N

N

Automatic Mapping of Stream Programs on Multicore
Architectures
Pablo de Oliveira Castro, Stéphane Louise, Denis Barthou

» To cite this version:

Pablo de Oliveira Castro, Stéphane Louise, Denis Barthou. Automatic Mapping of Stream Programs
on Multicore Architectures. International Workshop on Compilers for Parallel Computers, Jul 2010,
Vienna, Austria. hal-00551680

HAL Id: hal-00551680
https://hal.science/hal-00551680
Submitted on 28 Feb 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00551680
https://hal.archives-ouvertes.fr

Automatic Mapping of Stream Programs on
Multicore Architectures.

Pablo de Oliveira Castro', Stéphane Louise', and Denis Barthou?

L CEA, LIST
2 University of Bordeaux - Labri / INRIA

Abstract. Stream languages explicitly describe fork-join and pipeline
parallelism, offering a powerful programming model for general multi-
core systems. This parallelism description can be exploited on hybrid
architectures, eg. composed of Graphics Processing Units (GPUs) and
general purpose multicore processors.

In this paper, we present a novel approach to optimize stream programs
for hybrid architectures composed of GPU and multicore CPUs. The ap-
proach focuses on memory and communication performance bottlenecks
for this kind of architecture. The initial task graph of the stream program
is first transformed so as to reduce fork-join synchronization costs. The
transformation is obtained through the application of a sequence of some
optimizing elementary stream restructurations enabling communication
efficient mappings. Then tasks are scheduled in a software pipeline and
coarsened with a coarsening level adapted to their placement (CPU of
GPU). Our experiments show the importance of both the synchroniza-
tion cost reduction and of the coarsening step on performance, adapting
the grain of parallelism to the CPUs and to the GPU.

1 Introduction

Modern multiprocessor architectures combine an increasing number of cores and
mix general purpose cores with dedicated accelerators (such as Cell or GPU for
instance). Programming for heterogeneous machines is difficult since it requires
the expression of parallelism of different kinds and of different grains. The stream
programming models [4][9][5] are particularly adapted to tackle this issue and
expose task-, data- and pipeline parallelism. Stream programs are seen as a set of
filters (or tasks) interconnected through buffers or FIFOs and as a set of stream
reorganization nodes.

One of the most prominent performance constraints of concurrent real-time
applications is throughput. Optimizing throughput of a stream program in gen-
eral requires to find a good task partitioning among the heterogeneous computing
units (see [17],[2]) and then an efficient parallel schedule to hide communica-
tion latencies whenever possible. One of the difficulties of both partitioning and
scheduling steps is to take into account the numerous architectural mechanisms
involved — data flows between CPU and GPU correspond to communications

while data flows between cores of a same processor correspond to data transfers
in the memory hierarchy.

In this paper, we present a novel approach to optimize stream programs
for hybrid architectures composed of GPU and multicore CPUs. The approach
focuses on memory and communication performance bottlenecks for this kind
of architecture. The initial stream graph is first transformed by a sequence of
elementary restructurations. The guided beam-search method applied aims to
reduce fork-join synchronization costs. We show that the heuristic proposed to
drive these restructurations obtains similar results to those obtained by an ex-
haustive search. The tasks are then partitioned between CPU cores and GPU
using some existing partitioner, taking into account profiling information for a
workload balanced partitioning. A new scheduling technique is finally proposed
to coarsen tasks of each partition in order to adapt to cache sizes and commu-
nication constraints of CPUs and GPU. Our experiments show the importance
of both the synchronization cost reduction and of the coarsening step on perfor-
mance, adapting the grain of parallelism to the CPUs and to the GPU.

2 Background and Motivating Example

2.1 Stream Graphs

Our Stream Graph formalism, very close to Streamlt[4], describes a program
using a synchronous data flow graph[8] where nodes are actors that are fired
periodically and edges represent communication channels. Unlike Streamlt that
imposes a serie-parallel structure on the stream graph, nodes can be composed
freely in our model.

Source (I) and Sink (O) nodes model respectively the program inputs and
outputs. The source produces a stream of inputs elements, while the sink con-
sumes all the elements it receives. A source producing always the same element
is a constant source (C). If the elements in a sink are never observed, it is a
trash sink (T).

Functions in the imperative programming paradigm are replaced by filter
nodes F(c1,p1). Each filter has one input and one output, and an associated
pure (with no internal state) function f. Each time there are at least ¢; elements
on the input, the filter is fired: the function f consumes the ¢; input elements
and produces p; elements on the output.

Another category of nodes dispatch and combine streams of data from multi-
ple filters, routing data streams through the program and reorganizing the order
of elements within a stream.

Join round-robin J(cy...cy) : A join round-robin has n inputs and one
output. Each time it is fired it consumes ¢; elements on every it input, and
concatenates the consumed elements on its output.

Split round-robin S(p1...pPm) : A split round-robin has m outputs and
one input. A split consumes), p; elements on its input and dispatches them
on the outputs (the first p; elements are pushed to the first output, then po
elements are pushed to the second, etc.).

Duplicate D(m) has one input and m outputs. Each time this node is fired,
it takes one element on the input and writes it to every output, duplicating its
input m times.

We can schedule an SDFG in bounded memory if it has no deadlocks and
is consistent. As proved in [8] a consistent SDFG admits a repetition vector
qc¢ = 1,42, - - -, qN,]| where gy is the repetition number of node N. A schedule
where each actor N is fired gy times is called a steady-state schedule. Such a
schedule is rate matched: for every pair of actors (U, V') connected by an edge E,
the number of elements produced by U on F is equal to the number of elements
consumed by V on F, during a steady-state execution. This number of elements
is noted B(E) = prod(U) x qu = cons(V) x qy. Once a steady-state schedule is
found, we may coarsen it. That is to say, replace each actor N by a coarsened
actor which fires coarse x gy times per schedule tick. This allows to adjust the
number of elements processed by each actor during a schedule tick. As described
in next section, it plays an important role in a stream program performance.

2.2 Motivating Example

Our target architecture is composed of a Nehalem QuadCore (Xeon W3520 at
2.67GHz) and a NVIDIA Quadro FX 580 GPU with 4 Streaming Multiproces-
sors. When mapping a Stream Program to this architecture, we can exploit two
kinds of parallelism: Spatial parallelism, by distributing the nodes of the graph
among the available cores, and temporal parallelism, by software pipelining the
successive executions of the nodes. In this context, performance is going to be
determined by three main factors: (i) The time taken to complete one sched-
ule tick by each processor. (ii) The time taken to transfer data from the CPU
and GPU in one schedule step. (iii) The time taken to transfer data from one
CPU to another CPU, which depends on whether the data is in the L3 cache.
The final performance will be determined by the maximum cost among these
interdependent factors, which need to be balanced.

Partitioning We want to evenly distribute the work cost of the nodes among
the cores. This is done by partitioning the graph in as many partitions as cores
(CPUs + GPU). The time to execute a node in one steady-state execution will
be refered as the work cost of the node. We consider as well the communication
cost between partitions, defined as the number of elements that are streamed in
one steady-state execution between two partitions.

Our objective is a workload balanced partitioning with the smallest possi-
ble communication cost between partitions. Consider the FFT Butterfly Stream
graph in figure 1(a), using the METIS|[6] graph partitioner, we have found four
work balanced partitions. The partitioning found is laid in a vertical fashion. The
communication cost of this partitioning is high, METIS could not find a better
partitioning because it cannot cut through the the synchronization nodes with
bold edges in figure 1(a). To avoid this problem, we propose to do a synchroniza-
tion removal step before doing the actual partitioning. By applying a set of legal

[Filter node

Q, Split node
\ES Join node

(a) Original FFT stream graph (b) Synchronization optimized FFT
graph

Fig. 1. Partitioning a finegrained FFT stream graph: figure (a) is the original version,
the first stage only composed by Split and Join nodes is a shuffling stage that puts
the elements in the order required by the FFT Butterfly; figure (b) is the transformed
version, the butterfly pattern is now apparent in the graph. Both version share, as
expected, the same number of filters and the same total throughput. The figures to the
left, represent the selected partitioning for each version with the volume of communi-
cation per steady-state between each pair of partitions.

Synchronization
Removal
)
Work Cost
Profiling
Mapping
)
Partitioning
z T
~ - A .
/e ’ @) @) @) @ (@)
3 i ;
E o A \ .
2 A V.Y /
K o / i anp 4+t &~ 1CPU
@ B ; i
g 4) e coarse CPU Coarse G Coarse
5 b s - ili Nthreads i
ER R NN Profiling Profiing Scheduling
£ s A
g ® o ! ; 1 1
= o | Multigrain Scheduling |
1 4 16 64 256 2048 16384 l l

GPU Code
Generation

CPU Code

coarse factor (log scale) G ti
eneration

Cod
Generation

Fig. 2. (a) Impact of the coarsening on the FFT throughput on one CPU and one
GPU; (b) Compiler chain overview.

graph transformations, we rewrite the original SDFG into a new version. When
applied to the FFT graph, this technique breaks the synchronization nodes into
smaller constituents, producing the optimized graph in figure 1(b) which offers
more liberty to the partitioner to find a communication efficient layout. As you
can see the partitioning layout has decreased the inter-partition communication
cost from 48 elements per steady-state to 32 elements per steady-state.

Scheduling In the graph in figure 2(a), we measured the throughput of the
FFT stream graph on one CPU core and one GPU core with different levels
of coarsening. The coarsening level is the number of steady-state executions per
schedule tick. We notice that the CPU version is most efficient with a coarsening
level of 23, while the GPU version is most efficient with a coarsening level of 217.
We attribute this difference in optimal coarsening levels to two effects. On the
CPU, when the coarsening is small, the memory used by one schedule tick is
small enough to fit in the cache. Successive executions in the software pipeline
will take advantage of cache reuse. On the other hand, when the GPU works
with small coarse sizes, few elements are packed in each DMA tranfer, so the
high initial DMA cost dominates the pipeline. When using big coarse sizes, the
DMA cost is amortized by the large number of elements sent, and covered by the
increased computation time. To accomodate the requirements of both CPU cores
and GPU we propose a multigrain scheduling, that combines the two coarsening
levels as described in section 5.

3 Compilation overview

The main steps of our compiler are outlined in figure 2(b). The process starts
with the Syncronization removal: in this step the transformations described in
section 4.1 are used to reduce the number of synchronization nodes in the graph,
potentially improving communication costs of workload balanced partitioning.

Then the actual graph partitionning is achieved, mapping each stream actor
to a computation unit (CPU core or GPU). We first measure each node work
cost by doing a profile run on the CPU (Work Cost profiling) and GPU; then
load-balance the work costs among the cores with the minimal inter-core commu-
nication cost. We measure the optimal coarse factors Cqp,, and Cjgy,, by running
each partition with different coarsening in the range [2,4,...,2%°]. Given our
limited number of benchmarks, it would seem that the optimum coarse size de-
pends on the ratio between the computation time and the communication cost.
Therefore we believe that these values could be automatically derived from the
node work, node communication cost and frequence and communication speed
in the GPU/CPU. This will be the object of future work.

We finally compute the multigrain schedule as explained in section 5. Each
CPU partition is compiled as a single thread that runs either on the CPU or
on the GPU. Each thread has main loop that calls the node work functions in
the order prescribed by the static multigrain schedule. Transfers between CPU
and GPU are scheduled by a special CPU host thread which allocates the pinned

memory necessary for asynchronous DMA transfers. A shuffling operation is done
on transfers between CPU and GPU, so the GPU can access data efficiently in
a coalesced fashion[11].

For each thread a C or CUDA file is produced, which is compiled using
gcc-4.3 or nvce-2.3 and linked. The actual code compilation is similar to the
Stream Graph Modulo Scheduling (SGMS) code generation described in [7].

4 Synchronization aware partitioning

Many task partitioning methods have been proposed in the literature. In the con-
text of Stream Graph, optimal ILP based solutions[17], dynamic programming
heuristic [14] and iterative graph partitioning solutions [2] have been presented.
In this paper we do not introduce a new partitioner for SDF graphs, but concen-
trate instead on proposing a guided graph restructuration enabling communica-
tion effective partitioning. Partitioners considered are assumed to find partitions
that have balanced workload. Moreover, for equivalent solutions, the partioning
found minimizes inter-partition communication cost. For the evaluation of the
workload, We assume that Split and Join node latencies depend linearly on the
number of elements on their output (resp. input).

4.1 Transformations

We use all the transformations proposed in [12] (except SplitF). We represent
some of these transformations in figure 3. These transformations can be sepa-
rated in three groups according to their effect:

— Node removal (RemoveJS / RemoveSJ / RemoveD / CompactSS / Com-
pactDD / CompactJJ) these transformations remove nodes which composed
effect is the identity.

— Synchronization removal (Constant propagation / Dead code elimination
/ BreakJS / Synchronization Removal These transformations, break syn-
chronization points inside a communication pattern, usually by decomposing
it into its smaller constituents.

— Restructuring InvertDN / InvertJS / ReorderS / ReorderJ These trans-
formations restructure communication patterns, alone they do not improve
the communication metric, but they can rewrite the graph and trigger some
of the previous transformations.

4.2 Graph Restructuration for Synchronization Removal

The throughput corresponds to the number of elements produced by the graph
per time unit. When the graph is partitioned among different computing units,
the throughput is determined by the execution time of each partition and the
communications resulting from the partitioning. Even if the workload is well bal-
anced among the different units, communication time may hinder performance.

€1 cn

SOt

01 om . 0] ..092k_1 09 ... Ogk
(a) InvertJS) ReorderS
.. Dlm onl .onm ©011- 01m: - onm autl .. outy outy .- outp
InvertDN) Constant prop.

ing - inp ing --- m,,
Pm
=
p1 Pm

@ s 0m Om4l .- 92m 01 ---0m Om+4l - 02m

(e) Dead-code ehm (f) CompactSS
i1 - ijijJrl.,.in i o ijijJrl.,.in

c1 cn c1 cn

=
P1 Pm pIR Rﬁjm
pm
01 -+ OROk41---0m 01 -+ OROk41---0m -»07n .
(g) Synchronization removal BreakJS

Fig. 3. Set of transformations considered. Each transformation is defined by a graph
rewriting rule. Node N is a wildcard for any arity compatible node.

Communications between computing units on a hybrid architecture correspond
to different hardware mechanisms. Communication time between CPU cores is
drastically reduced if the data to transfer fits into a cache shared by the two com-
municating cores. For CPU-GPU communication, communication time increases
with the number of elements to transfer. In both cases, reducing the number of
elements required by a computing unit (one core or one GPU) can only reduce
the communication time. And reducing the communication time between the dif-
ferent partitions will increase the throughput for communication-bound graphs.
The method we propose restructure the stream graph so as to remove potential
communication bottlenecks.

Consider a workload balanced partitioning P of a stream graph G. The total
number of input elements required for one time step by all partitions is defined

by:
incomm(P, Q) Z Z B(E

QEP Ecin(Q)

where in(Q) is the set of incoming edges for partition Q. incomm(P,G) evalu-
ates the amount of communications per time step, according to the partitioning
chosen. The goal is to transform the graph into G’ so that the amount of com-
munication required in G’ is lower than in G. The following lemma shows that
this is ensured by the transformations considered:

Lemma 1. For any input stream graph G, consider G' a graph obtained after
any number of transformations described in 4.1. Let P be any balanced workload
partitioning of G and P’ any balanced workload partitioning of G', then

incomm(P’,G") < incomm(P,G)

The proof of this result is obtained by showing for each one of the transformations
in [12] (except for SplitF, for which this result does not apply) that given any
balanced partitionning in the original match subgraph, it is possible to find a
new balanced partitionning on the replacement subgraph which does not increase
incomm.

We have shown that our transformations can only improve the communica-
tion cost of the partitionning but we do not know which transformation sequence
is optimal. If we could evaluate the best mapping for each explored variant we
could easily find the best sequence. Sadly, the cost of finding the best mapping
for each variant would be prohibitive. Therefore to chose among the many pos-
sible sequences of transformations, none of them increasing the communication
cost, we propose a new metric (that does not depend on the partitionning):

mcost(G) = mean({commcost(N) N e G iff [|in(N)| > 2}),

where commcost(N) = - pein(nv) B(E). The value commecost(N) corresponds
to the number of input elements of a node N. mcost(G) is the mean value of
input elements for nodes with an arity > 2, therefore corresponding to Join
nodes. These nodes are potential bottlenecks since they introduce a synchro-
nization point between different branches. It can be shown that restructuring
and node removal transformations preserve the value of mcost in the graph,
while synchronization removal transformations reduce this value. As the latter
correspond to transformations breaking useless dependences, they enable a wider
range of partitioning, potentially reducing communication costs.

4.3 Exploration

In [12] the authors prove that by considering all the possible combinations of
these transformation a very large but finite number of versions is generated.
They propose an exhaustive exploration of these versions to reduce the memory
of stream graphs.

In this paper we choose to explore this search space using a Beam Search
greedy algorithm [10]. At each search step, Beam Search considers all the trans-
formations that could be applied to the stream graph. Each one of the resulting
candidates is evaluated with the metric. Beam Search orders the candidates
according to mcost, and discards all the candidates except the first beamsize
ones. The selected candidates, create new search branches that are recursively
explored with the same algorithm, until no more transformations can be applied.

In our compilation framework we use beamsize = 2, and find candidates
almost as good as an exhaustive search would. The table below show the per-
centage between the best mcost solution found by the 2-beam search and the
optimal mcost solution found by an exhaustive search.

FFT DCT MatMul Bitonic
Percentage to the optimum 85.9% 100% 100% 89.7%

The exploration is particularly memory efficient because it never copies the
graph when branching. Transformations are in-place applied and in-place re-
verted when backtracking. The 2-beamsearch never takes more than 3 minutes
in a commodity desktop computer.

5 Multigrain Scheduling

We have seen in section 2 that the optimal coarsening for the CPU caches
(Cepu) is small whereas the optimal coarsening for the GPU bus (Cl,,,) is big. An
efficient way of scheduling SDFG is Stream Graph Modulo Scheduling (SGMS),
introduced in [7]. In a SGMS schedule the production and consumption rates of
the actors must be matched, we can only apply a single coarsening factor to an
SGMS schedule. Therefore, if we were to use a single schedule, we would need
to find a trade-off between the cache optimal coarse grain and the GPU bus
optimal coarse grain. As shown in figure. 2(a), there is no optimal configuration
that satisfies both requirements at the same time.

To avoid the trade-off we introduce the multigrain schedule that nests two
SGMS schedules: the outer schedule and the inner schedule. The CPU nodes run
inside the inner schedule, so they work on buffers of C¢,, size, small enough to
stay in the cache taking advantage from cache reuse. We run GPU nodes on the
outer schedule so they work on buffers of Cyy,, size, big enough to pay for DMA
costs. We ensure that the producer-consumer rate is the same at the boundaries
of the two schedules, by executing Cypy/Cepy times the inner schedule for each
outer schedule tick.

Multigrain stage assignment As in SGMS, each node is assigned a stage that
decides its time of activation in the software pipeline. In Multigrain scheduling,
each node possesses a couple (0s,is), where os is its stage in the outer schedule
and is the stage in the inner schedule. The stages are chosen in algorithm 1,
which enforces two simple rules:

— (Rule A) Preservation of data dependences: data dependencies are satisfied
at the inner schedule and outer schedule level; that is when an actor is fired
all the elements it reads have already been produced in a previous stage.

— (Rule B) Overlapping DMA latencies with computation time: given two ac-
tors, one on the GPU, the other on the CPUs. We skip two free stages
between the consumer stage and the producer stage. One of the free stages
is reserved for the shuffling/deshuffling operation. The other stage is reserved
for DMA transfer. This guarantees that the data needed by an actor is always
shuffled and prefetched in the preceding schedule ticks.

In figure 4(a), we show a simple task graph and the stages selected by algo-
rithm 1.

Algorithm 1 MULTIGRAINSCHEDULING(G)

input: SDF Graph G

output: SDF Graph G decorated with a couple (o0s, is)

1: Noos+ 0
2: for all N € TOPOLOGICALORDER(G) do
3: for all P € PARENTS(N) do

4: if N € CPU and P € CPU then
5: N.os < maz(N.os, P.os)

6: else if N € GPU and P € GPU then
T N.os <~ maxz(N.os, P.os + 1)

8: else

9: N.os < maz(N.os, P.os + 3)
10: end if

11: end for

12: N.is + 0

13: for all P € PARENTS(N) do

14: if N.os = P.os then

15: N.is <~ max(N.is, Pis + 1)

16: end if

17: end for

18: end for

In0 inner-schedule

Outer Schedule

Go,3

(a) Stage assignment
in a multigrain sched-
ule

Fig. 4. Multigrain Scheduling: : Each node is tagged with a couple (0s, is), os represents
the outer stage and is represent the inner stage. For each tick of the outer schedule, the
inner schedule ticks Cgpy/Cepu = 4 times. Yet the inner schedule works on chunks of
data 4 times smaller, so the consumption-production rate is matched at the boundaries

of the two schedules.

CPUL | CPU2 CPUs_|Shuff/Deshuff[DMA | GPU
A0,0
A0.1 BO.O co0 Shf(In0 -> DO)
A0,2 BO,1 co1 In1
20.3 B0.2 02 2 Shf(in1 -> D1) DMA(In0->D0)
BO.3 Co0,3 Shf(In2 -> D2) DMA(In1->D1)
In3 DO
In'0 inner-schedule Shi(in3 -> D3) DMA(In2->D2)
In4 D1 EO
CPU2
Shf(ind -> D4) DMA(In3->D3)
F0,0 In5 omano<-Fo) | D2 E1
Fo.1 G0.0 Shf(In5 -> DS) DMA(Ind->D4)
In6 Dsf(In'0 <- FO) oma(n1<-F1) [D3 E2
F0,2 Go,1 Shf(In6 -> D6) DMA(In5->D5)
In7 n'Q 1 < e D4 E3
) G0z Dsflin'1 <- F1) DMA(In'2<-F2)

(b) Execution of the multigrain schedule.

6 Experimental Results

We evaluated our proposed optimizations on four programs belonging to the
StreamIT Benchmarks [1]: Fine-grained FFT, Direct Cosine Transform, Matrix
Multiplication, and Bitonic Sort. Since we did not implement the Streamlt peek
construct[15], we were limited to the benchmarks that did not use it.

The results presented in the following sections are throughputs normalized
to a 1 CPU Streamlt baseline. The baselines were obtained by compiling the
benchmarks with strc --unroll 256 --destroyfieldarray --wbs and run-
ning them on 1 CPU. The options passed to the Streamlt compiler are all the
options in the -03 group, except --partition (removing this option in the
Cluster backend has the effect of deactivating task fusion). We have deactivated
task fusion in the Streamlt compilation since it has not yet been implemented
in our compiler prototype. Task fusion eliminates data copies between nodes in
the same partition so it has a significant impact on performance. Task fusion
could be used in our method, by fusing the tasks inside each inner schedule; the
evaluation of task fusion with the synchronization optimization and multigrain
schedule will be the object of future works. Both the Streamlt baseline version
and the version compiled by our prototype, were run on a sufficient number of
iterations, to amortize start-up and pipeline filling costs. In our compiler chain
the partitioning is delegated to the METIS graph partitioner [6].

B SGMS with coarse level Ccpu
0 SGMS with coarse level Cgpu
O Multigrain scheduling with (Cepu, Cgpu) coarsening

O synchronization removal
| no exploration

=~ 2~
@ © @ ©
B w B w
L =
o ¥ o ¥
8 I
5 5
Eo Eo
il mll wmo U WH Iil u
1 il <H g =
E 2 &8 & &8 & &
2 2 & & ra &
£ Es)

FFT DCT MatMul Bitonic FFT DCT MatMul Bitonic

(a) Multigrain scheduling (b) Synchronization removal

Fig. 5. (a) Evaluation of the multigrain scheduling on 4CPU+1GPU. All the measures
were conducted on the same optimized graph. The first (respectively second) bar cor-
responds to a SGMS with the CPU (respectively GPU) optimal coarse level. The third
bar is the multigrain scheduling which combines both optimal coarses.; (b) Evalua-
tion of the bottleneck aware partitioning; the benchmark were scheduled with optimal
multigrain scheduling.

6.1 Multigrain scheduling evaluation

We start by evaluating the gains of the multigrain schedule. For this we consider
the communication optimized version of each benchmark graph. Each benchmark

is partitioned between the 4 CPU cores and the GPU as described in section 4.
We then schedule a first version using a single SGMS working at the optimal
CPU coarsening (Cep,,), we and a second version using a single SGMS working
at the optimal GPU coarsening (Cyp,,). Finally we schedule a third version using
a multigrain schedule whose inner scheduling is coarsened with C¢p, and whose
outer scheduling is coarsened with Cyp,,.

As can be seen in figure 5(a), we obtain significant gains in FFT, DCT and
Bitonic when using the Multigrain scheduling. This is expected: in the CPU
optimized SGMS, the performance of the GPU partition is very degraded and
becomes the bottleneck of the entire program. Similarly, in the GPU optimized
SMGS, the CPU performance is degraded and slows down the GPU. The multi-
grain scheduling is able to adjust the working sizes of each partition and obtain
an efficient schedule in an heterogeneous architecture.

In MatMul, the gains of the multigrain schedule are marginal. We attribute
this to the fact that MatMul is a memory consuming benchmark. In the Cjgp,
profiling phase, the best Cy,, configuration found is 2048. Actually, higher values
of Cyp,, would probably give much better results, but they are discarded since
they overflow the available memory in the GPU device. At the same time, the
number of threads used in the GPU is small, since the number of registers used
by the GPU partition is high. Therefore the GPU partition of MatMul is not
very efficient, in fact it slows down the CPU only version, as will be seen in next
section. The fact that Cyp, is low also means that the difference between Cyp,,
and Cep, (64) is smaller than in the other benchmarks. Thus the gain of the
multigrain scheduling is only marginal.

6.2 Synchronization optimization evaluation

We now evaluate the gains of the synchronization optimization presented in sec-
tion 4. Each benchmark was compiled without and with synchronization opti-
mizations for three different parallelism configurations: 1 CPU partition, 4 CPU
partitions, 4 CPU + 1 GPU partitions. The programs were scheduled using
multigrain scheduling with optimal coarse factors (cf. figure 5(b)).

Overall, the parallelization results are good for FFT, DCT and Bitonic; us-
ing all the cores, we obtain speed-up ranging from x4.40 to x6.06. MatMul
obtains a x2.42 speedup for the 4 CPU version. However the GPU and CPU
version only reaches a speedup of x1.93: as explained in the previous section, the
GPU partition does not run in the optimal configuration since it would overflow
the memory available in the GPU device. In fact it runs slower than one CPU
partition, and becomes the bottleneck of the entire software pipeline.

The gains observed for the 1 CPU version by using the synchronization op-
timization, correspond to simplifications in the graph; since we are not tied by
the series-parallel structure of Streamlt, we can replace some of the Split Join
and Dup patterns with less costly alternatives. For example in 1, the top part
of the original FFT butterfly graph (which changes reorder the input elements
in an order appropriate for the FFT butterfly can be greatly simplified in the
optimized version).

We attribute the gains observed for the 4 CPU and 4CPU + GPU versions
to two effects. First there is the simplification of synchronization nodes which
makes each partition more efficient and therefore also improves the paralleliza-
tion throughput. There is also the fact that we reduce the communication costs
between partitions. When the bottleneck is the DMA transfer between GPU and
CPU, reducing the amount of communications between partitions may speed up
the application. We can measure this effect for the Bitonic benchmark which is
dominated by the communications. In the 1 CPU version, we gain a x1.18 factor
after doing the synchronization removal, whereas in the 4 CPU+GPU version
we gain a x1.20 factor.

The DCT benchmark is composed of two stages of filter nodes connected by
a Split-Join junction. The synchronization removal is able to break this junction
into smaller components. In fact in this case it does not reduce the amount of
communications of the mapping, instead it breaks it down into many smaller
transfers. In the original version we do one single big transfer, whereas in the
transformed version we do many smaller ones. The transformed version improves
slightly the 4 CPU version, we attribute this to a better behaviour of many small
transfers regarding L3 cache. But when we add the GPU, the transformed version
performs worse than the original program (3.52 normalized throughput). We
attribute this to the way we implement DMA transfers: in our current prototype,
each communication edge is mapped to a DMA transfer. In this case, doing
one single big DMA transfer per schedule tick is preferable to many smaller
DMA transfers. We believe this could be solved by fusing together all the DMA
transfers in a Outer schedule tick.

7 Related Works

Streaming languages are based on the Synchronous Data Flow formalism [8]
which provides a sound theoretical framework for ensuring the correct execution
of data flow programs. Streamlt is both a language[15] and an optimizing com-
piler[4]. As in our approach synchronization optimization approach, StreamIt
adapts the granularity and communications patterns of programs through graph
transformations, which it separates in three classes: (1) Fusion transformations
cluster adjacent filters, coarsening their granularity; (2) Fission transformations
parallelize stateless filters decreasing their granularity; (3) Reordering transfor-
mations operate on splits and joins to facilitate Fission and Fusion transforma-
tions.

In this paper we use new reordering transformations that are more general
than the ones in Streamlt since they are not constrained by the serie-parallel
layout of the Streamlt graph. In this first version of our compiler, we have not
considered fusing filters in the same partition, but we plan on implementing
this feature, which should eliminate unnecessary data copies and increase the
performance. Sermulins et al. show in[13] how to optimize Streamlt programs
for cache effects in the context of a single core; in their paper the importance

of coarsening the program to tune for performance is studied and a cache aware
fusing technique is proposed.

The authors of [7] were the first to apply Modulo Scheduling to stream graphs,
evaluating their technique on the Cell BE. In [3] their work was extended con-
sidering an embedded target with memory and number of PE constraints. Car-
penter et al. also work on executing Stream Graphs in an embedded context
[2], they propose a graph partitioning mapping that preserves connectivity and
convexity, to reduce the software pipeline depth and keep in the same partitions
consumer and producers to enable efficient fusing transformations. The parti-
tioning method they propose opportunely fuses or splits tasks, to load balance
the work among the partitions.

Udupa et al.[16] successfully used Modulo Scheduling to compile stream
graphs on GPU, and later on generalized their approach to hybrid GPU-CPU
architectures. In [17] they propose an ILP based mapping that takes into ac-
count DMA costs and computation costs to find an optimum mapping in the
architecture. Unlike us, they do not transform the graph structure before doing
the partitioning. They also consider a single coarsening level for the entire graph,
since they do not take into account the cache effects.

8 Conclusion

We propose in this paper a new method to optimize the throughput of stream
programs on hybrid architectures. The contributions described are:

— A restructuration approach for stream graph, before partitioning and driven
by an evaluation of synchronization costs. We have shown that this transfor-
mation improves the throughput of the graph by enabling better partitioning
and reducing the amount of communication between partitions.

— A coarsening technique to tune parallelism grain independently for CPU and
GPUs once the partitioning is achieved, in order to take into account the
specific constraints on memory and DMA transfers for each architecture.

We also have developped an experimental compiler chain to validate our
approach; the exploration of the graph variants is fast (less than 3 minutes on
a desktop computer). The method proposed can be used with any partitioning
method that considers the specificities of CPU/GPU architectures. We plan to
investigate the interactions and benefits of our communication-aware approach
combined to tasks optimizations such as fission/fusion techniques proposed in
StreamIT. We also would like to determine if it is possible to derive the optimal
coarse values Cep, and Cyp, using a simple architectural model. This would
remove the necessity of sampling profile runs.

References

1. Streamit benchmarks. http://groups.csail.mit.edu/cag/streamit/shtml/
benchmarks.shtml

10.

11.

12.

13.

14.

15.

16.

17.

. Carpenter, P.M., Ramirez, A., Ayguade, E.: Mapping stream programs onto hetero-

geneous multiprocessor systems. In: CASES ’09: Proceedings of the 2009 interna-
tional conference on Compilers, architecture, and synthesis for embedded systems.
pp. 57-66. ACM, New York, NY, USA (2009)

Choi, Y., Lin, Y., Chong, N., Mahlke, S., Mudge, T.: Stream compilation for real-
time embedded multicore systems. In: Int. Symp. on Code Generation and Opti-
mization. pp. 210-220. IEEE Computer Society, Washington, DC, USA (2009)
Gordon, M.I., Thies, W., Karczmarek, M., Lin, J., Meli, A.S., Lamb, A.A., Leger,
C., Wong, J., Hoffmann, H., Maze, D., Amarasinghe, S.: A stream compiler for
communication-exposed architectures. In: Int. Conf. on Architectural Support for
Programming Languages and Operating Systems. pp. 291-303. ACM (2002)
Goubier, T., Blanc, F., Louise, S., Sirdey, R., David, V.: Définition du Langage de
Programmation XY’C, RT CEA LIST DTSI/SARC/08-466/TG. Tech. rep. (2008)
Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20(1), 359-392 (1998)

Kudlur, M., Mahlke, S.: Orchestrating the execution of stream programs on multi-
core platforms. In: Proc. of the SIGPLAN conf. on Programming Language Design
and Implementation. pp. 114-124. ACM (2008)

Lee, E.A., Messerschmitt, D.G.: Static scheduling of synchronous data flow pro-
grams for digital signal processing. IEEE Trans. Comput. 36(1), 24-35 (1987)
Liao, S.w., Du, Z., Wu, G., Lueh, G.Y.: Data and Computation Transformations
for Brook Streaming Applications on Multiprocessors. In: Proc. of the Int. Symp.
on Code Generation and Optimization (2006)

Lowerre, B.T.: The harpy speech recognition system. Ph.D. thesis, Pittsburgh, PA,
USA (1976)

NVIDIA: NVIDIA CUDA Programming Guide 2.0 (2008)

de Oliveira Castro, P., Louise, S., Barthou, D.: Reducing Memory Requirements of
Stream Programs by Graph Transformations. In: Intl. Conf. on High Performance
Computing and Simulation (HPCS), (to appear). IEEE Computer Society (2010)
Sermulins, J., Thies, W., Rabbah, R., Amarasinghe, S.: Cache aware optimiza-
tion of stream programs. In: LCTES ’05: Proceedings of the 2005 ACM SIG-
PLAN/SIGBED conference on Languages, compilers, and tools for embedded sys-
tems. pp. 115-126. ACM, New York, NY, USA (2005)

Thies, W.: Language and Compiler Support for Stream Programs. Ph.D. thesis,
Massachusetts Institute of Technology, Cambridge, MA (2009)

Thies, W., Karczmarek, M., Amarasinghe, S.P.: Streamit: A language for stream-
ing applications. In: CC ’02: Proceedings of the 11th International Conference on
Compiler Construction. pp. 179-196. Springer-Verlag, London, UK (2002)
Udupa, A., Govindarajan, R., Thazhuthaveetil, M.J.: Software pipelined execution
of stream programs on gpus. In: Proc. of the 2009 Intl. Symp. on Code Generation
and Optimization. pp. 200-209. IEEE Computer Society (2009)

Udupa, A., Govindarajan, R., Thazhuthaveetil, M.J.: Synergistic execution of
stream programs on multicores with accelerators. In: Proc. of the 2009 ACM SIG-
PLAN/SIGBED conference on Languages, compilers, and tools for embedded sys-
tems. pp. 99-108. ACM (2009)

