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ABSTRACT
This paper describes a short and simple way of improving
the performance of vector operations (e.g. X = aY +bZ+..)
applied to large vectors. In a previous paper [1] we described
how to take advantage of high performance vector copy op-
eration provided by the ATLAS library [2] in the context
of C++ Expression Template (ET) mechanism. Here we
present a multi-threaded implementation of this approach.
The proposed ET implementation that involves a parallel
blocking technique, leads to significant performance increase
compared to existing implementations (up to ×2.7) on dual
socket x86 64 targets.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques—Parallel pro-

gramming

General Terms
C++ template, Expression Template, Parallel Computing,
OpenMP, Intel TBB, multi-core processors

1. INTRODUCTION
In this paper we propose a simplified C++ implementation
of a linear algebra vector class that allows composing com-
pact and abstract vector expressions such as:

X = a ∗ Y + b ∗ (Z + W); (1)

This implementation is based on the Expression Template
mechanism (ET) introduced by Veldhuizen [3] and Vande-
voorde [4]. ET allows avoiding temporary vectors and the
performances of abstract expressions like (1) compete with
the ones of the corresponding low-level (loop-based) basic

implementations such as:

for (i = 0; i < N; i++) X[i] = a ∗ Y[i] + b ∗ (Z[i] + W[i]);
(2)

In a previous paper [1] we illustrated the gain to be obtained
from mixing our ET based vector class with the ATLAS [2]
implementation of the procedural BLAS library. The high
performance ATLAS implementation of the vector copy op-
eration, which relies partly on low level assembly language,
is used as a kernel for the vector ET evaluation.

In this paper, we present two multi-threaded implementa-
tions of our ET based vector class based on Intel’s Threading
Building Blocks and on OpenMP respectively. The ubiqui-
tous presence of multicore architectures has rekindled the
interest in shared memory parallel programming models.
While the computational power of a chip scales almost lin-
early with the number of cores, this is not the case for
the memory access bandwidth. Hence, the fraction of the
so-called memory bound applications, which feature perfor-
mances that are limited by the memory access bandwidth
of target architecture, increases with the mean number of
cores included in micro-processors.

Vector expressions like (1) exhibit a small arithmetic inten-
sity and are strongly memory bound. Hence it might be
surprising that multi-threaded implementations accelerate
these tasks significantly on shared memory multi-core ma-
chines. Nevertheless, we have observed a ×2.5 acceleration
factor on dual socket quadricore processors compared to our
previous implementation. The resulting vector class allows
composing abstract vector expressions like (1) that perform
better than both loop-based implementations such as (2)
and off-the-shelf vector libraries such as Blitz++ [5], uBLAS
[6] or std::valarray. This performance gain reaches a factor
of ×2.7 for large vectors.

The paper is organised as follows: Section 2 presents the con-
sidered vector operations. Section 3 presents the large vec-
tor operations as typical memory bound problems. Section
4 gives a short description of our C++ vector class imple-
mentation based on ET. Performance measurements show
that this implementation avoids abstraction penalties. Sec-
tion 5 presents our enhanced ET vector class relying on the
ATLAS dcopy kernel. Performance measurements are car-



Table 1: Description of the four target architectures
for performance measurements

Processor # frequency RAM Compiler
cores

Intel Xeon 2× 4 2.9 GHz 18 GB g++ 4.3.3
E5570 Nehalem

Intel Xeon 4× 4 1.6 GHz 48 GB g++ 4.3.3
X7310 Tigerton

Intel Xeon 2× 4 2.3 GHz 8 GB g++ 4.3.3
E5410 Harperton

AMD Opteron 2× 4 1.9 Ghz 4 GB g++ 4.3.0
8347 HE

ried out on four different architectures. Section 6 presents
two parallel implementations of our ET vector class and the
corresponding results.

2. VECTOR DEFINITION AND TEST

PLATEFORMS
Let us first define the scope of this paper and what we re-
fer to as vector operations. From the linear algebra point of
view, vectors can be defined as indexed collections of numer-

ical elements of the same type. Indexed means that the value
of every vector elements can be accessed from a given integer
index to be chosen in a given range. While a wide variety
of linear algebra vector types (sparse, multidimensional,...)
can be considered, we will focus on simple vector types where
real type elements (single or double precision) are stored in
basic containers that can be defined and exchanged through
the following common programming language: F77, C and
C++. Within these languages, the location of a contigu-
ous memory region containing a given number of floating
point elements, can be manipulated either as a pointer type
(C and C++) or as an array type (F77). These arrays are
the main Input/Output types for the Basic Linear Algebra
Subroutines (BLAS) API [7].

2.1 Performance Measurements and Target Ar-

chitectures Description
This paper is based on performance measurements that have
been carried out on different x86 64 target architectures.
Table 1 provides a short description of the main features of
theses machines. In the following, the performance curves
will be named after these four architectures. Most of the
time, the different targets exhibit the same kind of perfor-
mance behavior. In this case, we will report only the Xeon
E5410 curves. The performance measurements are carried
out with the tools developed by the BTL++ project [8].

3. LARGE VECTOR OPERATIONS AND SU-

PERSCALAR ARCHITECTURE
Fig. 1 shows the performance of the vector operation Y ←
αX +Y (axpy) on a Pentium Xeon E5410 using respectively
single and double precision floating point elements. Perfor-
mance is maximal for vector in the range of [102, 103] ele-
ments. From sizes around 104, performance decreases and
reaches its lowest level when vector sizes exceed 105 ele-
ments. The reason for this behavior, which is common to all
vector operations, is that the performance is mainly driven
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Figure 1: Performance results of axpy operations on
the Xeon E5410 (gcc 4.3.3).

by the memory access bandwidth. This is true for all com-
putations involving a ratio r defined by:

r =
number of memory accesses (read+write)

number of floating point operations
,

that is not small compared to 1. In this case, (r = 3/2 for
the axpy operation), performance depends on memory ac-
cess bandwidth. Most modern architectures exhibit a mem-
ory cache hierarchy with high bandwidth for data access
inside the cache (data size ≤ a few MBytes) and a much
lower bandwidth for data access in the main memory (a few
MBytes ≤ data size ≤ a few GBytes). This explains the low
level of performance observed for large vectors that do not
fit in the cache hierarchy:

Large vectors: vector sizes ∈ [106, 108].

Since the double precision axpy operation requires twice as
much memory bandwidth as the single precision one, it runs
naturally 2 times slower for large vectors (0.33 Gflops vs 0.66
Gflops).

4. MINIMAL C++ VECTOR CLASS
This section presents a minimal vector C++ class based on
Expression Template mechanism.1

4.1 Expression Template
ET have been introduced by T. Veldhuizen [3] and D. Van-
devoorde [4]. Applied to a vector class, ET allows writing
arbitrarily complex vector expressions such as:

R=2.0*X+2.0*(Y-Z*2.0);

that do not imply temporary vector construction and do
not incur any performance penalties compared to the corre-
sponding loop-based implementation:

for (int i=0 ; i < N ; i++)
R[i]=2.0*X[i]+2.0*(Y[i]-Z[i]*2.0);

1The complete sources of this class can be obtained from
the authors.



4.2 The Curiously Recurring Template Pat-

tern (CRTP)
Our proposed ET implementation uses the C++ Curiously
Recurring Template Pattern [9, 4] (CRTP) that allows group-
ing a set of classes in a template-based hierarchy. This hier-
archy reflects a common behavior for the class set elements
and does not involve any virtual functions. As Vandevoorde
and Josuttis write, this pattern“consists of passing a derived

class as a template argument to one of its own base classes”
[4]:

class Derived : public Base<Derived>{}

This pattern is used to gather a set of classes {Derived1,
Derived2,. . . } as an ensemble of Base<> classes. In our vec-
tor case, let us first define the template base class BaseVec<>:

template <class DERIVED>
class BaseVec{
public:
typedef const DERIVED & CDR;
inline CDR getCDR( void ) const {
return static_cast<CDR>(*this);

}
};

The static cast method getCDR() allows extracting the em-
bedded DERIVED object from its BaseVec<> capsule. The
DERIVED template class parameter is one of the three follow-
ing classes:

1. Vec<>

2. VecExpr<>

3. VecScalExpr<>

Fig. 2 presents this template inheritance relationship.

VecExpr<> and VecScalExpr<> instances are constructed by
arithmetic operators applied to BaseVec<> objects. These
two classes store references to the operands. In addition,
the VecExpr<> class statically defines the type of operation
(+ or -) as a template parameter:

Operators +/-:

BaseVec<L>+BaseVec<R> → VecExpr<L,Add,R>

BaseVec<L>-BaseVec<R> → VecExpr<L,Minus,R>

Operator *:

scalar*BaseVec<V> → VecScalExpr<V>

BaseVec<V>*scalar → VecScalExpr<V>

Operator =

V<T>=BaseVec<T> → BaseVec<T>[i] evaluation

Vec<> VecExpr<> VecScalExpr<>

BaseVec<>

Figure 2: BaseVec class hierarchy.

Both expression classes define an operator [] that performs
the actual evaluation of the expression. Note that this evalu-
ation is not performed at the expression classes construction
stage. This is a lazy evaluation process that allows avoiding
temporary vectors involved in standard implementations of
operators. A more detailed presentation of these classes is
given in [1].

4.3 Vec<T>

The class Vec<T> is the main vector class. Its implementa-
tion is classical except for the assign operator = specialized
for BaseVec<DERIVED> right hand side:

template <class ELEMENT_TYPE>
class Vec : public BaseVec< Vec<ELEMENT_TYPE> >
{
public:
...
template <class DERIVED>
Vec & operator =(const BaseVec<DERIVED> & v){
const DERIVED & r=v.getCDR();
for (int i=0 ;i<size_ ;i++) data_[i]=r[i];
return (*this);

}
...

private:
ELEMENT_TYPE * data_;
int size_;

};

The template parameter ELEMENT_TYPE is either float or
double and the vector elements are stored in a C array of this
type (data_). The operator = evaluates the right operand
value that can be the result of an arbitrarily complex ex-
pression.

4.4 Expression Template Performance
A large variety of vector expressions is handled by this ET
vector class implementation. In this paper we present per-
formance measurements carried out for a limited set of vec-
tor expressions that should give a fair picture of the general
performance level to be expected from the Vec implementa-
tion.

4.4.1 Considered Set of Vector Operations:
The vector operations that we will study in this paper are
linear combinations of vectors:

T =

Nc
X

i=0

aiSi + αT, with α ∈ {0, 1,−1}



where T is a given target vector, {Si} is a set of source
vectors of the same size and {ai} the corresponding set of
scalar factors. These combinations can be characterized by
the number Nc of involved source vectors:

• NC = 1: unary combinations (part of L1 BLAS API).

• NC = 2: binary combinations.

• NC = 3: ternary combinations.

• . . .

5. EXPRESSION TEMPLATE AND ATLAS

BASED BLOCKED EVALUATION
In this section, we combine the previous Expression Tem-
plate mechanism with a blocked copy technique. The prin-
ciple is to take advantage of the high performance copy op-
eration provided by the ATLAS library.

5.1 Vector Class Modification
The only change in the Vec class is a new definition of the
operator =:

template <class ELEMENT_TYPE>
class Vec : public BaseVec< Vec<ELEMENT_TYPE> >
{
typedef BlockAssign<ElementType> BA;

public:
...
template <class DERIVED>
Vec & operator = (const BaseVec<DERIVED> & v){

BA::apply(size_,v.getCDR(),data_);
return (*this);

}
...

};

where the BlockAssign template class implementation is
specialized for double elements as:

template <>
struct BlockAssign<double>{
typedef double * Data;
static const int largeSize=50000;
static const int blockSize=1024;

template <class DERIVED>
static void apply(int N,

const DERIVED & source,
Data & target) {

if (N<largeSize){
for (int i=0 ; i < N ; i++)
target[i]=source[i];

}
else{
double * tempo = new double[blockSize];
const int nblocks=N/blockSize;
int offset=0;
for (int i=0 ; i<nblocks ; i++){

for (int j=0 ; j < blockSize ; j++)
tempo[j]=source[j+offset];

ATL_dcopy(blockSize,tempo,1,
target+offset,1);

offset+=blockSize;
}
for (int i=offset ; i < N ; i++)
target[i]=source[i];

delete[] tempo;
}

}
};

5.2 Sequential Blocked Results
Fig. 3 shows the performance results of binary and ternary
linear combinations implemented via our ET Vec class, with
and without blocking, and via direct loop-based C imple-
mentations. One can see that the abstract expression of
the combinations does not lead to any performance penal-
ties. Moreover, the blocked ET implementation accounts
for a performance improvement on both binary (+25%) and
ternary (+16%) vector combinations.

6. PARALLEL EXPRESSION TEMPLATE
In this section, we present a parallel implementation of the
previous Blocked Expression Template mechanism. The pos-
sibility of such an approach is mentioned in the reference
[10].

6.1 Vector Class Modification
The only change in the Vec class is a replacement of the
BlockAssign template class by the OpenMPBlockAssign tem-
plate class:

template <class REAL>
struct OpenMPBlockAssign{
typedef REAL RealType;
typedef RealType * Data;

static const int largeSize=100000;
static const int blockSize=1024;

template <class DERIVED>
static ivoid apply(int N,

const DERIVED & source,
Data & target) {

if (N<largeSize){
for (int i=0 ;i<N ;i++)
target[i]=source[i];

}
else{
const int nblocks=N/blockSize;

#pragma omp parallel for schedule(static)
for (int i=0 ; i<nblocks ; i++){
REAL * tempo = new REAL[blockSize];
const int offset=i*blockSize;
for (int j=0 ; j < blockSize ; j++)
tempo[j]=source[j+offset];

ATL_dcopy(blockSize,tempo,
1,target+offset,1);

delete[] tempo;
}
for (int i=blockSize*nblocks ;i<N ; i++)
target[i]=source[i];

}
}

};
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Figure 3: Performance results of binary (left) and ternary (right) combinations using the Blocked ET Vec

class and loop-based implementations (double precision vectors ; Xeon 5410 with gcc 4.3.3).

In Fig. 4 we compare this implementation to another par-
allel implementation of the BlockAssign based on the Intel
Threading Building Blocks [11].

6.2 Parallel Results
Fig. 4 shows the performance improvement that this parallel
blocked ET implementation entails for both binary (×2.7)
and ternary (×2.6) vector combinations.

When vector sizes exceed the total size of the cache hierar-
chy, the performance improvement remains small compared
to the number of cores involved in the computation. The
main reason is that performance is then determined by the
memory bandwidth and other hardware mechanisms such as
the size of the in-flight cache requests for each cache.

In Fig. 5, we use the STREAM benchmarks [12, 13] to evalu-
ate memory performance of our implementation on different
architectures. These benchmarks correspond to OpenMP
parallel C code for some few particular vector expressions
(copy, triad, daxpy for instance) and are used here as ref-
erence code. The benchmarks are compiled using the same
gcc versions, and Intel icc version 10.1.

Fig. 5 shows different important results:

• Memory bandwidth usage increases as the number of
threads increases. The increase is not linear (from 2 to
4 threads for the Xeon machine for instance), perfor-
mance only slightly increases. This is due to the fact
that cores do not have a uniform memory access. On
each chip, four cores compete for the access to mem-
ory through the same Front Side Bus. Further more,
two cores share the same L2 cache, that can sustain
a limited number of in-flight memory requests (cache
misses). This could explain for the performance stall
in the Xeon machine between 2 and 4 threads.

• Performance of expression template code is compara-
ble to C code. There is no loss of performance, while
there is a gain in the abstraction of the formulation.

• There appears a difference between performance ob-
tained through gcc and performance obtained with the
Intel compiler. While this provides an upper and sus-

tainable bound on memory bandwidth, investigation
on the causes of this difference is left for future work.

The apparent memory bandwidth obtained does not corre-
spond to the peak memory bandwidth of the machine, and
changing for instance the compiler (considering icc instead
of gcc on the Intel machine) would probably lead to some
further performance improvements. Depending on how the
assembly instructions are scheduled, cycles taken in the de-
coding phase of the program execution and usage of the
functional units will differ (removing possible stalls for in-
stance).

Finally, Fig. 6 shows the variation on memory bandwidth
performance according to the number of operands in vector
expressions. While on the 16-core Xeon, it appears that per-
formance improves when the number of operand increases,
this is the opposite for the Opteron machine. In the Xeon
case, this shows that the limit of memory requests that can
be in-flight at some point of the computation has not been
reached, even using ternary expressions. Memory requests
are not serialized and there is some amount of overlap during
their resolution, accounting for the performance increase. In
the Opteron case, on the contrary, some requests are serial-
ized or introducing some additional stalls. This may occur in
the cache hierarchy and more detailed explanation requires
further investigation.

6.3 Comparison with other libraries
We have carried out performance comparisons with other
available expression template linear algebra libraries: ar-
madillo [14], Blitz++ [5], DealII [15], Eigen [16], FLENS
[17], genial [18], gmm++ [19], MTL4 [20], Seldon [21], uBlas
[6] and std::valarray.

Fig. 7 shows that the proposed implementation outperforms
all the available libraries for the X = aY + bZ and X =
aY +bZ+cW operations. In the case of the X+ = Y , X+ =
aY + bZ and X+ = aY + bZ + cW operations, the libraries
Seldon, FLENS and gmm++ remain competitive compared
to our parallel implementation. These libraries replace these
operations by successive dapxy calls. For example X+ =
aY + bZ can be written as :

daxpy(N,coefY,Y,1,X,1);
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Figure 4: Performance results of binary (left) and ternary (right) combinations using the Parallel Blocked
ET Vec class and loop-based implementations (double precision vectors gcc 4.3.3).

daxpy(N,coefZ,Z,1,X,1);

The daxpy operations are performed by the Intel Math Ker-
nel Library (v10.1) [22] which provides a parallel implemen-
tation.

7. CONCLUSION AND OUTLOOKS
This paper presents some new formulation for vector expres-
sions, using Expression Templates. This formulation is a
short and simple way to describe vector expressions and im-
prove performance. Parallelism expressed as OpenMP code
is used in the vector class definition, but does not appear at
all the vector expression level and the same expression may
be implemented using different strategies.

Large vector operations correspond to codes accessing data
out of cache. Compared to a large panel of different dedi-
cated libraries (such as BLAS) and template libraries, the
Expression Templates proposed in the paper outperform
them by at least a factor of 2, on different Xeon and Opteron
parallel architectures. Compared to OpenMP C code, our
templates exhibit the same level of performance.

Finally, when vectors are too large to fit in caches, perfor-
mance is driven by memory accesses. Experiments with Intel
icc compiler and gcc compiler show that there is still a gap
between the best performance achieved with the Expression

Templates and a maximal sustainable performance. This re-
quires further investigation left for future work, in particular
by looking for stalls due to cache usage (saturation of the
number of memory requests) and not due to Front Side Bus
or memory bank limited bandwidth.

Note that all the reference urls have been checked and were
found to be valid on June 12 2009.
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