtain an exponential solution for the

time integration. In the case of Maxwell elements, this approximation seems to be valid, but it would be interesting

to apply this algorithm to a more complex case such as the Poynting-Thomson model. In the case of a viscoplastic

model, [13] have compared the use of a Backward-Euler scheme with that of an Exponential mapping, and the rate of

convergence obtained with both schemes was identical.

The integration scheme presented here is based on the concepts used in return mapping algorithms. A flow direc-

tion (a normalized tensor) is defined and introduced in the evolution equations in order to obtain flow magnitude evo-

lution equations. A vectorial non-linear differential system is obtained and integrated with a Backward Euler scheme.

By linearizing this system an Exponential integrator is obtained. If necessary, the integration can be corrected using a

sub-stepping strategy. The results obtained with the present integrator are compared with a full tensorial Runge-Kutta-

Fehlberg (RKF45) scheme (see [14, 15]). Three different rheological behaviors are also tested in order to determine

the efficiency of these schemes with evolution laws that exhibit different nature of non-linearity.

This paper is organized as follows: thermodynamics of finite strain with intermediate states is recalled and applied

to three different models in the first section. The evolution laws of Maxwell and Poynting-Thomson models are

derived and a finite viscoplastic model is described. In the second section, the variational formulation adopted is

briefly described. The numerical integration schemes are presented in the third section. Lastly, the reliability and the

numerical performances for each rheological models are discussed, giving some simple examples.

2. Constitutive Equations

2.1. Some definitions

In the context of thermodynamics of irreversible processes, the constitutive equations must fulfill the Clausius

Duhem inequality, which takes the following form in the Eulerian configuration and in the isothermal case:

Dint = σσσ : D− J−1ρ0ψ̇ ≥ 0 (1)

where σσσ is the Cauchy stress, D is the Eulerian rate of deformation, J = detF is the volume variation (and F is the

deformation gradient), ρ0 is the volumetric mass in the initial configuration, Dint is the internal dissipation and ψ is

the specific free energy. This paper focuses on rheological models based on the concept of intermediate states initially

proposed by [16, 17]. In line with [18], the deformation gradient is first split into volumetric and isochoric parts. The

latter part is split into elastic and inelastic parts as shown in figure 1:

F =
(

J
1
3 1
)

·F =
(

J
1
3 1
)

·Fe ·Fi (2)

where F is the incompressible part of the deformation gradient, Fe can be said to be an incompressible elastic defor-

mation gradient and Fi is an incompressible inelastic deformation gradient. These choices imply that the non-elastic

processes involved will be purely isochoric and all the volume changing deformation is restricted to be reversible.

In what follows, it is assumed that the free energy is additively split into a volumetric, an equilibrium and a non-

equilibrium part:

ψ = ψeq(X)+ψneq(Y)+ψvol(J) (3)
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Figure 1: Split of the deformation gradient

where X and Y are one of the left Cauchy Green tensors: B = F ·FT
, Be = Fe ·Fe

T
or Bi = Fi ·Fi

T
, depending on the

rheological model adopted. The time derivative of the free energy is therefore:

ψ̇ =
∂ψeq

∂X
: Ẋ+

∂ψneq

∂Y
: Ẏ+

∂ψvol

∂J
J̇ (4)

The time derivative of J is

J̇ = J (1 : L) with L = ḞF−1 (5)

and the time derivative of the strain variables X and Y is given by two of the following:

Ḃ = L ·B+B ·LT − 2

3
(1 : D)B (6)

Ḃi = Li ·Bi +Bi ·Li
T

(7)

Ḃe = L ·Be +Be ·LT − 2Ve ·Do

i ·Ve −
2

3
(1 : D)Be (8)

Here we introduce the objective Eulerian inelastic rate of deformation D
o
i defined by

D
o
i = Re ·Di ·Re

T
(9)

with Re originates from the polar decomposition Fe = Ve ·Re and Di = (Ḟi ·Fi
−1
)sym.

2.2. Zener model

This model is schematized in figure 2, and we have X = B, Y = Be. Based on (5), (6) and (8) the time derivative

of the free energy is:

ψ̇ =
∂ψeq

∂B
:

(

L ·B+B ·LT − 2

3
(1 : D)B

)

+
∂ψneq

∂Be

:

(

L ·Be +Be ·LT − 2Ve ·Do
i ·Ve −

2

3
(1 : D)Be

)

+ J
∂ψvol

∂J
(1 : L)

(10)

After some calculations, the following expression for the internal dissipation can be obtained:

Dint =

(

σσσ−ρ0J−1

(

2B · ∂ψeq

∂B

)D

−ρ0J−1

(

2Be ·
∂ψneq

∂Be

)D

−ρ0

(
∂ψvol

∂J
1

))

: D

+

(

2ρ0J−1Ve ·
∂ψneq

∂Be

·Ve

)

: D
o
i ≥ 0

(11)

where the superscript D stands for the deviatoric operator. For arbitrary choices of D, the constitutive equations are

derived as well as a remainder inequality governing the non-negativeness of the internal dissipation. The stress is

defined as the sum of a deviatoric equilibrium, a deviatoric non-equilibrium and a spherical part:

σσσ =

σσσeq
︷ ︸︸ ︷
(

2ρ0J−1B · ∂ψeq

∂B

)D

+

σσσneq
︷ ︸︸ ︷
(

2ρ0J−1Be ·
∂ψneq

∂Be

)D

+

σσσvol
︷ ︸︸ ︷

ρ0
∂ψvol

∂J
1 (12)
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Figure 3: Poynting-Thomson model

The remainder inequality yields the definition of an internal stress-like variable, which is conjugate to an objective rate

of the internal strain variable. This internal stress like variable is supposed to be derived from a pseudo-potential of

dissipation ϕ, which is a convex positive function of the objective rate of the internal variable D
o

i (with the constraint

ϕ(0) = 0). It is then applied the normality principle to always satisfy the remainder inequality for all D
o
i with tr(D

o
i ) =

0. The following complementary law can then be obtained:

∂ϕ

∂D
o
i

=

(

2ρ0J−1Ve ·
∂ψneq

∂Be

·Ve

)D

(13)

Here, the simplest form of the pseudo dissipation potential ϕ is assumed, i.e. a quadratic one:

ϕ(D
o
i ) =

η

2
(D

o
i : D

o
i ) (14)

where η is a viscosity parameter. Equation (13) gives

D
o
i =

2ρ0

Jη

(

Ve ·
∂ψneq

∂Be

·Ve

)D

(15)

By substituting equation (15) into (8), the following evolution equation of the Zener model is obtained:

Ḃe = L ·Be +Be ·LT − 2

3
(1 : L)Be −

2

η
σσσneq ·Be (16)

2.3. Poynting-Thomson model

This model is presented in figure 3. It is defined with X = Be and Y = Bi. Based on (5), (7) and (8), the time

derivative of the free energy is given by:

ψ̇ =
∂ψeq

∂Be

:

(

L ·Be +Be ·LT − 2Ve ·Do
i ·Ve −

2

3
(1 : D)Be

)

+
∂ψneq

∂Bi

:
(

Li ·Bi +Bi ·Li
T
)

+ J
∂ψvol

∂J
(1 : L)

(17)
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As with the previous model, a re-arrangement of the terms in the previous equation gives the following expression for

the internal dissipation:

Dint =

(

σσσ−ρ0J−1

(

2Be ·
∂ψeq

∂Be

)D

−ρ0

(
∂ψvol

∂J
1

))

: D

+

(

2ρ0J−1Ve ·
∂ψeq

∂Be

·Ve

)

: D
o

i

−
(

2ρ0J−1Bi ·
∂ψneq

∂Bi

)

: Di ≥ 0

(18)

Using eq. (9) and the polar decomposition: Fe = Ve ·R, one can obtain the following expression:

Di = Fe
T ·Ve

−1 ·Do
i ·Ve

−1 ·Fe (19)

A more practical form of the internal dissipation is thus obtained:

Dint =

(

σσσ−ρ0J−1

(

2Be ·
∂ψeq

∂Be

)D

−ρ0

(
∂ψvol

∂J
1

))

: D

+

(

2ρ0J−1Ve ·
∂ψeq

∂Be

·Ve

− 2ρ0J−1Ve
−1 ·Fe ·Bi ·

∂ψneq

∂Bi

·Fe
T

Ve
−1
)

: D
o
i ≥ 0

(20)

As done above, the constitutive equation is obtained for arbitrary choices of D. The stress is a sum of a deviatoric

hyperelastic and a spheric volumetric part:

σσσ =

σσσeq
︷ ︸︸ ︷
(

2ρ0J−1Be ·
∂ψeq

∂Be

)D

+

σσσvol
︷ ︸︸ ︷

ρ0
∂ψvol

∂J
1 (21)

For the remainder part, the existence of a pseudo potential of dissipation driving the internal stress-like variable is

postulated. A more complex form can be obtained here than with the previous model:

∂ϕ

∂D
o
i

=2ρ0J−1

(

Ve ·
∂ψeq

∂Be

·Ve − 2Ve
−1 ·Fe ·Bi ·

∂ψneq

∂Bi

·Fe
T
Ve

−1
)D

(22)

Assuming the free energy to be isotropic, and adopting the following notation for the derivative of ψneq:

ψneq,1 =
∂ψneq

∂I1(Bi)
ψneq,2 =

∂ψneq

∂I2(Bi)
(23)

equation (22) becomes

D
o
i =

2ρ0

Jη

(

Be ·
∂ψeq

∂Be

− 2Ve
−1 ·
(

ψneq,1B−ψneq,2Be ·B−1 ·Be

)

·Ve
−1
)D

(24)

By substituting equation (24) into (8), we obtain the following evolution equation for the internal variable of a Poynting

Thomson model:

Ḃe =L ·Be +Be ·LT − 2

3
(1 : L)Be −

2

η
σσσeq ·Be

+
4

Jη
ψneq,1

(

B− 1

3
(B : Be

−1
)Be

)

+
4

Jη
ψneq,2

(

Be ·B−1 ·Be −
1

3
(B

−1
: Be)Be

)

(25)

5
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Figure 4: A Visco-plastic model

2.4. Generalized Bingham model

The visco-plastic model, presented in figure 4, consists of a Bingham viscoplastic element put in parallel with an

elastic one. In this model, we have X = B and Y = Be. The same constitutive equation is obtained as in the case of

the first viscoelastic model :

σσσ =

σσσeq
︷ ︸︸ ︷
(

2ρ0J−1B · ∂ψeq

∂B

)D

+

σσσneq
︷ ︸︸ ︷
(

2ρ0J−1Be ·
∂ψneq

∂Be

)D

+

σσσvol
︷ ︸︸ ︷

ρ0
∂ψvol

∂J
1 (26)

For the remainder part of the internal dissipation, we take the following Legendre-Fenchel transformation of the

pseudo-potential of dissipation:

ϕ∗ =

〈
f (σσσneq)

〉

η
with f (σσσneq) = ‖σσσneq‖−χ (27)

where η is a viscosity parameter, < . > are the Mac-Cauley brackets1, and the function f is a Yield stress function

that defines the elastic domain E:

E= {σσσneq| f (σσσneq)≤ 0} (28)

The application of the normality principle leads to the following expression:

D
o
i =

∂ϕ∗

∂σσσneq

=

〈
f (σσσneq)

〉

η

σσσneq

‖σσσneq‖
(29)

By subsitituting equation (29) into (8) and using the isotropy of the free energy, the following flow rule is obtained

Ḃe = L ·Be +Be ·LT − 2

3
(1 : L)Be − 2

〈
f (σσσneq)

〉

η

σσσneq

‖σσσneq‖
·Be (30)

3. Variational Formulation

In this paper, the so-called perturbed Lagrangian variational form is adopted. This variational form is a two-

field formulation accounting satisfactorily for nearly-incompressible behavior. In this formulation, the Lagrangian

parameter has a physical meaning of the hydrostatic pressure thanks to the decomposition of F into isochoric and

volumetric parts (see [19] for more details). Introducing the couple (u; p) denoting the kinematics and the hydrostatic

1Operator < . > is defined by < f >= f if f ≥ 0 and < f >= 0 if f < 0
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pressure, the solution of the equilibrium problem has to cancel the following integral form for all the test functions δv

and δp chosen in the same spaces as those of the trial functions u and p respectively2:







∫
Ω0

ΠΠΠ : ▽δvdΩ−
∫

Ω0

δv · fvoldΩ−
∫

δΩ
δv · fsurfdS = 0

∫
Ω0

(

ρ0
∂ψvol

∂J
− p

)

δqdΩ = 0
(31)

where ΠΠΠ is the first Piola Kirchoff stress. To proceed further, a classical quadratic volumetric potential is adopted,

which gives the following linear pressure law:

ρ0ψvol =
k

2
(J − 1)2 ⇒ p = k(J − 1) (32)

where k is the compressibility modulus. Equations (31) become







∫
Ω0

(
ΠΠΠiso(u)+ pJF-T

)
: ▽δvdΩ−

∫
Ω0

δv · fvoldΩ−
∫

δΩ
δv · fsurfdS = 0

∫
Ω0

(

J(u)− 1− p

k

)

δqdΩ = 0

(33)

It can be seen from the above equations that 1/k act as a perturbation parameter enforcing incompressibility. The

isochoric stress part of the first Piola-Kirchoff stress is computed by a simple transport of the Cauchy stress, so that

ΠΠΠiso = Jσσσiso ·F-T = J(σσσeq +σσσneq) ·F-T Zener and Visco-plastic models

ΠΠΠiso = Jσσσiso ·F-T = J(σσσeq) ·F-T Poynting Thomson model
(34)

For more precisions on the variational formulation and the finite elements implementation in the context of mixed

formulations for incompressible media submitted to large strain, we refer to the work of [20, 21, 22, 23] and references

therein.

4. Numerical Integration of the Flow Rule

4.1. Scalar Backward Euler with Time-Stepping (BETS)

A local incremental process within the Newton-Raphson scheme is used to solve the equilibrium equations. In the

time interval [tk, tk+1] all is given at time tk and the Newton-Raphson scheme gives a prediction of F at time tk+1. We

therefore look for the internal variables at time tk+1. In what follows F is assumed to be a linear function of time in

the interval [tk, tk+1]. This implies Ḟ is constant (by time interval), and defined by:

Ḟ =
∆F

∆t
=

F|k+1
−F|k

tk+1 − tk
(35)

2fvol and fsur f are the volumetric external forces and the surface forces respectively.

7



In line with [1, 7], among others, one can observe that the flow rule takes a generic tensorial form, in which pure

elastic and inelastic parts can be distinguished3:







Ḃe = G(Be,L,B) = H (Be,L)
︸ ︷︷ ︸

elastic

+I (Be,B)
︸ ︷︷ ︸

inelastic

t ∈ [tk, tk+1]

Be(tk) = Be|k

with H (Be,L) = L ·Be +Be ·LT − 2

3
(1 : L)Be

I (Be,B) =







− 2

η
σσσneq ·Be for Zener

− 2

η
σσσeq ·Be +

4

Jη
ψneq,1

(

B− 1

3
(B : Be

−1
)Be

)

+

4

Jη
ψneq,2

(

Be ·B−1 ·Be −
1

3
(B

−1
: Be)Be

)

for Poynthing-Thomson

− 2

〈
f (σσσneq)

〉

η

σσσneq

‖σσσneq‖
·Be for Bingham

(36)

Splitting the differential system is particularly interesting to introduce a new intermediate configuration. Taking a sub-

step defined by a sub-interval4 [tn, tn+1] of size h, all the state variables are evaluated at the time tn and the intermediate

trial elastic state at time tn+1 is defined from

Fe
⋆
= F|n+1

·F−1
i|n (37)

The trial left Cauchy-Green tensor is then defined by

Be
⋆
= F|n+1

·F|n
−1 ·Be|n ·F|n

-T ·F|n+1

T
(38)

This trial state is the solution of equation (36) if we set I (Be,B) = 0, which corresponds to a pure elastic solution.

As in exponential mapping and radial return mapping schemes, a predictive/corrective algorithm is considered, in

which the predictive solution is the trial state. Therefore, the corrective step consists in solving the following modified

differential tensorial system (we set L = 0 and so H (Be,L) = 0):

{

Ḃe = I (Be,B) t ∈ [tn, tn+1]

Be(tn) = Be
⋆ (39)

To proceed further, it is assumed that the solution can be decomposed as follows:

Be(t) = b(t)N+ s(t)1 (40)

where N denotes a normalized deviatoric strain tensor with the following basic properties:

(N : N) = 1and(N : 1) = 0 ⇒ (Ṅ : N) = 0and(Ṅ : 1) = 0 (41)

This tensor can be taken to give the flow direction, b(t) and s(t) are the flow amplitudes defined by

b(t) = Be : N s(t) =
1

3
Be : 1 (42)

The main assumption involved in the proposed algorithm is based on the following choice of the flow direction N:

N =
Be

⋆D

+ hI (Be
⋆
,B|n+1

)D

∥
∥
∥Be

⋆D

+ hI (Be
⋆
,B|n+1

)D

∥
∥
∥

(43)

3For the sake of simplicity the dependence on time of the tensorial quantity is not explicitly written
4A sub-step is a time partition of the time interval [tk ,tk+1]

8



This choice make it possible to take into account both the time evolution5 of N and its dependence on the nature of

the flow rule.

The time derivative of Be is then :

Ḃe = ḃN+ bṄ+ ṡ1 (44)

Introducing (40) and (44) into (39), the tensorial flow rule can be reduced to a scalar differential system of 2 equations

with the two unknowns {s,b}. This system is obtained directly by using the properties of N in eq. (41), i.e. using

the projections Ḃe : 1 and Ḃe : N. Appendix A sums up the details of the calculations in the case of each rheological

model. A vector y is then introduced, that contains the two unknowns {s,b}. The differential system can be written

as follows: 





ẏ = N (y,N,B)

yn = {s⋆,b⋆}=
{

Be
⋆

: 1

3
,Be

⋆
: N

}

(45)

Where N is the vectorial form of the inelastic part of the flow rule I . The ordinary differential system is non-linear

and with non-constant coefficients, since N and B depend on time. This system is solved with a Backward-Euler

scheme:

yn+1 = yn + hN (yn+1,N,B|n+1
) (46)

This process leads to the resolution of a non-linear system, using a local Newton scheme.

The sub-step size, h, is controlled by an auto-adaptive scheme, taking the following local error:

LER =

∥
∥
∥
∥

Ḃe|n+1
− Ḃ

(1/2)

e|n+1

∥
∥
∥
∥
=

1

h

∥
∥
∥
∥

1

2
Be|n+1

− 2Be|
n+ 1

2

+
3

2
Be|n

∥
∥
∥
∥

with Ḃe|n+1
=

Be|n+1
−Be|n
h

and Ḃ
(1/2)

e|n+1
=

1

h

(
3

2
Be|n+1

− 2Be|
n+ 1

2

+
1

2
Be|n

)

(47)

This error requires a mid step evaluation at t
n+ 1

2
. Therefore, at each Gauss point, the local Newton scheme is used

twice to evaluate Be|
n+ 1

2

and Be|n+1
. Whenever this local error estimate satisfies LER < TOL, the current sub-step is

accepted and the new sub-step size is computed from

hnew = 0.9max(rmin,min(rmax,

(
TOL

LER

)1/3

))hold (48)

where TOL is the desired error tolerance, and rmin and rmax are the minimum and maximum bounds of the sub-step

size variation preventing to small or to large h values. If the local error is greater than the error tolerance, the sub-step

is rejected and re-tested with a smaller sub-step size (given by eq. (48)). However, from a numerical point of view, it

can be experimented some cases where rmin is reached. In this cases, the global-step size is reduced and the integration

process is retried. This heuristic scheme may conduced to situations where the auto-adaptive scheme is very costly.

The choice of rmin, rmax and TOL must be done with care from numerical experiments.

4.2. Linearization of the scalar Backward Euler with Time-Stepping (LBETS)

Starting with the assumption (40), a series expansion of the unknown is performed around {s⋆,b⋆} so that

s(t) = s⋆+ δs(t) b(t) = b⋆+ δb(t) (49)

5as Be
⋆D

,B depend on time.

9



By introducing (49) into the vectorial flow rule N and keeping only first order terms, the following approximated

differential system can be obtained
{

δ̇s

δ̇b

}

= A(t)

{
δs

δb

}

+C(t) (50)

with the following initial conditions :

δs(tn) = δb(tn) = 0 (51)

As we are looking for exponential solutions, the system (50) is solved using a semi-explicit scheme in which A(t) and

C(t) are fixed at time tn. With this approach the vectorial differential system has an analytical solution, which can be

computed from:
{

δs(tn+1)
δb(tn+1)

}

=

(∫ tn+1

tn

eA(tn+1−s)ds

)

C =
(

eA∆t − I

)

A−1C (52)

where I is the identity matrix, and eA is the exponential matrix of A. By taking into account the time dependence

of the operator A and C, a semi analytical solution can be exhibited that also takes the form of an exponential with

Magnus series. The authors will present this specific integration scheme in a paper to appear [24].

The aforementioned exponential matrix is computed using a squalling and squaring method with Padé approximants

(for other strategies, see (author?) [25], who compared of 19 different methods). The main idea is to use the property

eA = (eA/2 j
)2 j

and to compute eA/2 j
with Padé approximants:

eA/2 j ≃ [Nq(−A/2 j)]−1Nq(A/2 j) (53)

where

Nq(A/2 j) =
q

∑
i=0

(2q− i)!q!

2q!i!(q− i)!
(A/2 j)i (54)

and j is chosen such as ‖A‖ ≤ 2 j−1 and q = 2.

The same time stepping strategy is used here as with the previous integrator, adopting the same local error.

4.3. Tangent moduli

The specific tensorial operators used in this section are defined in Annex B. Linearizing equations (33), with a

view to implementing a Newton-Raphson algorithm, leads to calculating the tangent moduli:

∂ΠΠΠiso

∂F
= τiso •

∂F-T

∂F
+

∂τiso

∂F
➁F-T (55)

The Kirchoff stress τiso = Jσσσiso is introduced into the previous relation. The main difficulty resides in obtaining the

derivative of τiso with respect to F. Using τiso = τeq(X)+τneq(Y), where X and Y are Be or B, the following expression

is obtained:
∂τiso

∂F
=

∂τeq

∂X
:

∂X

∂F
+

∂τneq

∂Y
:

∂Y

∂F
(56)

Calculating ∂τeq/∂X, ∂τneq/∂Y or ∂B/∂F does not involve any specific difficulties and will not be detailed in this

paper: see [26, 27] and the references therein for further details. Therefore, it still remains to calculate ∂Be/∂F.

Starting with a backward-Euler scheme, one has:

Be|k+1
= Be

⋆−∆tI (Be|k+1
,B|k+1

) (57)

where ∆t = tk+1 − tk. A direct derivation gives:

∂Be

∂F
|k+1 =

∂Be
⋆

∂F
|k+1 −∆t

∂I (Be|k+1
,B|k+1

)

∂F
|k+1 (58)

10



with

∂Be
⋆

∂F
|k+1 =

∂F

∂F
➁

(

F|k
−1 ·Be|k ·F|k

-T ·F|k+1

T
)

+
(

F|k+1
·F|k

−1 ·Be|k ·F|k
-T
)

• ∂F
T

∂F

(59)

and the derivative of F, which are defined by

∂F

∂F
= J−1/3(I− 1

3
F⊗F-T)

∂F
T

∂F
= J−1/3(1 ; 1− 1

3
FT ⊗F-T)

(60)

The derivative of I is specific to each rheological model and does not involve any specific difficulties. This gives:

∂I (Be|k+1
,B|k+1

)

∂F
=

∂I (Be,B)

∂Be

:
∂Be

∂F
|k+1 +

∂I (Be,B)

∂B
:

∂B

∂F
|k+1 (61)

Finally ∂Be/∂F can be obtained from the resolution of a linear system.

In the case of the present linearized scheme, the derivative of Be is calculated as follows

∂Be

∂F
= N⋆⊗ ∂δb

∂F
+ 1⊗ ∂δs

∂F
+ δb

∂N⋆

∂F
+

∂Be
⋆

∂F
(62)

The terms ∂δb/∂F and ∂δs/∂F are obtained from the linear differential system of equation (50):







∂δ̇s

∂Fi j

∂δ̇b

∂Fi j







= A(t)







∂δs

∂Fi j

∂δb

∂Fi j







+
∂C

∂Fi j

+
∂A

∂Fi j

{
δs

δb

}

(63)

The solution of the above differential system is obtained using the the same expression as in (52), which also involves

an exponential matrix evaluation.

5. Examples

The folling examples are given to show the reliability and the numerical performances of the proposed schemes.

These schemes will be compared with a 4th order Runge-Kutta scheme with time stepping (RKF), which is breifly

presented in Annex C. The finite elements code ZeBuLoN (see [28]) was used to implement these schemes.

The following free energies were chosen for the rheological models:

• for the Zener and Generalized Bingham models:
{

ψeq(B) =C1(I1(B)− 3)+C2(I2(B)− 3)+C3(I1(B)− 3)3

ψneq(Be) = G(I1(Be)− 3)
(64)

model C1 (MPa) C2 (MPa) C3 (MPa) G (MPa) η (MPa.s) χ (MPa)

Zener 7.08e-02 -8.42e-02 5.27e-02 6.14e-01 5.06e-01

Poynting-Thomson 6.16e-01 -4.52e-02 2.01 1.78 4.89e-01

Visco-plastic 2.68e-01 2.37e-01 2.10e-02 8.25e-01 1.29e-01 1.33e-01

Table 1: Material parameters

11
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Figure 5: Tensile relaxation test

• and for the Poynting-Thomson model:
{

ψeq(Be) =C1(I1(Be)− 3)+C2(I2(Be)− 3)+C3(I1(Be)− 3)3

ψneq(Bi) = G(I1(Bi)− 3)
(65)

The material parameters are fitted to the experimental data (traction relaxation and cyclic shear tests from [29]).

Table 1 sums up the material parameters identified. A value of k = 1500 MPa is adopted for the compressibility

modulus.

5.1. Uniform traction

In this test, a unit cube of rubber is subjected to a uniform stretching of λ = 2. Due to the symmetry of the

boundary conditions, only a quarter of the initial geometry is meshed. Quadratic cubic elements with 27 nodes for the

kinematics and 4 nodes for the pressure are used (C27P4). The boundary condition and the load signal are given in

figure 5.

Figures 6(a), 6(b) and 6(c) show the global rate of convergence of the two proposed schemes: BETS and LBETS in

comparison with a Runge-Kutta-Felhberg integrator (RKF). A relative numerical error is calculated from the global

stress response at the end of the monotonic loading, using as a reference the numerical response obtained with a very

small step size with each model (∆t = 10−4s). The horizontal axis is the global size of the Newton increment used to

solve the equilibrium equations. This global step-size does not always correspond exactly to the local integration step-

size, due to the sub-stepping. Two different tolerance values are used to control the sub-stepping strategy: TOL= 10−1

and TOL = 10−4. The following comments can be made about these curves:

• the RKF scheme has a global order of convergence of O(∆t2), except for the generalized Bingham model where

the order of convergence is lower (near O(∆t)). This explicit scheme exhibits an irregular convergence with the

Poynting Thomson model. The sub-stepping control tends to regularize the convergence, at least in the case of

the Poynting Thomson model.

• the scalar Backward Euler scheme (BETS) has an order of convergence of O(∆t), apart from the Poynting

Thomson model, with which the convergence is lower. Due to is implicit nature, this scheme gives a more

regular convergence than the RKF scheme. It seems to be less sensitive than the RKF scheme to the non-

linearity of the differential system. The sub-stepping control strategy has a direct impact on the global error,

and it can be observed that the global relative error is influenced by the tolerance value.

• similar comments about the linearized scheme (LBETS) can be made: the order of convergence is approxi-

mately O(∆t) and a regular convergence is observed. However, the global error is higher than with the other

schemes. Apart from the Zener model, the linearization of the differential system near the trial elastic state

appears to be a rather rough approximation.

12
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Figure 6: Order of convergence of each numerical integrator
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Figure 7: Dumbbell specimen

5.2. Cyclic traction on a dumbbell specimen

A specimen consisting of one half of an axisymmetric dumbbell is (see figure 7) subjected to sinusoidal cyclic

tensile loading with a tensile preload. The mesh comprises 308 quadrangle elements (Q9P3, quadratic displacement -
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(c) Generelized-Bingham model

Figure 8: Cyclic traction test on a dumbbell specimen

linear pressure). The load signal applied is u = u0 + u0 sin(2π f t), with f = 3Hz, u0 = 2.0mm.

Figure 8, gives the numerical results obtained with each scheme, with each rheological models. The initial global

step-size was the same for each computation, and a value of 10−3 was used for the TOL parameter. As in the previous

case of homogeneous deformations, the following comments can be made:

• The results obtained with BETS and RKF schemes were very similar.

• The linearization of the elastic Cauchy-Green deformation near the trial state is an assumption which is too

strong for complex non-linear flow rules. As shown is figures 8(b) and 8(c), the LBETS scheme did not fully

reflect the non-linearity of the behavior.

Concerning the local results, figure 9 shows the Von-Mises stress obtained with the Poynting-Thomson model at two

loading times. It can be seen from this figure that the RKF and BETS schemes gave very similar results on both

loading and unloading stage. This was not the case of the linearized scheme, as can be seen by comparing figures 9(f)

and 9(d).

Table 2 sums up the numerical performance of each scheme by giving the total computing time, the total number

of iterations and increments of Newton-Raphson required with each scheme. With complex non-linear flow rules

(such as those involved in Poynting-Thomson and Generalized-Bingham models), BETS is a very interesting scheme

14
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Figure 9: Von Mises stress for Poynting-Thomson model

as the total computing time is less or close than that required by a full tensorial scheme. In addition, the total number

of iterations is lower than with the other schemes tested. This may be due to the tangent moduli, which is roughly

approximated in the case of RKF. In the case of the Zener model, the RKF scheme was the most efficient as the total

number of iterations was similar to that required with the BETS and the cost per iteration was lower with that of

BETS. The linearization of BETS turned out to be less useful than expected. Although the resolution of a non linear

system by a Newton scheme is avoided in the case of LBETS, computing an exponential matrix is time consuming

(and this has to be done in both the flow rule computation and the tangent moduli calculation).

6. Concluding comments

Two integration schemes for finite viscoelasticity and finite viscoplasticity evolution laws are presented in this

paper. As in the case of J2 finite elastoplasticity, the evolution equations are decomposed into flow direction and

flow magnitude. The originality of the present approach is due to the fact that it focuses both on the choice of the

flow direction, which depends directly on the flow rule and on the time stepping strategy, which is used to control
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Model Integrator TOL Cpu time (s) Nb Iter Nb Incr

Zener RKF 1.e-03 86.5 478 158

BETS 1.e-03 130.4 476 158

LBETS 1.e-03 121.3 480 158

Poynting-Thomson RKF 1.e-03 173.2 1088 158

BETS 1.e-03 166.2 929 203

LBETS 1.e-03 211.6 1402 179

Generalized-Bingham RKF 1.e-03 102.3 657 158

BETS 1.e-03 118.0 491 158

LBETS 1.e-03 138.3 695 158

Table 2: Numerical comparison of each integrator

the local deviation of the numerical solution. When applied to some simple examples this approach was found to be

reliable in comparison with a classical Runge-Kutta scheme with three types of evolution laws. The BETS scheme

was found to give the most satisfactory results, although it has the disadvantage of a weak rate of convergence, nearly

1 (which is also that of the exponential mapping scheme, see [13]). Its implicit aspect offers the advantage of a stable

numerical behavior which was not the case of the explicit Runge-Kutta scheme used in this paper. In terms of its

numerical performances, BETS is the most interesting scheme as it is not as sensitive to complex flow rules as the

RKF scheme: the number of global Newton-Raphson iterations was smaller and therefore the computing time was

shorter with BETS in the case of the Poynting-Thomson model.

Comparisons between the numerical results obtained with these schemes with three different rheological models

showed that the Maxwell viscosity (at least with a quadratic pseudo-potential of dissipation) is not the most appropriate

model for comparing numerical schemes. Although previous papers on this topic have focused on Maxwell rheological

elements, this paper shows that Poynting-Thomson viscosity is a more interesting model to study the efficiency of a

numerical integration scheme. It would therefore be a useful work comparing the use of exponential mapping method

or DIRK method with this model.

To conclude, the numerical schemes presented in this paper are sufficiently generic to be implemented in standard

(commercial) finite-element codes as they are defined at a local (Gauss points) level. On this basis, the numerical

implementation of more complex rheological models can be easily achieved whenever the evolution equations can be

written in the framework described in this paper.
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A. Scalar differential systems

• Zener model:

Starting with:

σσσneq = 2GBe
D

(66)

and introducing τ = 4G/Jη, the following system is obtained:

{
s−s⋆

h
=− τ

3
b2

b−b⋆

h
=−τ

((
N2 : N

)
b2 + sb

) (67)

• Poynting Thomson model:

The equilibrium stress is obtained by differentiating the free energy chosen:

σσσeq = 2
(
C10 + 3C30(I1(Be)− 3)2

)
Be

D − 2C01Be
−1D

(68)

where τ = 4G/Jη, τ1 = 4C10/Jη, τ2 = 4C01/Jη, τ3 = 12C30/Jη and the following quantities are introduced:

Be
2
= b2N2 + s21+ 2sbN (69)

I1(Be) = Be : 1 = 3s (70)

I2(Be) =
1

2
(I2

1 (Be)− (Be
2

: (1))) = 3s2 − b2

2
(71)

Using the Cailey-Hamilton theorem to evaluate Be
−1

, one has:

Be
−1

= Be
2 − I1Be + I21 = b2N2 − bsN+(s2 − b2

2
)1 (72)

17



A more complex differential system that with the previous model is obtained







s−s⋆

h
=− τ1

3
b2 +

(

τ2b2

9s2− 3
2 b2

)
(
b
(
N2 : N

)
− s
)

+ τ
3

(
B : 1

)
− τs

3

(
b2
(
B : N2

)

−bs
(
B : N

)
+(s2 − b2

2
)
(
B : 1

))

b−b⋆

h
=−τ1

((
N2 : N

)
b2 + sb

)

+

(

τ2b

3s2− 1
2 b2

)(

b2
(
N2 : N2

)
− s2 − b2

3

)

+τ
(
B : N

)
− τb

3

(
b2
(
B : N2

)

−bs
(
B : N

)
+(s2 − b2

2
)
(
B : 1

))

(73)

• Visco-Plastic model:

With this model, the solution of the evolution equations when f (σσσneq ≤ 0) is given exactly by the elastic trial

state. When f (σσσneq > 0), the system of equations is similar to that obtained with the Zener model:

{
s−s⋆

h
=− τ

3
b2 + 2χ

3η b
b−b⋆

h
=−τ

((
N2 : N

)
b2 + sb

)
+ 2χ

η

((
N2 : N

)
b+ s

) (74)

B. Tensorial operators

The tensorial operators used in this paper are defined as follows:

· the first order contracted tensorial product

: the second order contracted tensorial product

⊗ the classical tensorial product

; a second order tensorial operator

([A; B]i jkl = AilBk j)

➁ a tensorial product between a fourth order tensor

and a second order tensor ([A➁B]i jkl = AioklBo j)

‖‖ norm of a second order tensor

‖A‖=
√

A : A

• a tensorial product between a fourth order tensor

and a second order tensor ([A•B]i jkl = AioklBo j)

C. An explicit integrator with step-size control: Runge-Kutta-Fehlberg

Runge-Kutta schemes have been used by many authors because they are easy to implement and robust. Explicit

versions (see [4]) and implicit ones (see [5]) have both been used. In this paper, we have adopted the explicit Runge-

Kutta-Fehlberg method with which allow to control the step size in the numerical iterative scheme can be controlled

via the error between a fourth and a fifth order Runge-Kutta scheme based on the same integration points ([14, 15] ).

The main advantage of this scheme is that its numerical implementation is very simple.

The components of the tensor Be are expressed in the vector form Y so as to be able to re-write the flow rule in

eq. (16), (25) or (30) in the vector form:

Ẏ(t) = F (Y(t),{L(t)},{F(t)}) (75)
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Where the symbol {.} denotes the vector form. The quantities depending on time, i.e. F,J,B,L..., are evaluated at

each integration point in each sub interval with respect to the hypothesis that F is linear with time. In the sub interval

[tk, tk+1], Yk+1 is computed as follows:







ki = F (Yk + h

p

∑
j=0

ai jk j,{L(tk + cih)},{F(tk + cih)})

Yk+1 = Yk + h

p

∑
i=0

biki

(76)

Where h is the sub-interval size, p is the order of the scheme, and ai j, bi, ci are given in the so-called Butcher-table

(see table 3). The size of each sub-interval is adjusted so as to control the following local error:

LER = ‖Y
[5]
k+1 −Y

[4]
k+1‖ (77)

Where Y
[5]
k+1 is the solution vector of the 5th order scheme and Y

[4]
k+1 is the solution vector of the 4th order one.

Whenever this local error estimate satisfies LER < TOL the current step is accepted and the new step size is computed

from

hnew = 0.9max(rmin,min(rmax,

(
TOL

LER

)1/3

))hold (78)

ci ai j

0
1
4

1
4

3
8

3
32

9
32

12
13

1932
2197

− 7200
2197

7296
2197

1 439
216

−8 3680
513

− 845
4104

order 4 25
216

0 1408
2565

2197
4101

− 1
5

bi

0
1
4

1
4

3
8

3
32

9
32

12
13

1932
2197

− 7200
2197

7296
2197

1 439
216

−8 3680
513

− 845
4104

1
2

− 8
27

2 − 3544
2565

1859
4104

− 11
40

order 5 16
135

0 6656
12825

28561
56430

− 9
50

2
55

Table 3: Runge-Kutta-Fehlberg 4-5

As this integrator involves sub-discretisation, it is proposed to take only the elastic part of the tangent moduli by

focusing on the trial configuration. For example, in the case of the Zener and Visco-plastic models6 where the isochoric

part of the stress is composed of elastic and inelastic parts: τiso = τeq + τneq, one has

∂ΠΠΠiso

∂F
= (τeq + τ⋆neq)•

∂F-T

∂F
+

(
∂τeq

∂F
+

∂τ⋆neq

∂F

)

➁F-T (79)

Taking a general potential for the free energy depending on I1(Be) and I2(Be), the inelastic stress is given by

τ⋆neq =
∂ψneq

∂I1
Be

⋆D

+
∂ψneq

∂I2
Be

⋆−D

(80)

and the computation of the differentiation of the stress with respect to F gives:

∂τ⋆neq

∂F
=

∂τ⋆neq

∂Be
⋆ :

∂Be
⋆

∂F
(81)

6The same applies to the Poynting Thomson model
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The first term in the latter expression follows from equation (80)

∂τ⋆neq

∂Be
⋆ =

∂2ψneq

∂I2
1

Be
⋆D

⊗ 1+
∂2ψneq

∂I2
2

Be
⋆−D

⊗ (I11−Be
⋆
)

+
∂2ψneq

∂I1I2
Be

⋆D

⊗ (I11−Be
⋆
)+

∂2ψneq

∂I2I1
Be

⋆−D

⊗ 1

+
∂ψneq

∂I1
P− ∂ψneq

∂I2
(Be

⋆−1

ȅ Be
⋆−1

− 1

3
1⊗Be

⋆−2

)

(82)

where P is the deviatoric operator: P= I− (1/3)1⊗ 1.
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