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MAXWELLIAN DECAY FOR WELL-BALANCED
APPROXIMATIONS OF A SUPER-CHARACTERISTIC

CHEMOTAXIS MODEL

LAURENT GOSSE∗

Abstract. We focus on the numerical simulation of a one-dimensional model of chemotaxis
dynamics (proposed by Greenberg and Alt [22]) in a bounded domain by means of a previously
introduced well-balanced (WB) and asymptotic-preserving (AP) scheme [16]. We are especially
interested in studying the decay onto numerical steady-states for two reasons: 1/ conventional upwind
schemes have been shown to stabilize onto spurious non-Maxwellian states (with a very big mass
flux, see e.g. [24]) and 2/ the initial data lead to a dynamic which is mostly super-characteristic in
the sense of [32] thus the stability results of [16] do not apply. A reflecting boundary condition which
is compatible with the well-balanced character is presented; a mass-preservation property is proved
and some results on super-characteristic relaxation are recalled. Numerical experiments with coarse
computational grids are presented in detail: they illustrate the bifurcation diagrams in [24] which
relate the total initial mass of cells with the time-asymptotic values of the chemoattractant substance
on each side of the domain. It is shown that the WB scheme stabilizes correctly onto zero-mass flow
rate (hence Maxwellian) steady-states which agree with the aforementioned bifurcation diagrams.
The evolution in time of residues is commented for every considered test-case.

Key words. Chemotaxis modeling; discrete velocity kinetic model; stiffness; super-characteristic
relaxation; stabilization in time; WB scheme; reflecting boundary conditions.

AMS subject classifications. 65M06, 35L60.

1. Introduction.

1.1. Modeling of chemotaxis dynamics. This paper is concerned with the
following semilinear model of chemotaxis movement, originally proposed by Greenberg
and Alt [22], where “particles” move at velocities ±λ, λ > 0:







∂tρ + ∂xJ = 0
∂tJ + λ2∂xρ = ρ∂xϕ − J
∂tϕ − D∂xxϕ = αρ − βϕ.

(1.1)

One can rewrite it in a more mathematically tractable way by introducing its diagonal
variables (its Riemann invariants, in hyperbolic terminology),

w =
1

2

(

ρ −
J

λ

)

, z =
1

2

(

ρ +
J

λ

)

⇔ 0 ≤ ρ = w + z, J = λ(z − w),(1.2)

which satisfy a semilinear system of equations, similar to Cattaneo’s model [26]:






∂tw − λ∂xw = − 1
2λ

G(∂xϕ; w, z)
∂tz + λ∂xz = 1

2λ
G(∂xϕ; w, z)

∂tϕ − D∂xxϕ = αρ − βϕ.
(1.3)

with non-negative values for D, α, β ≥ 0 and the conventional choice of turning rates,

G(∂xϕ; w, z) = (∂xϕ + λ)w + (∂xϕ − λ)z.

Besides the textbooks [2, 39], general references about mathematical models for
chemotaxis dynamics are for instance [6, 10, 12, 22, 26, 27, 28, 29, 30, 33, 37, 38, 41, 42]
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for the theoretical aspects and [7, 9, 13, 24, 36] for numerics. According to the anal-
ysis by Jin and Katsoulakis [32], the system (1.3) ceases to be quasi-monotone for
|∂xϕ| > λ and the relaxation process becomes super-characteristic (see also [21]; in
particular, useful estimates based on monotonicity as derived in [35] fail). In such
a regime, the decay estimates of the Lp norms proved in §3 of [16] do not hold and
one expects an increase of the L∞ norm of ρ and ϕ. In general, super-characteristic
relaxation processes are unstable; however, for the particular model (1.1) inside a
bounded domain and supplemented by Neumann boundary conditions on ϕ, it has
been established, either analytically or numerically, in [24, 36] that certain asymptotic
steady-states with zero velocity are stable (even if conventional upwind schemes can
grossly miss them). It is therefore interesting to address the question whether or not
the WB/AP discretization proposed in [16] can be shown to be consistent with these
peculiar large-time behaviors. This kind of numerical discretization for the model un-
der consideration comes partly from the choice of the computational grid parameters.
System (1.1) is concerned with the movements of cells which size is of the order of
the micrometer µm (for instance, Escherichia coli is 2µm long). They move roughly
at a velocity of the order of the µm per second [39] inside a box which characteristic
length is around 5 centimeters. An aggregate of cells counts at least 100 individuals,
meaning that its length should be around 10−2cm. Fixing the box as the interval
x ∈ [0, 1], we get that in order to ensure that an aggregate is represented on a few
grid points, we should have around 250 or 500 discretization points: this is the range
of parameters used in the computations of sections 4 and 5. The usual CFL condition
for hyperbolic systems relates the fineness of the space discretization with the maxi-
mal size of the time-step ∆t; hence, even assuming an unconditionally stable implicit
integration of the diffusion equation on ϕ, the number of iterations necessary to reach
steady-state will grow if finer grids are set up for (1.1). Using coarser grids fastens
the convergence toward steady-states and WB/AP schemes ensure consistency with
a correct long-time behavior despite the fact that fine layers may not be resolved.

1.2. Numerical stiffness and non-conservative products. Let us now briefly
recall the ideas from [19, 20, 16], which consist in passing from (1.3) to the non-linear
and non-conservative (NC) system:







∂tw − λ∂xw = − 1
2λ

∑

j∈Z
hG(∂xϕ; w, z)δ

(
x − (j − 1

2 )h
)

∂tz + λ∂xz = 1
2λ

∑

j∈Z
hG(∂xϕ; w, z)δ

(
x − (j − 1

2 )h
)

∂tϕ − D∂xxϕ = αρ − βϕ,

(1.4)

where δ(.) stands for the Dirac mass in x = 0. This problem can be rewritten like in
[31], by introducing a steady discontinuous variable a(x) ∈ BV (R), replacing the right-
hand side of (1.3) by ∓ 1

2λ
G(∂xϕ; w, z)∂xa and adding the trivial equation ∂ta = 0.

For discontinuous w, z, this formulation can be unstable because of the products
“Heaviside × Dirac”; however, it has been rigorously shown in [20] that these non-
conservative products can be rigorously defined as weak limits in the framework of
[34] thanks to the uniform BV estimates which come from the linear convection in
(1.3) (similar estimates for scalar balance laws are previously given in [15]).

One may wonder what might be reason for substituting the homogeneous, but
non-conservative system (1.4), at the place of the nonhomogeneous semilinear balance
laws (1.3). Following [14], this reformulation generally offers 2 main advantages:

• a good consistency with the long-time behavior as soon as the non-conservative
products are defined in a correct manner. Thanks to the homogeneous charac-
ter of (1.4), we know that in a bounded domain, the Godunov scheme has zero
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viscosity at steady-state because it contains only stationary shocks or con-
tact discontinuities (if the domain is infinite, smooth traveling waves can
also exist [25]). As the scheme uses an exact Riemann solver, jump disconti-
nuities are resolved exactly based on Rankine-Hugoniot relations. Therefore,
when the stationary discontinuities associated to the non-conservative prod-
ucts are resolved with integral curves of the steady-state equations, it is sure
that these curves constitute the only way to pass from a computational cell to
its neighbor when the numerical solution is stationary. This jump relation is
precisely the one emanating from a limiting process when a(x) is regularized
and the weak limit [34] is studied for simple models: see [15, 20].

• a good robustness in stiff regimes (independently of ∆t) which is again a con-
sequence of the fact that the source term is treated by means of a generalized
Rankine-Hugoniot jump relation. Indeed, if one divides the source term by
a small parameter, say 0 < ε ≪ 1, the only effect is to rescale the x variable
(appearing in the steady-state equations) into x/ε, meaning that one goes
much farer on its integral curve. However, since only convective waves play
a role in the CFL condition, one deduces immediately that ∆t and h are
restricted only by the eigenvalues of the Jacobian matrix of the fluxes. The
non-conservative product is associated to the zero eigenvalue, thus has no
influence on the time-step. This has been illustrated recently in [17, 18].

Stability and convergence properties have been shown for the Godunov scheme built
onto the exact Riemann solver for (1.4) in [16] in the sub-characteristic regime (since
∂xϕ is kept constant at each interface, see Remark 2 and [16], only the hyperbolic part
is rigorously exact), meaning that |∂xϕ| < λ. Therefore, in this paper, we concentrate
on the opposite range of parameters, that is the super-characteristic region. The
quantity |∂xϕ| can become stiff in such a regime: consequently, both the 2 aspects of
WB schemes formerly recalled are likely to be needed.

Remark 1. Concerning the preservation of the stationary regimes, the superior-
ity of schemes preserving all the steady-states has been recently studied in [44]; this
property is also crucial in order to ensure that, within a parabolic rescaling, the WB
scheme is asymptotic-preserving too. This fact has already been used in various con-
texts: see [19, 20, 17]. One may want to use high-order schemes as the system (1.4)
is just an usual hyperbolic system without source terms. The USI schemes proposed
in [3, 13] realize a trade-off between a treatment of the source term by means of a
simpler jump relation (some flux terms are discarded in the steady-state equation)
and overall consistency in the transient regime. They may be more vulnerable in stiff
regimes because of the residual terms which are not treated through a jump relation.

1.3. Organization of the paper. In §2, we mainly follow the results from [24]
and recast the Godunov scheme inside a bounded domain with Neumann and Dirichlet
boundary conditions (see (2.5) and (4.1)). The well-balanced treatment of boundary
conditions is presented in §2.1 while the Appendix A recalls the most essential re-
sults from [16]. A mass conservation property is proved in §2.2. The treatment of
the diffusion equation on ϕ is presented in §2.3: implicit discretizations are selected
in order to restrict the time step ∆t based on the hyperbolic CFL only. Remark
4 presents the Crank-Nicholson scheme, which is illustrated on a concrete example
in Appendix B. Stability results for initial data satisfying smallness assumptions are
stated in §3.2. Computational results with Dirichlet boundary conditions are pre-
sented in §4 in super-characteristic regime: residues decay rather smoothly and the
mass flow rate is of the order of 10−7. In §5, we switch to the more delicate Neu-
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mann boundary conditions and aim at checking the consistency with the bifurcation
diagrams reproduced on Fig. 5.1. The stability of a constant state with a big initial
mass is studied in §5.2 for two different choices of α, β: one can see that many itera-
tions are necessary in order to create a non-physical mass flux of the order of 10−12

inside the computational domain. In §5.3, another test-case which is supposed to
lead to a non-constant Maxwellian steady-state is presented: this is perhaps the most
interesting test-case because the evolution of the residues actually displays 3 different
regimes, see Fig. 5.5. The results of §5.4 are concerned with a similar experiment
with an even bigger initial mass of cells: the scheme remains stable and mass flow
rate inside the domain are shown to decay up to 10−4 despite residues decay in an
oscillatory way. We stress that in this case, |∂xϕ| is of the order of 3500 with λ ≃ 10,
which is truly stiff. A last test-case is presented in §5.5 with α = β = 50 leads to
similar results except that cells concentrate on the opposite side of the computational
domain. We strongly insist on the fact that absolutely no modifications are made on
the WB Godunov scheme studied in [16] in order to produce these results except for
the boundary conditions on each side of the computational domain.

2. Well-balanced boundary conditions for bounded domains. Let’s de-
note wn

j ≃ w(n∆t, jh), zn
j ≃ w(n∆t, jh) for any j ∈ {1, 2, ..., 1

h
} and n ∈ N; these

numerical approximations induce piecewise constant functions wh(t, x) and zh(t, x):

wh(t, x) := wn
j , zh(t, x) := zn

j for t, x ∈ [n∆t, (n + 1)∆t[×

[

(j −
1

2
)h, (j +

1

2
)h

[

.

The Godunov scheme proceeds in defining a control cell ](j− 1
2 )h, (j+ 1

2 )h[×]n∆t, (n+
1)∆t[ around each point xj = jh, solving a Riemann problem on both interfaces
(j ± 1

2 )h and averaging: see Fig. 3.1 in [16]. This notation is also used hereafter:

∀j, n ∈

{

1, 2, ...,
1

h

}

× N, (∂xϕ)n
j+ 1

2

:=
1

h

(
ϕn

j+1 − ϕn
j

)
.(2.1)

The piecewise-constant function ϕh is defined similarly for t, x ∈ R
+ × [0, 1] whereas

the “numerical space derivative” (∂xϕ)n
j+ 1

2

can be computed on the staggered grid at

the same locations than the Dirac masses on the right-hand side of (1.4).

2.1. Derivation of “stopping pressure” boundary conditions. In order
to derive the correct expression for boundary conditions to be placed at each edge of
the computational domain x ∈ (0, 1), we follow the approach of the “half Riemann
problem” [8]. Roughly speaking, the idea is to create 2 fictious computational cells
containing exactly the right values able to forbid any mass flow in x = 0 and x = 1.
We focus on the left side of the computational domain in order to find the correct
values w0, z0 which induce a stopping pressure because the reasoning is exactly similar
for the right side. According to §3.1 and §3.3 in [16] (see Appendix A where the main
elements are recalled), and with the notation of Fig. 2.1:

∀n ∈ N, w∗
1
2

− zn
0 = 0 = wn

1 − z∗1
2

, w∗
1
2

+ zn
0 = wn

1 + z∗1
2

.(2.2)

The first relation expresses the fact that the mass flow rate vanishes on both sides
of the steady discontinuity emanating from the singular source term concentrated in
x = h

2 ; the second, that the macroscopic density is constant. Therefore, one finds
that z∗1

2

= wn
1 . The well-balanced scheme for (1.3) reads for any n, j ∈ {1, ..., 1

h
},

wn+1
j = wn

j +
λ∆t

h

(

w∗
j+ 1

2

− wn
j

)

, zn+1
j = zn

j −
λ∆t

h

(

zn
j − z∗

j− 1
2

)

,(2.3)
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b

b

x = h
3h
2

h
2 t = n∆t

−λλ

wn
1 zn

1

δ(
x
−

3
h 2

)

δ(
x
−

h 2

)

wn
1

z∗1
2

w∗
3
2

zn
1

wn+1
1 zn+1

1

(only z jumps) (only w jumps)

wn
2

z∗3
2

w∗
1
2

zn
0

(z
er

o-
w

av
e:

w
an

d
z

ju
m

p)

Fig. 2.1. Control cell for the well-balanced scheme with fictious values w0, z0 in x = 0.

supplemented by the edge-values: (∂xϕ)n
1
2

≡ 0, (∂xϕ)n
1
h
+ 1

2

≡ 0 and,

zn+1
1 = zn

1 −
λ∆t

h
(zn

1 − wn
1 ) , wn+1

1
h

= wn
1
h

+
λ∆t

h

(

zn
1
h

− wn
1
h

)

.(2.4)

We recall that, according to the Lemma A.1, the interface values read:






w∗
j+ 1

2

=

(

2
1+Bn

j+ 1
2

)

wn
j+1 +

(
1−An

j+ 1
2

1+Bn

j+ 1
2

)

zn
j ,

z∗
j+ 1

2

= −

(
1−Bn

j+ 1
2

1+Bn

j+ 1
2

)

wn
j+1 +

(
An

j+ 1
2

+Bn

j+ 1
2

1+Bn

j+ 1
2

)

zn
j ,

with the parameters,

An
j+ 1

2

=

(

1 −
h

λ

)

exp

(
h

λ2
(∂xϕ)n

j+ 1
2

)

, Bn
j+ 1

2

=

(

1 +
h

λ

)

exp

(
h

λ2
(∂xϕ)n

j+ 1
2

)

.

Thus both equations (2.3)–(2.4) constitute a well-balanced approximation involving
an exact NC Riemann solver for the system (1.1) posed in x ∈ (0, 1) and supplemented
by Neumann boundary conditions (as advocated in [24, 36, 41]): for any t ∈ R

+,

∂xϕ(t, x = 0) = ∂xϕ(t, x = 1) = 0 = J(t, x = 0) = J(t, x = 1).(2.5)

Observe that (2.2) means that these Neumann conditions are imposed on the staggered
grid and not inside the border computational cells centered around x = h and x = 1

h
.

Remark 2. In the expression of the coefficients An
j+ 1

2

and Bn
j+ 1

2

, one consid-

ers that (∂xϕ)n
j+ 1

2

remains constant; hence comparing with the steady-state curves

rigorously derived in [24], there is a discrepancy and only second order consistency
actually holds. The numerical results displayed in §4–5 suggest that this compromise
between well-balanced accuracy and overall feasibility is enough. These approximate
jump relations were derived in [16] where the usual sub-characteristic condition was
assumed; here we test them in the context of high |∂xϕ| super-characteristic regime.



6 L. Gosse

2.2. Mass-preservation (first moment of kinetic density) property. We
begin by defining the approximate (piecewise-constant) function ρh := wh + zh; the
motivation in this subsection is to prove that the scheme (2.3)–(2.4) generates a
numerical process which is mass-preserving, even without any reference to the sub-
characteristic condition which is crucial for the convergence results in [16].

Theorem 1. For any h, ∆t ≥ 0, there holds for ρh generated by (2.3)–(2.4):

∀t ∈ R
+,

∫ 1

0

ρh(t + ∆t, x)dx =

∫ 1

0

ρh(t, x)dx.(2.6)

Proof. With obvious notation, we can deduce from (2.3)–(2.4) the numerical
scheme acting on ρn

j := wn
j + zn

j :

ρn+1
j = ρn

j −
∆t

h

(

λ (zn
j − w∗

j+ 1
2

)
︸ ︷︷ ︸

(z∗

j+ 1
2

−wn
j+1

)

−λ(z∗
j− 1

2

− wn
j )

)

.

The flux conservation property on each side of the interface x = (j + 1
2 )h which reads

zn
j − w∗

j+ 1
2

= z∗
j+ 1

2

− wn
j+1 has been shown in [16]; it comes from the steady-state

equations of (1.1) which are solved for computing the NC jump relations. The integrals
in (2.6) are computed by summing the preceding expression on indexes j ∈ {1, 2, ..., 1

h
}

corresponding to the computational domain x ∈ (0, 1):

∑ 1
h

j=1 hρn+1
j =

∑ 1
h

j=1 hρn
j − ∆t

(

λ(z∗
j+ 1

2

− wn
j+1) − λ(z∗

j− 1
2

− wn
j )

)

=
∑ 1

h

j=1 hρn
j + ∆tλ(z∗1

2

− wn
1 ) − ∆tλ(z∗1

h
+ 1

2

− wn
1
h
+1

)

=
∑ 1

h

j=1 hρn
j + ∆tλ(z∗1

2

− wn
1 ) − ∆tλ(zn

1
h
+ 1

2

− w∗
1
h
+ 1

2

)

=
∑ 1

h

j=1 hρn
j .

From the former subsection, we know that the edge values satisfy z∗1
2

= wn
1 and

w∗
1
h

+ 1
2

= zn
1
h

+ 1
2

thus, for any h, ∆t ≥ 0, we are done.

Since we didn’t assume the sub-characteristic condition like in [16], the system
(1.3) isn’t quasi-monotone in the sense of [35], we can’t hope to have the dissipation
property in time for ‖wh(t, .)‖Lp + ‖zh(t, .)‖Lp for p > 1; in particular, we shall see in
the numerical results that the L∞ norm can grow strongly in certain cases. Concerning
positivity-preserving properties, the situation is intricate: as the scheme (2.3)–(2.4)
is not a convex combination, there’s no hope to derive such a property for arbitrary
values of ∂xϕ. Actually, we shall see in Remark 7 that negative values appear in
transient regimes when the L1 norm of ρ(t, .) is big enough so as to generate very steep
gradients ∂xϕ and thus stiffen the problem up to a point where the approximation
(2.1) breaks down. Positivity-preserving results, hypothesizing they may exist, will
involve a careful analysis of the interaction between the well-balanced scheme on the
hyperbolic part of (1.3) and, for instance, the “complete flux scheme” on the diffusion
equation (which involves solving its steady-state problem at each interface) [43].

Remark 3. The proof does not exploit the expression of the coefficients An
j+ 1

2

and

Bn
j+ 1

2

, meaning that (2.6) hopefully holds for general turning rates: see [26, 29, 38].



Maxwellian asymptotic decay in super-characteristic regime 7

2.3. Implicit time discretization of the ϕ equation. Since we have in mind
to study the asymptotics in time of the well-balanced scheme (2.3)–(2.4) on the kinetic
variables w and z, it makes sense to substitute the explicit discretization on ϕh (used
in [16] in order to be in position to take advantage of the Hoff-Smoller theory with an
implicit one. Such a change allows to switch from a time-step ∆t submitted to the
parabolic CFL restriction 2D∆t ≤ h2 to a lighter hyperbolic one λ∆t ≤ h. Denoting
Φn := (ϕn

j )j∈{1,..., 1
h
}, wn := (wn

j )j∈{1,..., 1
h
} and zn := (zn

j )j∈{1,..., 1
h
} for any n ∈ N,

the following equation completes the kinetic discretization (2.3)–(2.4):

Φn+1 =

(

(1 + β∆t)Id +
D∆t

h2
L

)−1

(Φn + α∆t
(
wn + zn)

)
,(2.7)

where Id stands for the 1
h
× 1

h
identity matrix and L is a discrete approximation of the

diffusion term acting on ϕ including convenient boundary conditions. For instance, a
first-order Neumann boundary condition on ϕ can be implemented with the matrix,

LN1 =












1 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 · · · 0 −1 1












,

whereas a more accurate second-order approximation leads to the following one [24]:

LN2 =












2
3 − 2

3 0 · · · 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 · · · 0 − 2
3

2
3












.(2.8)

Concerning the accuracy in time, there is an easy way to improve to second-order:
it consists in advancing first by computing (2.7) for n = 0 but with ∆t/2 in place
of ∆t. This way, one advances initially of half a time-step and the numerical space
derivatives (∂xϕ)j+ 1

2
used in the parameters Aj+ 1

2
, Bj+ 1

2
are systematically computed

on a staggered grid n+ 1
2 corresponding to (n+ 1

2 )∆t. Clearly, at the final step of the
computation, one has to repeat the initial trick and advance in time of only half a time-
step; this method is sometimes called the Strang time-splitting (or Strang-Marchuk
splitting, see e.g. [11] for more details).

Remark 4. A slightly more costly manner for treating the diffusion equation
on ϕ is the unconditionally stable Crank-Nicholson scheme (sometimes called the “θ-
scheme” with θ = 1

2) which consists in solving at each time step:
(

(1 +
β

2
∆t)Id +

D∆t

2h2
L

)

Φn+1 =

(

(1 −
β

2
∆t)Id −

D∆t

2h2
L

)

Φn + α∆t
(
wn + zn),

with either LN1 or LN2. However, we did not see qualitative differences between the
outcome of this scheme and the one generated by (2.7) with a Strang splitting involved.
Residues can decay faster thanks to higher accuracy in time, but not systematically in
a monotonic way. In particular, they still can display oscillations (like in the figures
4.2, 5.7 and 5.10): see an example in Appendix B.



8 L. Gosse

3. Stability results for super-characteristic semi-linear relaxation.

3.1. General case of super-characteristic relaxation. In this subsection,
we follow the analysis of [32] in order to study the weakly nonlinear asymptotic limit
for (1.1). First, for any 0 ≤ ε ≪ 1 and c ∈ R, we define new variables: ξ = 1

ε
(x − ct)

and τ = t. Let ρ̄ > 0 be a fixed constant, we introduce the expansions:

ρ(t, x) = ρ̄ + εA(τ, ξ), J(t, x) = ρ̄∂xϕ + εB(τ, ξ),

for some value of ∂xϕ. The equations on the traveling waves A and B read:

∂τA +
1

ε
∂ξ(B − cA) = 0, ∂τB +

1

ε
∂ξ(λ

2A − cB) = A∂xϕ − B.

Let F = 1
ε
(B − cA) be a modified flux term; this yields,

∂τA + ∂ξF = 0, ∂τF −
2c

ε
∂ξF +

1

ε2
∂ξ

(
λ2

ε
(ρ̄ + εA) − c2A

)

=
A

ε
(∂xϕ − c) − F.

We group the terms of the same order in the second equation:

∂ξρ̄ = 0, (λ2 − c2)∂ξA − ε∂ξ(2cF + A) = εA(∂xϕ − c) + O(ε2).

Fixing c = ±λ leads to the relation ∂ξF = −∂τA and:

∂τ (A + εF ) =
(∂xϕ − c)A − εF

2c
.

Thus, for −|c| < ∂xϕ < |c|, the subcharacteristic condition is satisfied and A decays
exponentially in time. Oppositely, for |∂xϕ| > |c|, the leading terms in the ordinary
differential equation on A + εF amplify and the original expansion for ρ and J will
eventually break down. This is a super-characteristic regime but since the model (1.1)
is semilinear, we do not obtain a Burgers-type equation as in [32], Theorem 3.1.

3.2. Stability of constant Maxwellian steady-states. Despite the preceding
results, the computations in [24] indicate that the model (1.1) can stabilize also in the
case of a super-characterisitic relaxation regime. Indeed, independently of the size of
|∂xϕ|, it is proved that steady-states with zero velocity are stable provided their total
mass is not too big and the perturbation oscillates so to have zero mean.

Theorem 2. (Guarguaglini et al. [24]) Let (ρ̄, 0, ϕ̄) ∈ R
+ × {0} × R

+ be a
constant steady-state for (1.1) inside the interval x ∈ (0, 1) with Neumann boundary
conditions (2.5) satisfying:

ρ̄ <
λ2

α
(β + Dπ2).(3.1)

If the initial data (ρ0(x) + ρ̄, J0(x), ϕ0(x) + ϕ̄) ∈ H1(0, 1) is a perturbation of the
aforementioned constant Maxwellian steady-state such that, for small ε ≥ 0,

∫ 1

0

ρ0(x)dx = 0, ‖ρ0‖H1 + ‖J0‖H1 + ‖ϕ0‖H1 ≤ ε,

then the corresponding solution (ρ, J, ϕ) of (1.1)–(2.5) decays exponentially toward the
constant steady-state (ρ̄, 0, ϕ̄). There exist C, θ > 0 depending on ε such that:

∀t > 0, ‖(ρ, J, ϕ)(t, .) − (ρ̄, 0, ϕ̄)‖H1 ≤ C exp(−θt).
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Moreover, in case the perturbation is chosen symmetric around x = 1
2 , the threshold

(3.1) can be improved. The following result is an extension of Corollary 4.2 in [24]:
Corollary 1. For ε small enough and some 1 ≤ n ∈ N, assume that the initial

perturbation (ρ0, J0, ϕ0) ∈ C1(0, 1)3 for (1.1)–(2.5) satisfies the symmetry properties:

∀m ∈ {0, 1, ..., n− 1},







ρ0(x̄ − x) = ρ0(x̄ + x)
J0(x̄ − x) = −J0(x̄ + x)
ϕ0(x̄ − x) = ϕ0(x̄ + x)

for x̄ = 2m−n and x ∈ (0, x̄).

Then, if moreover
∫ 1

0
ρ0(x)dx = 0, the conclusion of Theorem 2 still holds with:

ρ̄ <
λ2

α
(β + 22nDπ2).

Proof. It proceeds by following the ideas of the proof in [24]; let us first denote
W := (ρ−ρ̄, J, ϕ−ϕ̄) and study the case n = 1. For the choice of the right-hand side of
(1.1), we have that a symmetric initial data W0(x) gives rise to a symmetric solution

around x̄ = 1
2 . Therefore, W (t, x)

∣
∣
∣
x∈(0,x̄)

and W (t, x)
∣
∣
∣
x∈(x̄,1)

solve the same Neumann

IBVP in their respective intervals because the smoothness assumption implies that
∂xρ(t, x̄) = 0 = ∂xϕ(t, x̄) for all t > 0. Hence we apply Theorem 4.1 of [24] with L
being the measure of the half computational interval (0, x̄). By induction, the general
case n ∈ N is handled similarly by dividing into 2 the computational intervals and the
space derivatives vanish thanks to the smoothness assumption.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3.1. Perturbation ρ0(x): sin(4π|x − 1

2
|) (left) and cos(8πx) (right).

Therefore, these stabilization results do not contradict the instability of super-
characteristic relaxation which is addressed on the whole line. Indeed, from [24], one
sees that the threshold ρ̄ is a decreasing function of the size of the bounded interval
inside which (1.1)–(2.5) is solved. However, there is a smallness assumption for ρ0− ρ̄
in H1, meaning that beyond a critical value of n, it will become an obstruction for
the increase of the threshold level ρ̄ in Corollary 1 because ‖∂xρ0‖L2 grows with n.

Remark 5. The symmetry conditions in Corollary 1 imply that (but are not
equivalent to) W0(x) has 2 vanishing moments; indeed, for n = 1, we have

∫ 1

0

(x −
1

2
)ρ0(x)dx =

∫ 1
2

0

x

(

ρ0(
1

2
+ x) − ρ0(

1

2
− x)

)

dx =

∫ 1

0

ρ0(x)dx = 0,
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meaning that ρ0 is orthogonal to the linear subspace of affine functions. For instance,
the perturbation x 7→ cos(8πx) is C∞, meets all the requirements for n = 2 and,

∫ 1

0

cos(8πx)dx = 0 =

∫ 1

0

x cos(8πx)dx,

∫ 1

0

x2 cos(8πx)dx 6= 0.

The perturbation x 7→ sin(4π|x − 1
2 |) isn’t smooth in x̄ = 1

2 thus does not meet the
requirements of the case n = 1 despite its symmetry properties (see Fig.3.1).

In case the problem (1.1) is posed on the whole real line x ∈ R, it is stated in §2
of [24] that stability for constant Maxwellian steady-states holds for ρ̄ < β

α
λ2.

4. Numerical results with Dirichlet conditions on ϕ. For the sake of com-
pleteness, we also include the case where the equation on ϕ is posed in the interval
x ∈ (−1, 1) and supplemented by Dirichlet boundary conditions:

∀t ∈ R
+, ϕ(t, x = −1) = 0 = ϕ(t, x = 1).(4.1)

In this case, the corresponding L matrix at first order in space reads:

LD1 =












2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 · · · 0 −1 2












∈ R
2
h
× 2

h ,

which is to be plugged into (2.3)–(2.4)–(2.7) in order to compute an approximate
solution. Concerning the derivation of the “stopping pressure”, one has to slightly
modify (2.2): indeed, since the aforementioned matrix LD1 imposes that ϕh(t, x =
0) = 0, there is no reason to suppose that (∂xϕ)n

1
2

= 0. Thus, using that h(∂xϕ)n
1
2

= ϕn
1

for Dirichlet conditions, (2.2) rewrites:

∀n ∈ N, w∗
1
2

− zn
0 = 0 = wn

1 − z∗1
2

, exp(ϕn
1 /λ2)(w∗

1
2

+ zn
0 ) = wn

1 + z∗1
2

.

In Fig. 4.1, we display the numerical approximations of the stationary solutions of
(1.3) emanating from the simple set of discontinuous initial values with x ∈ [−1, 1]:

{
wh(t = 0, x) = 1

2

(
1135 + 15χx∈[−0.65,0.45]

)
,

zh(t = 0, x) = 1
2

(
1135 − 15χx∈[−0.65,0.45]

)
,

ϕh(t = 0, x) = 0,(4.2)

where χA denotes the indicator function of the set A. The parameters in (1.1) are
chosen as follows: D = α = β = 1 and λ = 10. The computational domain contains
256 grid points and the CFL number is fixed to 0.9, meaning that 1280∆t ≤ 1. Fig.
4.2 shows that one needs to iterate the whole numerical scheme up to t ≃ 10 in order
to decrease the L2 residues around the value of 10−11; these residues are defined as:

∀t ∈ R
+, R2(t) = ‖wh(t + ∆t, .) − wh(t, .)‖L2 + ‖zh(t + ∆t, .) − zh(t, .)‖L2 .

A key observation is that this corresponds to a macroscopic flux Jh := λ(zh −wh) of
the order of 10−7 and this is a desirable feature as one expects the numerical scheme
to stabilize in time onto a Maxwellian distribution which, in the present context of
a discrete 2-velocities kinetic model, is characterized by the condition wh = zh. One
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Fig. 4.1. Cell density ρh, chemoattractant ϕh (left) and mass flow rate Jh, (∂xϕ)h (right).

Decay of L2 residues with time

−4
10

−3
10

−2
10

−1
10

0
10

1
10

−11
10

−8
10

−5
10

−2
10

1
10

4
10

Fig. 4.2. Decay of L2 residues as a function of time.
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can check on the top-left of Fig. 4.1 that wh = zh actually happens. The whole
test-case is super-characteristic in the sense that the property λ ≥ |∂xϕ| does not
generally hold, as can be seen by looking at the bottom-right of Fig. 4.1.

Remark 6. An interesting situation from a biological perspective is to impose
a Dirichlet boundary condition on ρ and a Neumann condition on ϕ; this is usually
referred to as the “killing boundary”. This model can be recast in our well-balanced
formulation too as we explain now: on the left side of the domain,

∀n ∈ N, w∗
1
2

− zn
0 = wn

1 − z∗1
2

, exp(h(∂xϕ)n
1
2

/λ2)(w∗
1
2

+ zn
0 ) = wn

1 + z∗1
2

.

The Neumann condition on ϕ implies (∂xϕ)n
1
2

= 0. The Dirichlet condition on ρ is

expressed with w∗
1
2

+ zn
0 = 0 = wn

1 + z∗1
2

, hence z∗1
2

= −wn
1 .

5. Numerical results with Neumann conditions on ϕ. We switch now to
the less stable case of the system (1.1) solved in x ∈ (0, 1) with the Neumann boundary
condition on ϕ as prescribed in (2.5); these boundary conditions are implemented
computationally through (2.2) and (2.8) inside the scheme (2.3)–(2.4)–(2.7).

5.1. Bifurcations of various types of equilibria for (1.1). By analogy with
classical kinetic theory, we clearly distinguish between the 2 different types of time-
asymptotic regimes which have been studied in e.g. [24]:

Definition 1. For the system (1.1), or equivalently (1.3), inside a bounded
domain, the following 2 types of equilibria are considered:

1. the “global (or simple) Maxwellians”, which are asymptotic states satisfying
J = 0 and not depending on the x variable. They read:

ρ ≡ C, ϕ ≡ C′, w = z ≡ C/2.

2. the “local Maxwellians”, which still satisfy J = 0, but do depend on the x
variable. They are more general:

ρ = ρ̄(x), ϕ = ϕ̄(x), w = z = ρ̄(x)/2.

The figure 5.1 displays how the model bifurcates from the “global Maxwellians”,
which are the generic asymptotic profiles for small total mass (typically for small
‖ρh‖L1) to more complex “local Maxwellians” when the mass increases. For small
total mass, we are in the domain of application of the stability results shown in
[24], and hopefully in the sub-characteristic regime because ∂xϕ is clearly related to
the integral of ρ. The rigorous results of [16] also apply to this class of asymptotic
profiles. Beyond a critical value of the total mass, “local Maxwellians” also appear
and they constitute the stable steady-states (the remaining global Maxwellians being
stable only for symmetric perturbations). In general, these asymptotic states are
reached after transient regimes which are super-characteristic. It has been shown in
[24] that conventional upwind schemes fail to capture these local Maxwellians as they
converge in time toward states endowed with a big mass flow, meaning that w 6= z.
These local Maxwellians will be our main focus of interest in this section for testing
our well-balanced method. More precisely, we have in mind to check numerically
the bifurcation diagrams shown in [24] (and reproduced in Fig. 5.1) which consist
in displaying the relation existing between the L1 norm of 0 ≤ ρh(t, .) (which is
a constant with respect to the time t) and the value ϕ̄(x = 0) appearing at the
steady-state of (1.1) once the parameters α, β and D are chosen. For instance, in the
region corresponding to a small total mass of ρh, the straight line on the left part of
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Fig. 5.1. Bifurcation diagrams (reproduced from [24]): α = β = 1(left) and α = β = 50 (right).

the diagram means that the asymptotic states are given by ρh and ϕh constant in
x (the mass flux being zero). This is the domain of application of Theorem 2 and
Corollary 1. When the total mass becomes higher, a bifurcation occurs and 3 states
become admissible for the asymptotic values of ϕh; the value in the middle is unstable
except when it is perturbed in a symmetric manner. We shall see in §5.3 that the
other 2 admissible values for ϕh correspond to the ones located at each side of the
computational domain. If the total mass of ρh is still augmented, the central branch
bifurcates again into 2 other branches unstable except for symmetric perturbations,
and a middle one which is completely unstable. In this region, numerical schemes will
usually converge toward the extreme values of ϕh (the smallest and the biggest ones,
corresponding to the 2 preceding stable branches). All the numerical results (except
in §5.1) are obtained with the following values:

1

h
= 512, λ = 10, λ∆t = 0.9h.

5.2. Numerical stability of constant states. In this first subsection, we aim
at showing that the well-balanced scheme respects the stability of “global Maxwellian
equilibria”, that are the ones such that:

∀x ∈ [0, 1], w = z, ∂xw = ∂xz = 0, G(∂xϕ; w, z) = 0.

From a numerical viewpoint, these steady-states have the property that both the flux
term and the source term vanish individually; this is clearly a particular subclass of
the general steady-states of (1.3) which satisfy only to:

∀x ∈ [0, 1], w = z, ∂xw = ∂xz 6= 0, 2λ2∂xz = G(∂xϕ; w, z).

Global Maxwellian asymptotics are typically the only ones appearing for little initial
mass, leading to non-stiff problems on which standard upwind schemes can give good
results [24, 36]; for instance, one sees on Fig. 5.1 that in the case α = β = 1, pre-

scribing
∫ 1

0
ρh(t, x)dx ≤ 1100, or

∫ 1

0
ρh(t, x)dx ≤ 100 for α = β = 50 leads to constant

steady-states. The outcome of the well-balanced scheme with
∫ 1

0
ρh(t, x)dx = 65 and

α = β = 50 is displayed on Fig. 5.2 with a small number of grid points: 128h = 1
and t = 3. This corresponds to an illustration of Theorem 2. Another interesting
test-case consists in investigating the stability of constant states with respect to sym-

metric perturbations with α = β = 1 while prescribing
∫ 1

0
ρh(t, x)dx = 1135 and the

same number of grid points. It turns out that the dynamic is similar, except that a
very small destabilizing process is ignited after t ≃ 2 (around 2840 iterations with a
CFL number of 0.9): see Fig. 5.3 for numerical results at much later time.
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Fig. 5.2. Global Maxwellian for α = β = 50, t = 2: Jh (left) and residues (right).
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Fig. 5.3. Global Maxwellian for α = β = 1 around t = 15.

5.3. First choice: α = β = 1 and
∫ 1

0 ρh(t, x)dx = 1135. This test-case appears
in both [24, 36]; it is precisely with this choice of parameters that the spurious behavior
of standard upwind numerical schemes is put at forefront. Indeed, in a way which
is somewhat similar to the early experiments in [4], it is found that conventional
discretizations converge asymptotically toward solutions endowed with quite a big
macroscopic flux J despite the fact it should vanish as t diverges. In particular,
this means that these numerical steady-states are not Maxwellian because
for a 2-velocities kinetic model, a Maxwellian solution is such that w = z and this
implies trivially that J = λ(z − w) = 0. On the contrary, one can see in Fig. 5.4
that the well-balanced scheme (2.3)–(2.4)–(2.7) endowed with second-order boundary
conditions (2.8) stabilizes nicely onto a steady-state for which Jh = λ(zh − wh) is
of the order of 10−5 at time t = 30: compare especially with Fig. 4 in [24] where
a conventional scheme is shown to deliver a steady-state for which the macroscopic
flux is of the order of 102. It is therefore clear that our steady-state kinetic densities
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Fig. 5.4. Cell density ρh, chemoattractant ϕh (left) and mass flow rate Jh, (∂xϕ)h (right).
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Fig. 5.5. Evolution of L2 residues as a function of time.
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wh and zh are nearly Maxwellian as can be checked visually on the top left figure;
moreover, the value of ϕh(t = 30, x = 0) is compatible with the theoretical ones
coming from the bifurcation diagram of [24], that is, around 1220.

The residues’ decay displayed in Fig. 5.5 is interesting because it neatly shows 3
distinct moments occurring during the stabilization process:

1. t ∈ (0, 2) roughly: the asymmetric perturbations are smoothed out progres-
sively. The quantities ρh and ϕh remain very close to constant and macro-
scopic fluxes |J | are of the order of 50 around t = 2. Residues fall below 10−5

but their evolution show high frequency oscillations (which seem to appear
every time the perturbation touches one edge of the computational domain).

2. t ∈ (2, 13) roughly: The scheme didn’t succeed in stabilizing the fluxes with ρh

and ϕh nearly constants. This is consistent with Fig. 5.1 where one sees that
∫ 1

0
ρh(t, x)dx = 1135 corresponds to a value located slightly beyond the first

bifurcation pitchfork. Hence a new dynamic takes place with macroscopic
fluxes J starting to increase together with residues, this time showing no
high frequency oscillations. This is the moment during which all the cells
agglutinate on the left side of the computational domain. Around t = 13, one
has correct values, namely ρh(t, x = 0) ≃ 2220 and ϕh(t, x = 0) ≃ 1210.

3. t ∈ (13, 30): residues decay monotonically together with macroscopic fluxes J
during the time the numerical scheme stabilizes globally. Values in x = 0 are
only marginally adjusted and the kinetic densities wh, zh can be considered
Maxwellian inside the whole computational domain.

5.4. Second choice: α = β = 1 and
∫ 1

0
ρh(t, x)dx = 4100. This is a more

difficult test-case as the mass initially prescribed goes beyond the second bifurcation
point on Fig. 5.1. Numerical results generated by the well-balanced scheme are shown
on Fig. 5.6 around time t = 35. The evolution is very different compared to the
preceding test-case since high frequency oscillations appear for t ≥ 0.5 and show up
until global stabilization. Numerical macroscopic fluxes Jh stabilize around a value
of the order of −5.10−5 which can be considered as satisfying for such a problem
involving a strong mass concentration around x = 0. Interestingly, one can observe
that the values of ϕh(t = 35, .) go roughly from 5260 down to 3550: this matches the
two values of the red curve at the abscissa 4100 on the bifurcation diagram of Fig.
5.1. Hence this strongly suggests that beyond the first bifurcation point, the
two branches of the pitchfork curve indicate the (stable) values ϕ(x = 0)
and ϕ(x = 1). This sheds some light onto the meaning of both diagrams displayed
in Fig. 5.1 for some given values of the parameters α, β and D. The curve of the
residues shows rather high frequency oscillations: they seem to be stable and they
survive as one passes from the implicit method (2.7) on ϕh to the Crank-Nicholson
scheme (see Remark 4). They also appear for different choices of the space step h,
even if finer grids make them appear later and smaller.

Remark 7. We wish to propose in this remark an explanation for the appearance
of high-frequency oscillations in the curve of the evolution of residues with respect
to time based on several convenient numerical tests. They consist in simulating the
well-balanced scheme for (1.3) coupled to the Crank-Nicholson discretization for the
diffusion equation on ϕ with increasing total mass and D = α = β = 1. More
precisely, we let this marching process go up to t = 2.5 and indicate in red the instants
tn at which the numerical approximations wh(t,.) or zh(t,.) cease to be nonnegative.
On Fig.5.8, the decay of the corresponding residues is displayed for total masses of
1435 (top, left), 1783.5 (top, right), 1865.5 (bottom, left), and 1968 (bottom, right).
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Fig. 5.6. Cell density ρh, chemoattractant ϕh (left) and mass flow rate Jh, (∂xϕ)h (right).
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Fig. 5.8. Appearance of negative values in wh or zh for increasing total initial masses.

The curve deforms itself continuously as the first one is very similar to the one shown
on Fig.5.5 and the last one looks like Fig.5.7. One sees that the increase of the total
mass allows for more and more negative values for the kinetic densities wh, zh: this
is a consequence of the concentration process in the vicinity of the borders of the
computational domain whose strength increases with the initial total mass of ρh. This
accumulation process in ρ passes onto ϕ thanks to the nature of the diffusion equation
thus some very big values of ∂xϕ appear. At this point, we touch 2 intrinsic limits of
the present approach:

• the approximation of ∂xϕ as a constant in the non-conservative jump rela-
tions, already discussed in Remark 2. An exponential fitting (∂xϕ)j+ 1

2
=

γϕj exp(γ/2)/h, γ = log(ϕj+1/ϕj) gives only a marginal improvement.
• the dicretization of the diffusion equation on ϕ is not well-balanced, as already

noted in [16], and this may create issues in stiff regimes. A remedy may be
contained in the recent paper [43], the “complete flux scheme”.

Let us also recall that existence and stability results given in [29, 30] are for initial
data close to equilibrium. We are in a very different situation here.

5.5. Third choice: α = β = 50 and
∫ 1

0
ρh(t, x)dx = 125. This last test-case

corresponds to a stabilization in time onto a non-constant steady-state after the first
bifurcation point. The red curve indicating stable values for ϕ at each edge of the
computational domain is a pitchfork with the inferior branch being very close to zero
and the superior one which increases quite fast with respect to the initial mass. This
hints that ρ is likely to concentrate strongly close to the borders. This is indeed what
happens on Fig. 5.9 which display the results generated by the well-balanced scheme
around time t = 30; as before, ϕh(t, .) seems to connect both values of the pitchfork
curve going this time from nearly zero up to 680. The macroscopic fluxes Jh are of
the order of 10−7 and this is equivalent to say that the kinetic densities wh, zh are
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Fig. 5.9. Cell density ρh, chemoattractant ϕh (left) and mass flow rate Jh, (∂xϕ)h (right).
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practically Maxwellian. The evolution of the residues on Fig. 5.10 is very reminiscent
of the one shown in Fig. 5.7. The test-case is super-characteristic since |∂xϕ| ≫ λ.

6. Conclusion and outlook. We addressed 2 main topics in this paper:

1. The numerical experiments of [24] show that conventional upwind schemes
display a spurious behavior when it comes to approximate the long-time
asymptotics of the system (1.1) in super-characteristic relaxation regime for
which |∂xϕ| > λ. A new type of discretization (so–called Asymptotic High-
Order schemes [1, 36]) has been set up specifically to correct this deceptive
feature. Here, we explained that this defect is mainly a well-balancing
problem which is reminiscent of the spurious behavior of standard numerical
schemes on shallow water equations with topography or some atmospheric
modelings [4], especially when it comes to decaying toward non-constant
steady-states. A well-balanced and asymptotic-preserving scheme for (1.1)
has been studied in [16] in sub-characteristic regime; here we show numeri-
cally that it allows to simulate efficiently the correct long-time asymptotics
prescribed in [24] with both constant and non-constant steady-states.

2. We also raised the fact that, since (1.1) is essentially a discrete velocity ki-
netic model, the spurious stationary states of conventional schemes with big
mass flows inside the computational domain correspond to a strong devi-
ation away from the Maxwellian distribution. Thus one can think
that well-balanced discretizations may be necessary in the context of the nu-
merical simulation of general kinetic problems for which a convergence onto
the Maxwellian distribution is expected for large times. A first step in this
direction has been taken for 1-D radiative transfer models in [17] by tak-
ing advantage of the Case’s eigen-decomposition in “elementary solutions”
(sometimes referred to as Caseology [5, 40]). Let us quickly present how one
can extend these results toward seemingly more involved chemotaxis models:
following [38], the Cattaneo system (1.3) is a 2-velocity restriction of more a
general kinetic equation which reads,

∂tf + ξ∂xf =
1

2λ

∫ λ

−λ

(
1 + mξξ′∂xϕ(t, x)

)
f(t, x, ξ′)dξ′ − f.(6.1)

This is a so–called “run and tumble” model: the parameter m > 0 measures
the sensibility to ∂xϕ during the “tumbling phases” where the cell reorients
itself in a direction of increasing chemoattractant concentration. Being able
to build a well-balanced and asymptotic-preserving scheme for (6.1) means
that one can compute easily the solutions of the forward-backward problem
for its steady-state equations: for m = 0, this is done in [17] by exploiting
the seminal paper of K. Case [5]. The handling of the flux term for m > 0
proceeds by observing that, assuming again that ∂xϕ is a constant at each

interface, the integral 1
2λ

∫ λ

−λ
mξ′f(t, x, ξ′)dξ′ equals a constant, Jm. Thus

its effect reduces to a translation of Jmξ∂xϕ with respect to the solutions
computed in [17]. This trick has been used in a different context in [18].

Appendix A. The sub-characteristic WB/AP scheme of [16].

A.1. Hyperbolic scaling: Well-balanced. In order to solve the Riemann
problem for (1.4), we must derive the jump relations ruling the non-conservative
product. Let us denote by w̄, z̄ the microscopic profiles which are shrunk inside the
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discontinuity: they satisfy a forward-backward problem for the stationary equations
of (1.3) which reads, for x ∈ [0, h],

2λ2∂x

(
w̄
z̄

)

=

(
∂xϕ + λ ∂xϕ − λ
∂xϕ + λ ∂xϕ − λ

) (
w̄
z̄

)

,(A.1)

with inflow boundary data. Its solution reads, with obvious notation:

J̄(h) ≡ J̄(0), ρ̄(h) =

[

ρ̄(0) −
hJ̄(0)

λ2

]

exp(h∂xϕ/λ2).

At this microscopic scale, the quantity ∂xϕ is a constant. Hence we have the result:
Lemma A.1. For any h > 0, the stationary equations of (1.3) yield the following

jump relations across the zero-waves of (1.4) located in (j − 1
2 )h, j ∈ Z:

w̄(0) =
2

1 + B
w̄(h) +

1 − A

1 + B
z̄(0), z̄(h) = −

1 − B

1 + B
w̄(h) +

A + B

1 + B
z̄(0),(A.2)

with the notation:

A =

(

1 −
h

λ

)

exp(h∂xϕ/λ2), B =

(

1 +
h

λ

)

exp(h∂xϕ/λ2).

In particular, the following important relation holds: (flux conservation)

w̄(0) − w̄(h) =
1 − B

1 + B
w̄(h) +

1 − A

1 + B
z̄(0) = z̄(0) − z̄(h).(A.3)

It is interesting to observe that a simple linearization of exponentials gives:

1 ≥
1 − A

1 + B
=

exp(−h∂xϕ/λ2) − 1 + h/λ

exp(−h∂xϕ/λ2) + 1 + h/λ
≃

h

2λ

(
λ − ∂xϕ

λ − (∂xϕ − λ)h/2λ

)

≥ 0,

0 ≥
1 − B

1 + B
=

exp(−h∂xϕ/λ2) − 1 − h/λ

exp(−h∂xϕ/λ2) + 1 + h/λ
≃ −

h

2λ

(
∂xϕ + λ

λ − (∂xϕ − λ)h/2λ

)

≥ −1.

These linearizations will be useful for establishing consistency as h → 0 since |∂xϕ|
remains bounded for D, β ≥ 0 are big enough. In practice, a first order divided
difference computed at each interface x = (j − 1

2 )h and t = n∆t will appear in place
of ∂xϕ; there are no discontinuities involved in the discretization of ϕ, obviously. Once
the jump relations (A.2) are available, there is no obstacle in the derivation of the
scheme (2.3). Clearly, it can be rewritten as a more standard upwind scheme:







wn+1
j = wn

j + λ∆t
h

(
wn

j+1 − wn
j

)

+ λ∆t

h

(

1+Bn

j+ 1
2

)

(

(1 − Bn
j+ 1

2

)wn
j+1 + (1 − An

j+ 1
2

)zn
j

)

,

zn+1
j = zn

j − λ∆t
h

(
zn

j − zn
j−1

)

− λ∆t

h

(

1+Bn

j− 1
2

)

(

(1 − Bn
j− 1

2

)wn
j + (1 − An

j− 1
2

)zn
j−1

)

.

(A.4)

We stress that since A and B are computed at the borders of each control cell, the
term ∂xϕ is very well defined because odd derivatives “live on the staggered grid”.

Lemma A.2. Let w0 and z0 belong to Lp(R), 1 ≤ p ≤ ∞; under both the CFL
condition λ∆t ≤ h and the subcharacteristic restriction λ ≥ |∂xϕ|, there holds:

∀t ∈ R
+, ‖wh(t, .)‖Lp(R) + ‖zh(t, .)‖Lp(R) ≤ ‖w0‖Lp(R) + ‖z0‖Lp(R).(A.5)
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To establish strong convergence of wh and zh toward the unique solution of (1.3), we
need a bound on the total variation of wh(t, .) and zh(t, .).

Lemma A.3. Let β ≥ 0, ϕ0 ∈ W 1,∞(R) and w0, z0 ∈ L1∩BV (R); under both the
CFL condition λ∆t ≤ h and the subcharacteristic restriction λ ≥ supj,n |(∂xϕ)n

j+ 1
2

|,

the following BV-bounds hold for any n ∈ N:

TV
(
wh(n∆t, .)

)
+ TV

(
zh(n∆t, .)

)
≤ TV (w0) + TV (z0)

+L
λ

n∆t
(
‖w0‖L1(R) + ‖z0‖L1(R)

)
,

(A.6)

where L is the Lipschitz constant of
(

1−A
1+B

, 1−B
1+B

)

depending on the values of (∂xϕ)n
j+ 1

2

.

The estimates given in (A.5) and (A.6) allow to establish convergence as h → 0 in
the sub-characteristic regime by standard methods, see [16] for details. Both these
estimates fail when we enter the super-characteristic region λ < supj,n |(∂xϕ)n

j+ 1
2

|.

A.2. Diffusive scaling: Asymptotic-Preserving. Concerning the asymptotic-
preserving property of the scheme (A.4), let us introduce a diffusive scaling related to
a small parameter 0 < ε ≪ 1: x → x/ε, t → t/ε2. Based on ideas of [19, 20], it has
been proposed in [16] to rewrite (A.4) as follows:

wn+1
j = wn

j + λ∆t
εh

(
zn+1

j − wn+1
j

)

+
λ∆t

(

An

ε,j+ 1
2

+Bn

ε,j+ 1
2

)

εh

(

1+Bn

ε,j+ 1
2

)

(
wn

j+1 − zn
j

)
+

λ∆tCn

ε,j+ 1
2

εh

(

1+Bn

ε,j+ 1
2

) wn
j+1,

zn+1
j = zn

j − λ∆t
εh

(
zn+1

j − wn+1
j

)

−
λ∆t

(

An

ε,j− 1
2

+Bn

ε,j− 1
2

)

εh

(

1+Bn

ε,j− 1
2

)

(
wn

j − zn
j−1

)
−

λ∆tCn

ε,j− 1
2

εh

(

1+Bn

ε,j− 1
2

) wn
j .

(A.7)

The rescaled parameters read:

Aε =

(

1 −
h

ελ

)

exp(h∂xϕ/ελ2), Bε =

(

1 +
h

ελ

)

exp(h∂xϕ/ελ2).

It is possible (even if somewhat tedious) to establish Lp and BV bounds of the type
(A.5) and (A.6) uniform in ε for (A.7) under the usual parabolic CFL condition,
∆t = O(h2). Moreover, a control on the deviation with respect to the Maxwellian
distribution can be established:

Lemma A.4. If ‖w0−z0‖L1(R) = O(ε) (well-prepared initial data) and for ε small
enough, there holds for any t > 0:

‖wh(t, .) − zh(t, .)‖L1(R) = O(ε).(A.8)

This lemma is essential in order to prove rigorously the AP property of the scheme;
indeed, by first letting ε → 0, one gets:

Theorem A.5. Under the assumptions of Lemma A.4, for any n ∈ N:

ρn+1
j − ρn

j

∆t
+

(∂xϕ)n
j+ 1

2

ρn
j+1 − (∂xϕ)n

j− 1
2

ρn
j

h
= λ2

ρn
j+1 − 2ρn

j + ρn
j−1

h2
+ O(ε).

In particular, the sequences wh, zh are relatively compact in L1
loc(R

+
∗ × R) as ε → 0

with h > 0 fixed and the remaining term in O(ε) converges to zero in L1.
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Appendix B. Improvements coming from the Crank-Nicholson scheme.
In Remark 4, a more sophisticated discretization for ϕ is briefly presented. Here, we
want to illustrate the behavior of our well-balanced scheme (2.3)–(2.4) for (1.3) when
it is completed by the Crank-Nicholson method. We selected initial data of the type
(4.2), but with a stronger discontinuity:

{
wh(t = 0, x) = 1

2

(
1135 + 230χx∈[0.4,0.55]

)
,

zh(t = 0, x) = 1
2

(
1135− 230χx∈[0.55,0.7]

)
,

ϕh(t = 0, x) = 0.

The space and time steps correspond to a quite coarse grid:

1

h
= 128, λ = 10, λ∆t = 0.9h.

We display the steady-state on Fig.B.1, which should be compared to the Fig.5.4
obtained with the simpler time integrator (2.7) on a finer grid. The main difference
comes from the flux term Jh which is much smaller on the results computed by means
of the Crank-Nicholson scheme. The other quantities ρh, ϕh, ∂xϕh are very similar
to the ones obtained by using (2.7). Another difference appears when comparing the
residues’ decay on Fig. B.2 (to be compared with Fig. 5.5): an interesting improve-
ment of the Crank-Nicholson scheme is that residues decay more quickly and at time
t = 30, they stall around 10−12. However, we still observe the decay decomposed into
3 different phases as explained in §5.2.
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Fig. B.1. Cell density ρh, chemoattractant ϕh (left) and mass flow rate Jh, (∂xϕ)h (right).
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[40] G.C. Pomraning, (Weakly) three-dimensional Caseology, Ann. Nucl. Energy 23 (1996) 413–427.
[41] R. Schaff, Stationary solutions of chemotaxis systems, Trans. Amer. Math. Soc. 292 (1985)

531-556
[42] L.A. Segel, A theoretical study of receptor mechanisms in bacterial chemotaxis, SIAM. J. Appl.

Math., 32 653-665, 1977
[43] J.H.M. ten Thije Boonkkamp, M.J.H. Anthonissen, The Finite Volume-Complete Flux Scheme

for Advection-Diffusion-Reaction Equations, J. Scient. Comput. 46 47-70, 2011.
[44] X. Ying, C.W. Shu, S. Noelle, On the Advantage of Well-Balanced Schemes for Moving-Water

Equilibria of the Shallow Water Equations, J. Scient. Comput. (2011), to appear.


