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ABSTRACT

Stream languages explicitly describe fork-join parallelism

and pipelines, offering a powerful programming model

for many-core Multi-Processor Systems on Chip (MPSoC).

In an embedded resource-constrained system, adapting

stream programs to fit memory requirements is particularly

important. In this paper we present a new approach to re-

duce the memory footprint required to run stream programs

on MPSoC. Through an exploration of equivalent program

variants, the method selects parallel code minimizing mem-

ory consumption. For large program instances, a heuristic

accelerating the exploration phase is proposed and evalu-

ated. We demonstrate the interest of our method on a panel

of ten significant benchmarks. Using a multi-core modulo

scheduling technique, our approach lowers considerably

the minimal amount of memory required to run seven of

these benchmarks while preserving throughput.

KEYWORDS: Stream Languages, Data Flow, Mem-
ory, Graph Transformations.

1. INTRODUCTION

The recent low-consumption Multi-Processors Systems on

Chip (MPSoC) enable new computation-intensive embed-

ded applications. Yet the development of these applications

is impeded by the difficulty of efficiently programming par-

allel applications. To alleviate this difficulty, two issues

have to be tackled: how to express concurrency and par-

allelism adapted to the architecture and how to adapt par-

allelism to constraints such as buffer sizes and throughput

requirements.

Stream programming languages [10][15][11] are partic-

ularly adapted to describe parallel programs. Fork-join

parallelism and pipelines are explicitly described by the

stream graph, and the underlying data-flow formalism en-

ables powerful optimization strategies. As an example,

the StreamIt [10] framework defines transformations of

dataflow programs guided by greedy heuristics and enhanc-

ing parallelism through fission/fusion operations. How-

ever, to our knowledge, there is no method that explores

the design space based on the different expressions of par-

allelism and communication patterns. The main difficulty

comes from the definition of a space of semantically equiv-

alent parallel programs and from the computational com-

plexity of such exploration.

In this paper we propose a design space exploration tech-

nique that generates, from an initial program, a set of se-

mantically equivalent parallel programs, but with different

buffer, communication and throughput costs. Using an ap-

propriate metric, we are able to select among all the vari-

ants, the one that best fits our requirements. We believe

that our approach is applicable to memory, communication

and throughput requirements, yet this paper focuses only

on memory requirements.

The buffer requirements of stream programs depend not

only on the rates of actors but also on the chosen map-

ping and scheduling. We illustrate the memory reduction

achieved by our technique using the modulo scheduling ex-

ecution model. Memory reduction on modulo scheduling

has already been studied by Choi et al[6]. They propose

an integer linear programming (ILP) approach to tackle the

Memory-constrained Processor Assignment for minimizing

Initialization Interval (MPA-ii) problem and measure the

minimal memory requirements that their solution require.

By exploring the memory design space of the input pro-

grams before mapping them with Choi et al. approach,

we further reduce the memory requirements (sometimes as

much as 80%).

Section 2 introduces the stream formalism used. The

transformations producing semantically equivalent pro-



gram variants are described in Section 3. Section 4 presents

the exploration algorithm built upon these transformations

and the algorithm termination proof. Section 5 reviews the

MPA-ii problem that we use to illustrate the benefits of our

exploration method and the metric used during our explo-

ration. In Section 6 we describe our experimental method-

ology and results. Finally, Section 7 presents related works.

2. FORMALISM

Our formalism, very close to StreamIt[10], describes a pro-

gram using a cyclo-static data flow (CSDF) graph[4] where

nodes are actors that are fired periodically and edges rep-

resent communication channels. Consider the example of

stream graph in fig. 1. Different types of actors are consid-

ered.

Source I and Sink O actor nodes model respectively a pro-

grams input and output. The source produces a stream of

inputs elements, whereas the sink consumes all the ele-

ments it receives. If a source produces always the same

element it is a constant source C. A sink whose elements

are never observed is called a trash sink T.

Functions in the imperative programming paradigm are re-

placed by Filter actors F(c1,p1). Each filter has one input

and one output, and an associated pure (without internal

state) function f . Each time there are at least c1 elements

on the input, the filter is fired: the function f consumes the

c1 input elements and produces p1 elements on the output.

Then there are nodes that dispatch and combine streams

of data from multiple filters, routing data streams through

the program and reorganizing the order of elements within

a stream. Join round-robin J(c1 . . . cn) gathers the ele-

ments received on its n inputs and writes them on its out-

put. In its kth firing the node consumes cu ∈ N
⋆ elements

on its uth input, with u = (k mod n)+1 and writes them

on its output. When the node has consumed elements on

all its inputs, it has completed a cycle. Split round-robin

S(p1 . . .pm) dispatches the elements it receives on its in-

put among its m outputs. In its kth firing the node takes

pv ∈ N
⋆ elements on its input, with v = (k mod m) + 1

and writes them to the vth output. Duplicate D(m) has

one input and m outputs. Each time this node is fired, it

takes one element on the input and writes it to every out-

put, duplicating its input m times.

2.1. Schedulability

We can schedule a CSDF graph in bounded memory if it

has no deadlocks (it is live) and if it admits a steady-state

schedule (it is consistent) [4][14]. A graph deadlocks if the

number of elements received by any sink remains bounded
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Figure 1. A Simple Stream Graph: the split node S consumes

alternatively p1 and p2 elements from I . These are passed to fil-

ters F and G (that may be scheduled concurrently) and their out-

puts are combined by the join node J and passed to H .

no matter the number of elements streamed through the

sources.

A graph is consistent if it admits a steady-state sched-

ule, that is to say a schedule during which the amount

of buffered elements between any two nodes remains

bounded. A consistent CSDF graph G with NG nodes

admits a positive repetition vector ~qG = [q1, q2, . . . , qNG
]

where qi represents the number of cycles executed by node

i in its steady-state schedule. Given two nodes u, v con-

nected by edge e. We note β(e) the elements exchanged on

edge e during a steady-state schedule execution. If node u
produces prod(e) elements per cycle on edge e and node v
consumes cons(e) elements per cycle on edge e,

β(e) = prod(e)× qu = cons(e)× qv (1)

2.2. Executing a CSDF on a Multi-Core System

There are different approaches to map and execute a CSDF

graph [10][14]. In this paper we use the Stream Graph

Modulo Scheduling (SGMS) approach for multi-core sys-

tems proposed in [13]. SGMS is similar to classical mod-

ulo scheduling for instructions, each node u is assigned a

single processing element (PE) and is scheduled on a par-

ticular activation stage stageu. Stages are activated gradu-

ally, forming a software pipeline that executes the different

nodes in the stream concurrently.

The first phase of SGMS is the PE assignment. By solving

an ILP problem, we assign to each PE a group of nodes,

so that every node is assigned to a exactly one PE and the

computing load of the nodes is balanced among the PEs.

The second phase of SGMS is the stage assignment. Its role

is to select an efficient temporal schedule for the software

pipeline. This is achieved by enforcing two simple rules:

• Preservation of data dependences: The stage number

of a producing actor must be greater or equal than the

stage number of the consuming actor.

• Overlapping transfer latencies and computation time:

Two actors u, v that are mapped to different PEs and
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Figure 2. SGMS Software Pipeline on 2 PEs with a DMA

for the Graph in fig. 1: the indexes indicate the current node

appearance. An appearance of node N correspond to qN cycles,

that is to say an execution in the steady-state schedule.

connected by e need a DMA operation or a network

operation to transfer the data from one PE to the

other. In this case we schedule the data transfer of

e in stagee and we enforce that stageu < stagee <
stagev . By scheduling the data transfer on a differ-

ent stage than the consumer and producer on the soft-

ware pipeline, we ensure that data transfer latencies

and computation time are efficiently overlapped.

In fig. 2, we show one possible SGMS schedule for the

program in fig. 1. Nodes I, S, F are assigned to processing

element P1 and nodes G, J,H are assigned to processing

element P2.

3. SEARCH SPACE

In this section we present the transformations that are used

to generate variants preserving the semantics of the input

program.

3.1. Graph Transformation Framework

The graph transformation framework presented here fol-

lows the formulation given in [3]. A transformation T
applied on a graph G, generating a graph G′ is denoted

G
T
−→ G′. It is defined by a matching subgraph L ⊆ G,

a replacement graph R ⊆ G′ and a glue relation g that

binds the frontier edges of L (edges between nodes in L
and nodes in G\L) to the frontier edges of R.

The graph transformation works by deleting the match sub-

graph L from G thus obtaining G\L. After this deletion,

all the edges between G\L and L are left dangling. We

then use the glue relation to paste R into G\L obtaining

G′. We will describe transformations by giving the match

and replacement subgraphs as in fig. 3. The input and out-

put edges will be denoted ix and oy in both graphs. The

natural correspondence between the ix (resp. oy) of L and

R gives the glue relation.

Definition 1 A derivation of a graph G0 is a chain of

transformations that can be successively applied to G0:

G0
T0−→ G1 . . .

Tn−−→ . . ..

Definition 2 A transformation T preserves the semantics

of G if T preserves consistency, liveness and if for the same

inputs, the graph generated by T , G′, produces at least the

same outputs as G.

The first two properties ensure that the transformation pre-

serves the schedulability of the graph (cf. sec. 2). The last

property ensures that the transformation does not change

the observable outputs of the program. Because some of

our transformations “relax” the consumption or production

rates of split and join nodes, a variant may produce more

values on the outputs than the original graph. If this was

not allowed we would lose many desirable transformations.

Besides, they still preserve the semantics since the extra

values can be safely ignored by redirecting them to a fic-

titious Trash node (the number of extra values is known at

compile time).

A formal definition of the semantic preservation of CSDF

transformations is found in [7], also an illustration of the

interest of allowing extra values is provided.

3.2. Simplifying Transformations

These transformations, remove nodes with either no ef-

fect or non-observed computations, and separate split-join

structures into independent ones.

Dead code elimination(fig. 3(f)) is a dead-code elimina-

tion for stream graphs. A node for which all outputs go to

a Trash can be replaced by a Trash itself without affecting

the semantics. This transformation progressively removes

nodes whose outputs are never observed.

Constant propagation(fig. 3(i)) when a constant source

is split we can eliminate the split duplicating the constant

source.

RemoveJS / RemoveSJ / RemoveD (not shown in the fig-

ure) are very simple transformations which remove nodes

whose composed effect is the identity : a split and a join

of identical consumption and productions, a single branch

dup, a single branch split, etc.

CompactSS/CompactDD/CompactJJ (fig. 3(e)) fuse to-

gether a hierarchy of Splits, Joins or Duplicate nodes.

CompactDD is always possible, we can replace any tree of

Duplicate nodes by a single Duplicate node which copies

its input stream to every output edge of the original tree.

CompactSS is possible when when the lower split produc-

tions sum is equal to the production on the edge connecting

the lower and upper splits. CompactJJ is possible when

when the upper join consumptions sum is equal to the con-

sumption on the edge connecting the lower and upper joins.
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Figure 3. Set of Transformations Considered: each transformation is defined by a graph rewriting rule. Node N is a wildcard for any

arity compatible node.

Synchronization Removal(fig. 3(g)) is possible when the

sum of the join consumptions is equal to the sum of the split

productions:
∑

x cx =
∑

y py . The idea behind this trans-

formation is to find a partition of the join consumptions and

a partition of the split production so that their sum is equal:∑
x≤j cx =

∑
y≤k pk. In that case we can split the Join-

Split in two smaller and independant Join-Split.

BreakJS(fig. 3(h)) is triggered when
∑

x cx =
∑

y py
but no partition of the productions/consumptions can be

found. In that case the transformation breaks the split or

join edge with the largest consumptions. BreakJS breaks

Join-Split junctions into smaller constituents, often trig-

gering Synchronization Removal separating the Join-Split

junction into two smaller junctions.

3.3. Restructuring Transformations

These transformations restructure communication patterns,

alone they do not reduce the memory requirements, but

they can rewrite the graph and trigger some of the previ-

ous transformations.

SplitF(fig. 3(a)) This transformation splits a filter on its

input. SplitF introduces split-join parallelism in the pro-

grams. Because filters are pure: we can compute each in-

put block on a different filter concurrently. The degree of

concurrency introduced by SplitF is parametric. Multiple

splitting of the same filter are useless, since they can be

achieved with a single SplitF of greater arity.

InvertJS(fig. 3(b)) This transformation inverts join and

split nodes. To achieve this it creates as many split nodes as

inputs and as many join nodes as outputs. It then connects

together the new split and join stages as shown in the fig-

ure. Intuitively, this transformation works by “unrolling”

the cycle in the original nodes (examining consecutive ex-

ecutions of the nodes) so that a common period between

the join and split stage emerges. The transformation make

explicit the communication pattern in this common period,

by inverting the split and join stages.

The transformation is admissible in two cases:

1- Each pj is a multiple of C =
∑

i ci, the transformation

is admissible choosing pij = ci.pj/C, cji = ci.
2- Each ci is a multiple of P =

∑
j pj , the transformation

is admissible choosing pij = pj , cji = pj .ci/P .

ReorderS/ReorderJ(fig. 3(c)) create a hierarchy of split

(resp. join) nodes. In the following we will only dis-

cuss ReorderS. The transformation is parametric in the split

arity f . This arity must divide the number of outputs,

m = k.f . In the figure, we have chosen f = 2. We forbid



the trivial cases (k = 1 or f = 1) where the transforma-

tion is the identity. As shown in fig. 3(c), the transforma-

tion works by rewriting the original split using two sepa-

rate stages: odd and even elements are separated then odd

(resp. even) elements are redirected to the correct outputs.

ReorderS and ReorderJ sometimes uncover possible sim-

plifying transformations by explicitly separating elements

by their f congruency (eg. even and odd elements when

f = 2),

InvertDN(fig. 3(d)) This transformation inverts a duplicate

node and its children, if they are identical. Since all nodes

are pure, their outputs depend only on their inputs; thus

applying a process k times to the same input is equivalent

to applying the process once making k copies of the output.

This transformation eliminates redundant computations in

a program.

4. EXPLORATION ALGORITHM

The exploration is an exhaustive search of all the deriva-

tions of the input graph using our transformations. We use a

branching algorithm with backtracking, as described recur-

sively in algorithm 1. The exploration is particularly mem-

ory efficient because it never copies the graph when branch-

ing; transformations are in-place applied and in-place re-

verted when backtracking.

We prove that this algorithm terminates by showing for any

initial graph, that once a large enough recursion depth is

reached, no transformations will satisfy the for all con-

dition in statement 6. This follows from the fact that the

transformations considered cannot produce infinite deriva-

tions. We prove this result formally in [7], yet a general

idea of the proof follows. We start by constructing a func-

tion on graphs τ : (Graphs) 7→ (M(N),≻), where M
is the set of all finite multisets of N and ≻ its natural

well-founded order[8]. We then show that for any of the

transformations in sec. 3, τ(G) ≻ τ(G′). Using the well-

foundness of ≻ we prove that all the derivations are finite.

Algorithm 1 EXPLORE(G)

1: Simpl← {Dead Code, CompactSS, CompactJJ, ...}
2: Restr← {SplitF, InvertJS, ReorderS, ...}
3: while ∃N ∈ G ∃S ∈ Simpl : S applicable at N do

4: G← SN (G)
5: end while

6: for all N ∈ G and T ∈ Restr : T applicable at N do

7: G← TN (G)
8: EXPLORE(G)

9: G← RESTORE(G)
10: end for

4.1. Dominance Rules

Generated graphs G are often obtained through application

of transformations operating on distinct part of the graph.

In that case, applications of these transformations com-

mute, meaning that the order in which they are applied does

not change the resulting graph. Therefore only one of the

possible permutations of the application order is explored.

To select only one of the possible permutations, an arbitrary

ordering (⊏) is defined on the transformations. We say that

T1 dominates T2 if T1 ⊏ T2. A new transformation is ap-

plied only if it dominates all the earlier transformations that

commute with it.

A sufficient condition for an early transformation T1 to

commute with a later transformation T2 is that the nodes

that are matched by L2 were already present before apply-

ing T1. This condition can be easily checked if nodes are

tagged with a creation date during exploration.

4.2. Partitioning Heuristic

Exhaustive search may take too much time on large graph

instances. The optimization presented in the previous sec-

tion alleviates this complexity issue; however for large

graphs like Bitonic (370 nodes) or DES (423 nodes) in sec-

tion 6, the exploration still takes too much time. To bound

exploration time, we have implemented an heuristic com-

bining our exploration with a graph partitioning of the ini-

tial program.

For this to work, the metrics we optimize must be

composable: there must exist a function f that ver-

ifies for every partition G1, G2 of G, metric(G) =
f(metric(G1),metric(G2)).

We show that reducing the initial program size, reduces the

exploration maximal size. Our heuristic, based on this re-

sult works by partitioning the initial program in partitions

of at most PSIZE nodes. If the metric we try to optimize

is composable, exploring each partition separately, select-

ing the variant which optimizes f for each partition, and

assembling them back together leads to valid results. To

partition the graphs we use the freely available Metis [12]

graph partitioning tool.

The downside of this heuristic is that we loose the trans-

formations involving nodes of different partitions. Yet our

benchmarks in section 6 show that the degradation of the

final solution is acceptable (except for very small parti-

tions).



5. MEMORY REQUIREMENTS IN SGMS

To evaluate our design-space exploration method, we apply

it to memory reduction on a SGMS (cf. sec. 2) execution

model.

The authors of [6] have studied the problem of reducing

memory requirements in stream modulo scheduling. They

introduce the problem MPA-ii, Memory-constrained Pro-

cessor Assignment for minimizing Initiation Interval, and

propose an ILP based solution; then they measure the mini-

mal memory requirements achieved by their assignment. In

the following we will show that if our exploration method

is used we can significantly decrease these requirements.

To compute the buffer sizes required by two nodes u and v
communicating through an edge e, the authors in [6] con-

sider two kinds of situations:

• u and v are on the same PE, the output buffer of u can

be reused by v.

• u and v are on different PE, buffers may not be shared,

since a DMA operation d is needed to transfer the

data. The stage in which d is scheduled is noted

staged.

The number of elements produced by u and consumed by

v on edge e during a steady-state execution is called β(e)
and given by eq. (1). Furthermore, since multiple exe-

cutions of the streams may be on flight in the pipeline

at the same time, buffers must be duplicated to preserve

data coherency. The number of buffer copies needed is

the number of stages between the two nodes, δ(u, v) =
stagev − stageu + 1.

The output buffer requirements for all the nodes but Dupli-

cate are,

out bufs(i) =
∑

∀e∈outputs(i)

δ(u, v) ∗ β(e) (2)

For Duplicate nodes, since the output is the same on all the

edges, buffers can be shared by recipients, so the formula

becomes : max∀e∈outputs(i) δ(u, v) ∗ β(e).

The input buffer requirements are,

in bufs(i) =
∑

∀e∈dma inputs(i)

δ(v, d) ∗ β(e) (3)

Combining (2)(3) we obtain the total memory requirements

for a node b(i) = out bufs(i) + in bufs(i).

5.1. Metrics

In this section we propose a metric that selects candi-

dates which improve the memory required for the modulo

scheduling. From equations (2)(3) we observe that to re-

duce b(i) we can either reduce the stage difference between

producers and consumers, δ(u, v), or we can reduce the el-

ements exchanged during a steady-state execution, β(e).

The authors of [6] already optimize the δ(u, v) when possi-

ble. We attempt to reduce b(i) by reducing β(e). To reduce

the influence of the β(e) in the buffer cost we search the

candidate that minimizes, maxbuf(G) = max∀e∈G β(e).
if we have a tie between multiple candidates, we chose the

one that minimizes, totbuf(G) =
∑

∀e∈G β(e).

We note that these metrics are composable, as re-

quired by the partitioning heuristic described in sec-

tion 4. Indeed given a partition G1, G2 of G, we have

maxbuf(G) = max(maxbuf(G1),maxbuf(G2)) and

totbuf(G) = totbuf(G1) + totbuf(G2).

6. RESULTS

We consider a representative set of programs from the

StreamIt benchmarks [1]: Matrix Multiplication, Bitonic

sort, FFT, DCT, FMradio, Channel Vocoder. We also con-

sider three benchmarks of our own: Hough filter and fine

grained Matrix Multiplication (which both contain cycles

in the stream graph), and Sobel filter.

We first compute for each benchmark the minimal mem-

ory requirements per core for which an MPA-ii mapping

is possible. We will use this first measure, MPAii mem,

as our baseline. We then use our exploration method on

each benchmark, and select the best candidate according to

the metrics described in section 5. We compute the MPA-ii

minimal memory per core requirements for the best candi-

date: Exploration MPAii mem.

Finally we compute the memory requirements reduction

using the following formula:

(MPAii mem− Exploration MPAii mem)

MPAii mem

As shown in [13] it should be possible to integrate filter

splitting in Choi et al. approach. Thus to make the compar-

ison fair, we have not taken into account any further mem-

ory reduction achieved by SplitF transformation.

6.1. Memory Reduction

The exhaustive search is used for all the benchmarks ex-

cept DES and Bitonic for which we used the partitioning



heuristic, the partition maximum size (PSIZE) was set to

60 which was empirically determined as a good compro-

mise between speed and quality of the solution. A signifi-

cant memory reduction is achieved in seven out of the ten

benchmarks. This means that in these seven cases the ap-

plication can be executed with significantly less memory

than using the approach in [6]: either a larger application

can be mapped to the same architecture or an architecture

with smaller memory requirements can be designed for this

application. In terms of throughput, our method does not

degrade the performance since we obtain similar II (initial-

ization interval) values than bare MPA-ii.

The experimental results obtained are summarized in fig. 4.

We can distinguish three categories among the bench-

marks:

No effect (DCT, FM, Channel), in this first group of bench-

marks, we do not observe any improvement. Indeed these

programs make little use of split, join and duplicate nodes.

They are almost filter only programs. Because our transfor-

mations operate essentially on data reorganisation nodes,

they have no effect on these examples. The very small im-

provement in Channel is due to a single SimplifyDD that

compacts a serie of duplicate nodes.

Loop splitting (MM Fine, Hough), these two benchmarks

contain cycles. Using our set of transformations we are able

to split the cycles, as we demonstrate in fig. 5 for the Hough

benchmark. This is particularly interesting in the context of

modulo scheduling where cycles must be fused [13]. In the

Hough selected variant, the cycle is broken in three smaller

cycles: Thus after fusion, it has more fine-grained filters,

and achieves smaller memory requirements.

Dependencies breaking and communication reorgani-

sation (MM coarse, MM fine, FFT, Bitonic, Sobel, DES),

the other benchmarks show varying memory reductions, re-

sulting from a better expression of communication patterns.

Either non needed dependencies between nodes have been

exposed, allowing for a better balance among the cores, or

groups of split, join and dup have been simplified in a pat-

tern that is less memory consumming.

6.2. Variation when Changing the Number of PE

In this section we study the memory reduction variance de-

pending on the number of cores in the target architecture.

We can identify two categories:

Plateau, graphs in this category, Bitonic, FFT, DES, show

little change over the number of PEs. We observe in table 1

that for these graphs, maxbuf remains at the same level

but totbuf has decreased.

Table 1. Metrics Variations between the Original Graph and

the Best Selected Candidate (in number of elements).

Benchmark maxbuf variation totbuf variation

MM fine -1500 -630

MM coarse -1520 -209

Bitonic 0 -480

DES 0 -3514

FFT 0 -184

DCT 0 0

FM -6 +6

Channel 0 -17

Sobel -3392 -3841

Hough -28000 -29933

Table 2. Measured Exploration Costs.

Benchmark
Number

of nodes

Exhaustive

search

time

Search time

after partitioning

(PSIZE = 60)

MM fine 17 2s -

MM coarse 14 <1s -

Bitonic 370 >6hours 111s

DES 423 5hours 3.5s

FFT 106 33s 32.9s

DCT 40 <1s -

FM 43 <1s -

Channel 57 <1s -

Sobel 32 9min18s -

Hough 16 3min75s -

Increasing, graphs in this category, MM Fine,

MM Coarse, Sobel, Hough, show a better memory

improvement the more PEs are used. These graphs

increase both totbuf and maxbuf .

Graph in category Increasing break the biggest memory

consumer nodes into less greedy nodes. Thus when in-

creasing the number of PEs, the mapping algorithm is able

to balance memory requirements between PEs by spliting

the biggest consumer(s) among multiple processors. This

explains that these benches show better results as we in-

crease the PE number. Once we add enough processors

to distribute all the new nodes created by the splits of the

biggest consumers, memory usage no longer improves (we

can observe this effect on Hough and MM Fine). In the

other hand, the reduction in graphs of category Plateau, is

more uniform, and thus the gain does not depend on the

number of PE.

6.3. Exploration Cost and Heuristic Evaluation

We measure the exploration time (table 2) of our method

for each of the benchmarks. The measures were taken us-

ing a Intel Pentium 4 3.8GHz computer with 4GB of RAM.

The exploration algorithms are written in Python and exe-

cuted using Python 2.5.4 interpreter running on Linux.



Figure 4. Minimal Required Memory Reductions Achieved by our Proposed Method.

(a) Original candidate after a SplitF (b) Best candidate after transformations

1. InvertJS on J6 and S15

2. InvertJS on J16 and S7

3. InvertJS on J8 and S19

4. Constant Propagation on IH

5. RemoveJS on J26

6. InvertJS on J4 and S17

7. InvertDN on D2

(c) Best candidate derivation

Figure 5. Using our Transformations to Split Cycles on the Hough Benchmark.

If we do an exhaustive search, exploration times are fast

(under 1min) for six of the benchmarks. Sobel and Hough,

having multiple high-arity nodes, show moderate explo-

ration times. Finally, without the partitioning heuristic, ex-

ploration for the largest benchmarks in our suite (DES and

Bitonic) is too long: 5 hours for DES; more than 6 hours for

Bitonic, we stopped the exploration after that point. Using

the heuristic, with PSIZE=60, the exploration of DES and

Bitonic is very fast (under 2min). The partitioning heuris-

tic effectively reduces the running time of these very large

graphs. The heuristic only marginally reduces the running

time of FFT, because the exploration complexity is unbal-

anced in the original graph. Most of the transformations

are found in the bottom half of the stream graph. Since the

partitionning method separates the graph upper and lower

part, exploring the upper part is cheap and the lower part is

almost as costly as the original graph.

We evaluate the effect of the heuristic (fig. 6) on the so-

lution quality by changing the parameter PSIZE. For each

bench we choose a set of PSIZE values that separate the

graph in 2,3,4 and 6 subgraphs. We have used smaller

versions of DES (with 8 mixing stages instead of 16) and

Bitonic (with 8 bit strings instead of 32) to evaluate the

heuristic since using the original version was impractical

because of the very long search time. The solutions for

Bitonic8, Des8 and FFT are quite good even with 6 parti-

tions, they remain close to the exhaustive solution. Solu-

tions for MM coarse, MM fine, Hough and Sobel, on the

other hand, quickly degrade as the number of partitions in-

creases; for more than two partitions, there is no improve-

ment over the original program. This result was expected

and is explained by the small size of these benchmarks (less

than 20 nodes). Indeed in this case, the partitioning pro-

cess leaves very small partitions where no transformations

can be applied. This is not a problem, since these small

instances can be handled efficiently with the exhaustive ap-

proach.

7. RELATED WORKS

The authors of [13] were the first to apply Modulo Schedul-

ing to stream graphs, evaluating their technique on the Cell

BE. In [6] their work was extended considering an em-

bedded target with memory and number of PE constraints,

MPA-ii is introduced.

StreamIt is both a language[18], and an optimizing

compiler[10]. As in our approach, StreamIt adapts

the granularity and communications patterns of programs

through graph transformation, which it separates in three

classes: fusion transformations cluster adjacent filters,



Figure 6. Evaluation of the partitioning heuristic on 8 PE: for each benchmark, we show the memory reduction achieved when

changing
NG

PSIZE
(the number of partitions used), exhaustive search is conducted independently in each partition.

coarsening their granularity; fission transformations paral-

lelize stateless filters decreasing their granularity; reorder-

ing transformations operate on splits and joins to facilitate

fission and fusion transformations.

We implement Fission transformations on stateless filters

using the SplitF transformation. In our approach, Fusion

transformations should be delegated to a later clustering

phase, since early coarsening would reduce the number

of explored variants. Instead, we have concentrated on

proposing new Reordering transformations that explore al-

ternate communication patterns. We implement StreamIt

filter hoisting on duplicate nodes with InvertDN. We pro-

pose, through RemoveJS and RemoveSJ, StreamIt synchro-

nization removal that eliminates neighbor split-joins with

matching weights. We go further tackling split-join junc-

tions of different weights with InvertJS and BreakJS, elim-

inating dead-code and removing unnecessary synchroniza-

tion on constant sources. To the best of our knowledge

StreamIt does not consider reordering transformations on

feedback loops. The dead-code elimination transformation

was already described in [16].

In the multi-dimensional dataflow model for signal pro-

cessing Array-OL, the elements that are consumed by a

task are defined by successively translating a selection pat-

tern over a multidimensional array. In [2] the authors show

that in some cases it is possible to share the patterns for

two successive tasks. We achieve a similar effect using

InvertDN, enabling a hoist of a common communication

pattern over a duplicate node.

Dataflow transformations approaches have been proposed

to optimize circuit design [5][19], but they usually target a

much smaller granularity of nodes than our filters.

Many methods for optimizing CSDF multiprocessor sched-

ules have already been proposed, some concentrate on

maximizing the throughput [4][9], other on minimizing the

memory requirements [20] and some search best pareto

configurations for both criteria [17]. Our approach does

not act at the schedule level but at the implementation level

(changing structure of the dataflow graph), it is therefore

complementary to these approaches focusing on schedule

optimization (timing the dataflow graph).

8. CONCLUSION

We propose a new design-space exploration to reduce

memory requirements of stream programs under modulo

scheduling. Memory reduction is achieved through succes-

sive semantically preserving transformations. The transfor-

mations change the structure of the stream program, break-

ing cycles, dependencies and simplifying communication

patterns.

We propose an efficient heuristic to explore the different

transformations combinations based on graph partitioning.

We demonstrate the interest of the approach on a significant

panel of benchmarks, showing large memory gains while

preserving throughput. We think that this approach is flex-

ible and could also be used with a different metric to adapt

stream programs to other constraints as communication bus

capacities, maximum latencies, memory hierarchies.

REFERENCES

[1] Streamit benchmarks. http://groups.csail.mit.

edu/cag/streamit/shtml/benchmarks.shtml.

[2] A. Amar, P. Boulet, and P. Dumont. “Projection of the

Array-OL Specification Language onto the Kahn Process

Network Computation Model”. In Int. Symp. on Parallel

Architectures, Algorithms and Networks, 2005.

[3] M. Andries, G. Engels, A. Habel, B. Hoffmann, H.-J. Kre-

owski, S. Kuske, D. Plump, A. Schürr, and G. Taentzer.
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