
HAL Id: hal-00551572
https://hal.science/hal-00551572

Submitted on 28 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A multidimensional array slicing DSL for Stream
Programming

Pablo de Oliveira Castro, Stéphane Louise, Denis Barthou

To cite this version:
Pablo de Oliveira Castro, Stéphane Louise, Denis Barthou. A multidimensional array slicing DSL
for Stream Programming. International IEEE Workshop on Practical Aspects of High-Level Parallel
Programming, Feb 2010, Krakow, Poland. p913-918. �hal-00551572�

https://hal.science/hal-00551572
https://hal.archives-ouvertes.fr

1

A Multidimensional Array Slicing DSL for Stream

Programming

Pablo de Oliveira Castro1, Stéphane Louise1 and Denis Barthou2

1
CEA LIST, Embedded Real Time Systems Laboratory,

2
University of Bordeaux - Labri / INRIA

Point Courrier 94, Gif-sur-Yvette, F-91191 France 351, cours de la Libération, Talence, F-33405 France

{pablo.de-oliveira-castro, stephane.louise}@cea.fr denis.barthou@inria.fr

✦

Abstract—Stream languages offer a simple multi-core programming

model and achieve good performance. Yet expressing data rearrange-

ment patterns (like a matrix block decomposition) in these languages is

verbose and error prone.

In this paper, we propose a high-level programming language to

elegantly describe n-dimensional data reorganization patterns. We show

how to compile it to stream languages.

1 INTRODUCTION

Stream programming languages [1][2][3] are particularly
well-suited to write efficient parallel programs for multi-
core architectures. Fork-join parallelism and pipelines
are explicitly described by the stream graph, and task
memory requirements and communication costs may
be statically extracted from the stream representation,
enabling powerful optimization strategies [4][5] for high
performance.

Languages such as StreamIt[1] or ΣC[2] are examples
of stream languages with optimizing compilers. These
compilers analyze the stream communication patterns
and simplify them, breaking useless dependencies. These
optimizations rely in particular on the fact that all
communication patterns use Split, Duplicate and Join
nodes. While very expressive, this low-level represen-
tation of dataflow reorganizations is very verbose and
error prone.

In this paper we propose a high-level language for the
description of stream reorganizations. In this language,
streams are structured through iterators, enabling the
construction of complex patterns of communication/re-
organization. We show that these iterators and patterns
can then be compiled efficiently into stream graphs
using Split, Duplicate and Join nodes. The language can
be seen as an extension to stream languages, as such
we show how it can be integrated with the StreamIt
language (but it could easily be adapted to other stream
languages). We have implemented a compiler for this
language that produces stream graphs.

1.1 Stream languages
Stream languages model parallel programs with stream
graphs. In this dataflow representation, nodes represent
either data reorganization operations between streams
or filters, and arcs are communications between nodes.
Each time a node is fired it will consume a fixed number

of elements on its inputs and produce a fixed number of
elements on its outputs.

Filters are particular nodes that have only one input
and one output, they represent computation nodes, pos-
sibly keeping a state through successive firings. Split,
Dup and Join nodes are nodes that dispatch data through
the application. Since the focus of this paper is on data
reorganization, we will concentrate on Split, Dup and
Join nodes. We recall thereafter the main types of data
reorganization nodes:
Join round-robin J(c1 . . . cn) : a join round-robin has n

inputs and one output. We associate to each input i a
consumption rate ci ∈ N�. The node fires periodically. In
its kth firing the node takes cu, where u = (k mod n)+1,
elements on its uth input and writes them on its output.
As in a classic Cyclo Static Data-Flow [6] model, nodes
only fire when there are enough elements on their input.
Split round-robin S(p1 . . .pm) : a split round-robin has
m outputs and one input. We associate to each output j

a production rate pj ∈ N�. In its kth firing the node takes
pv , where v = (k mod m)+1, elements on its input, and
writes them to the vth output.
Duplicate D(m) has one input and m outputs. Each time
this node is fired, it takes one element on the input and
writes it to every output, duplicating its input m times.

Besides, stream graphs have sources and sinks:
Source I(l): a source models a program input. It has an
associated size l. The source node is fired only once and
writes l elements to its single output. If all the elements
in the source are the same, the source is constant and
denoted by the node C(l).
Sink O: a sink models a program output, consuming
all elements on its single input. If we never observe the
consumed elements, we say the sink is trash and we write
the node T.

1.2 Motivating Example
As a motivating example we are going to present an
excerpt from a matrix multiplication program that is
shipped with StreamIt distribution 2.1.1. (cf. figure 1).

In StreamIt the stream graph is described hierarchi-
cally, in a textual form:

• add, is used to chain subgraphs.
• split duplicate, splits the previous output through a

Duplicate node.

2

f l o a t−>f l o a t p i p e l i n e
MatrixMultiply (i n t x0 , i n t y0 , i n t x1 , i n t y1) {

add RearrangeDuplicateBoth (x0 , y0 , x1 , y1) ;
add Mul t ip lyAccPara l l e l (x0 , x0) ;

}
f l o a t−>f l o a t s p l i t j o i n
RearrangeDuplicateBoth (i n t x0 , i n t y0 , i n t x1 , i n t y1) {

s p l i t roundrobin (x0 ∗ y0 , x1 ∗ y1) ;
// the f i r s t matrix j u s t needs to get dupl icated
add DuplicateRows (x1 , x0) ;

// the second matrix needs to be transposed f i r s t
// and then dupl icated
add RearrangeDuplicate (x0 , y0 , x1 , y1) ;
j o i n roundrobin ;

}
f l o a t−>f l o a t p i p e l i n e
RearrangeDuplicate (i n t x0 , i n t y0 , i n t x1 , i n t y1) {

add Transpose (x1 , y1) ;
add DuplicateRows (y0 , x1∗y1) ;

}
f l o a t−>f l o a t s p l i t j o i n
Transpose (i n t x , i n t y) {

s p l i t roundrobin ;
f o r (i n t i = 0 ; i < x ; i ++) add I d e n t i t y<f l o a t > () ;
j o i n roundrobin (y) ;

}
f l o a t−>f l o a t p i p e l i n e
DuplicateRows (i n t times , i n t length) {

s p l i t dup l i ca te ;
f o r (i n t i = 0 ; i < t imes ; i ++) add I d e n t i t y<f l o a t > () ;
j o i n roundrobin (length) ;

}

Fig. 1. StreamIt program for matrix multiplication

• split roundrobin, splits the previous output through
a Split round robin node.

• join roundrobin, joins the previous outputs with a
Join roundrobin node.

As we can observe in figure 1, describing reorganiza-
tion of 2D data in StreamIt is quite fastidious.

2 HIGH-LEVEL LANGUAGE
We propose a high-level language that describes data
reorganization operations on data streams, through the
manipulation of shapes and slicing patterns. The lan-
guage is build around five concepts: Shapes, Grids,
Blocks, Iterators described in this section.

2.1 Shapes
The language restructures input streams into multidi-
mensional patterns with shapes types. These shapes cor-
respond to a multidimentional indexing of the stream
elements.

In the following example, the two input streams,
identified by the numbers 0 and 1 and accessed using
the keyword “input”, are structured into 3 shapes:

shape [1 0] A = input 0
shape [1 5 , 1 0] B = input 1
shape [3 , 3 , 3] C = input 0

Stream 0, is viewed in A as a stream of vectors of length
10, in C as a stream of 3 × 3 × 3 cubes and stream 1 is
viewed in B as a stream of 15× 10 matrices.

More generally, given a view shape [s1, . . . , sd], the
view coordinates (x1, . . . , xd) of the first pattern corre-

spond to the linearized stream positions
d�

i=1

xi ∗
i−1�

j=1

sj .

For later patterns, we must take into account the size of
the previous patterns.

2.2 Grids
On instances of type shape we can apply the grid op-
erator which is defined by giving on each dimension i

three parameters (li, hi, δi):
• li is the lower bound of the grid for dimension i.
• hi is the upper bound of the grid for dimension i.
• δi is the stride of the grid for dimension i.

For each dimension i, we consider the set of points :

Gi = {δi.k.�ei : ∀k ∈ [| li
δi

;
hi

δi

|]}

The elements of a grid are constructed by computing
the Cartesian product of the Gi:

G = G1 ⊗ · · ·⊗Gd

They are lexicographically ordered. This ordering defines
a grid iterator G(n), where G(0) is the first element, G(1)
the second, etc.

The grid operator uses a standard slicing notation
where li, hi, δi are separated by colons and each dimen-
sion is separated by commas, [l1:h1:δ1, . . . , ld:hd:δd].

The points described by the grid B [2:15:5,0:8:3] for
instance are represented on figure 2(a). If the dimensions
of a grid are not the same as the dimensions of the shape
on which it is applied, a type error is raised. Out of
simplicity, it is possible to omit one or more values of the
triplet; missing values are replaced by sensible default
values (0 in place of li, si in place of hi, 1 in place of
δi). For instance, the above example could be written
B [2::5,:8:3] .

2.3 Blocks
The block operator can only be applied upon a grid
type. A block is a d-dimensional box parametrized
by its min and max coordinates on each dimension:
(a1:b1, . . . , ad:bd) with ai, bi ∈ Z.

(−1 : 1, 0 : 1) defines a 3× 2 block B, the points in B

are lexicographically ordered, obtaining an ordered set:

B = {(−1, 0), (0, 0), (1, 0), (−1, 1), (0, 1), (1, 1)}lex

Blocks must always be applied to a grid of same
dimension using the product (×) operator,

B [2 : : 5 , : 8 : 3] x (−1 : 1 , 0 : 1)

which describes the points in figure 2(b). If a block does
not have the same dimension as the grid to which it is
applied, a type error is raised.

To apply a block on a grid, we center the block around
each point of the grid and take the resulting set of
points. The resulting points, in order, are defined by the
following iterator of ordered sets,

GB(n) = {g + b : ∀b ∈ B}lex

Successive blocks may overlap, for example,
B [::,0:1:] x (0:1,0:9) , extracts successive blocks of
columns pairs from A (cf. fig. 2(c)).

When blocks fall partially or totally outside of the
shape defined for the current stream, a configurable
default value is returned for missing elements.

3

(a) B [2:15:5,0:8:3] (b) B [2::5,:8:3] x (−1:1, 0:1) (c) B [::,0:1:] x (0:1,0:9)

Fig. 2. Set of points described by, (a) a grid[2], (b) a gridblock[2], (c) an overlapping gridblock[2]. The gradient of

colors gives the iterator order (cool colors are first).

2.4 Iterators

Shape, grid and gridblock are all instances of the iterator

type. We combine instances of the iterator type to reor-
ganize our data, using the “for”, “in” and “push” key-
words. The “for in” construct iterates over the elements
of a given iterator. The “push” keyword produces an
element or a ordered set of elements on the output.

shape [3] D = input 0
shape [2] E = input 1

f o r d in D:
f o r e in E :
push e
push d

produces the elements

{E(0), D(0), E(1), D(0), E(0), D(1), E(1), D(1), . . . }

2.5 Zipping

We introduce the zip polymorphic operator that enables
us to interleave two iterators, or two ordered set of
elements.

zip(A,B) interleaves the elements in the operands,

Z(n) =
�

A(n

2) if n ≡ 0(mod.2)
B(n−1

2) if n ≡ 1(mod.2)

2.6 Type system

The operators defined previously have a strict type sys-
tem, ensuring that only correct programs are accepted:

grid, gridblock,shape ∈ iterator

shape[s1, . . . , sd] : shape[d]
[l1:h1:δ1, . . . , ld:hd:δd] : shape[d] → grid[d]

(a1 : b1, . . . , ad : bd) : grid[d] → gridblock[d]
for.in : iterator → orderedset

push and zip are polymorphic operators which we can
both use on orderedset or iterators. push returns an IO

type, since it pushes the elements in its operand to the
output channel.

3 COMPILATION
This section presents the compilation of the high-level
language introduced in the previous section into a
stream graph. First we show that we can extract any
gridblock[1] using stream graphs. Then we compile
gridblock[d] graphs by composing multiple gridblock[1]
graphs. Finally we show how to handle “for in push”
primitives.

3.1 Compilation of 1D gridblock
We observe that [l : h : δ] is equivalent to [l : h : δ]× (0 :
0); therefore compiling grid[1] instances is a special case
of gridblock[1] compilation.

We separate gridblock[1] ≡ [l : h : δ]× (a : b) extraction
in two steps:

• (cf. sec. 3.1.1), select the region [l� : h� : 1] where l� =
l − a is the coordinate of the first element required,
and h� = l� + δ.((h − l) div. δ) + b the coordinate of
the last element.

• (cf. sec. 3.1.2 to 3.1.4), inside this region, extract the
blocks [:: δ] × (0 : w), where w = b − a + 1 is the
width of the blocks.

Because a stream may contain an infinite sequence of
patterns, it is important for the produced graphs to be
reused an infinite number of times. We have ensured
that after a pattern is consumed there are no left-over
elements in any of the edges. This steady state execution
guarantees that the graph can be reused without side-
effects.

3.1.1 Selecting a region
We want to extract the region [l� : h� :] from a shape[1]
of length s. If the region is [0 : s :], we have nothing
to do. In the other cases we must either cut some data
(when the region is smaller than the shape) or inject
some default values (when the region falls outside of
the defined shape). These two cases can happen both
for the upper or lower bound, we are going to detail the
process for the lower bound:

• when l� = 0, we do nothing;
• when l� < 0 we inject −l� default elements using a

Join node and a constant Source;
• when l� > 0 we cut the first l� elements using a Split

node and a trash Sink.
For l� = −3, h� = 8 and s = 10 we obtain the graph
represented in figure 3.

Once the region is selected, a sequence of blocks can
be extracted from it. Consider w, the width of the blocks,

4

Fig. 3. Example of graph for grid region extraction

(a) J1: 0
J2:
J3:

(b) J1: 0 1
J2: 1
J3:

(c) J1: 0 1 2 3
J2: 1 2 3
J3: 2 3

(d) J1: 0 1 2 3
J2: 1 2 3 4
J3: 2 3 4 5

Fig. 5. Pipeline filling during complete overlap.

and δ, the stride of the grid. Depending on the ratio w

δ

we can distinguish three situations:
• w

δ
≤ 1, no overlap, see section 3.1.2.

• 1 <
w

δ
< 2, partial overlap, see section 3.1.3.

• 2 ≥ w

δ
, complete overlap, see section 3.1.4.

3.1.2 Extracting no-overlapping blocks (fig. 4(a))
In this case, a sequence of n blocks of size w, separated
by gaps of size δ − w must be produced in the stream.
With a first split (S1) we extract the first block w, then
n − 1 blocks+gaps. The first block is produced on the
output, then for each block+gap, we produce the block
and throw away the gap with (S2+T).

3.1.3 Extracting partial overlapping blocks (fig. 4(b))
In this case, n blocks of size w, with overlaps of size
w − δ (except for the first and last blocks) have to be
extracted. We produce w− δ elements at the start of the
stream (first edge of S1). After that we extract (second
edge of S1) a sequence of (n − 1) chunks of δ elements
(outlined in purple on the figure).

For each of these chunks, we separate (using S2) the
overlapping (in stripped green) and non-overlapping
parts. Both are produced, but the overlapping part is
duplicated first (using D1). Finally we produce the re-
maining δ elements for the last block (using the third
edge of S1).

3.1.4 Extracting complete overlapping blocks (fig. 4(c))
In the complete overlap case, we must produce n blocks,
that are overlapped. This case corresponds to filling a
pipeline. It is the most difficult of the patterns, because
the number of nodes produced depends on the maximal
number moverlap of overlapping elements. We show that
moverlap = min(�w

δ
�, n). This overlap is reached once the

pipeline is full (green stripped blocks), yet the pipeline
must be filled and emptied (purple stripped and pink
blocks). We are going to demonstrate how to achieve
this when moverlap = 3. The approach below can be
generalized for any value moverlap.

We start with moverlap joins (here J1, J2, J3). We start
filling the pipeline, putting the first element in J1, as in

w

δ

M
M

M

Fig. 6. Complete overlap with missing blocks (marked

with an M)

h1l1

h2

l2

N

w2
δ2

w1

δ1

Fig. 7. Multidimensional region extraction

fig. 5(a). Then we duplicate the second element twice
(with D1) and put it in J1 and J2, as in fig. 5(b). The
pipeline is now at full regime, each element of the stream
is replicated three times (with D2) and put in J1, J2, and
J3, as in fig. 5(c). Finally using D3 to duplicate 5, we fill
the end of the pipeline, as in fig. 5(d). If we observe
the pipeline matrix columns in fig. 5(d), we see that
taking one element alternatively from rows J1, J2, and
J3 produces the desired blocks on the output.

When (w mod. δ) �= 0, we have missing blocks on the
repetition pattern (cf. figure 6). To handle these missing
blocks, we use a simple split and trash after the above
pipeline pattern.

3.2 Compilation of Multidimensional Gridblock
Having shown how to generate any of the gridblock[1],
we now generalize the approach to higher dimensions.

Multidimensional grids and blocks, are by construc-
tion cartesian products of their 1D counterparts. For
instance the gridblock[2],

[l1 : h1 : δ1, l2 : h2 : δ2]× (a1 : b1, a2 : b2)

can be decomposed into,

([l1 : h1 : δ1]× (a1 : b1))⊗ ([l2 : h2 : δ2]× (a2 : b2))

as shown in figure 7.
We are going to use this compositional property to

compile gridblock[d] graphs from a set of gridblock[1]
graphs:

1) We decompose the gridblock[d] expression into its
1D components, ([li : hi : δi] × (ai : bi)), with 1 ≤
i ≤ d.

2) We define the folded size f for dimension dim as:

f(dim) =
dim−1�

i=1

si with f(1) = 1

Which is the number of elements in any hyper-
plane obtained by cutting along the dim dimension.

3) We compile for every i, the graph Gi which pro-
duces the elements defined by,

[li.f(i) : hi.f(i) : δi.f(i)]× (ai.f(i) : bi.f(i))

5

bl
oc

k#

1st

2nd

3rd

w δ.(n− 1)

w

δ

w

bl
oc

k#

1st

2nd

3rd

w − δ δ.(n− 1) δ

δ

w

bl
oc

k#

1st

2nd

3rd

4th

δ

0 1 2
1 2 3

2 3 4
3 4 5

(a) No overlap (w
δ ≤ 1) (b) Partial overlap (1 < w

δ < 2) (c) Complete overlap (2 ≥ w
δ)

Fig. 4. The three possible scenarios of gridblock[1] extraction.

4) We chain the Gi graphs to produce the final graph,

G ≡ Gd → Gd−1 · · · → G0

The obtained graph G extracts gridblock[d]. We will
not prove it here for lack of space. The general idea is
that each Gi extracts the 1D component for dimension i

but is modified to consume elements of the folded size.
Taking the example in figure 7, G2 extracts ([l2 : h2 :
δ2] × (a2 : b2)) (in the left margin of the figure), but
considering elements of size s1 (the row length). This
process produces the striped region. Then G1 extracts
([l1 : h1 : δ1]×(a1 : b1)) (in the top margin) with elements
of size 1, effectively generating the expected blocks.

The above process extracts the elements using the
lexicographic order of the shape. Nevertheless when
working with gridblock, we must return the blocks on
the order of the grid. To achieve this we add a reordering
stage at the end of our graph (which is build with a Split
followed by a Join).

3.3 Handling the “for in push” construct
Multiple streams can be combined by nesting different
iterators. Our compiler analyzes the nesting level of
each push and duplicates the elements on each stream
accordingly, using a Duplicate and Join node.

Let us consider the following example:

f o r a in A:
f o r b in B :

f o r c in C:
f o r d in D:

push c
push b

Let X denote the number of elements in iterator X.
Given a push x, we define

• The iterator that generates x, is called the base iter-
ator and noted base(x). For instance, in the example
above the base iterator of “push b” is B.

• Outer(x) the set of iterators that contain base(x). In
the example above, Outer(b) = {A} and Outer(c) =
{A, B} .

• Inner(x) the set of iterators that are contained by
base(x) and that enclose the statement “push x”. In
the example above Inner(b) = {C} and Inner(c) =
{D}.

We compute the length of Outer(x), Outer(x) =�
O∈Outer(x) O and similarly Inner(x) =

�
I∈Inner(x) I .

To satisfy the “for in” semantics we must replay the
stream as many times as the number of iterations of
the outer loops Outer(x); keep the current value steady
for as many times as the number of iterations of the
inner loops Inner(x). Both of these operations are easily
expressed with a Duplicate node followed by a Join
node.

3.4 Putting it all together
Combining region extraction and grid block extraction,
for every program with a single push we can generate
a stream graph. As multiple pushes can occur inside a
loop, the stream graphs corresponding to the pushes are
concatenated using a single Join node that gathers their
outputs. Finally each zip is implemented using a single
Split node that interleaves its inputs.

3.5 Optimizations
We have optimized our implementation to reduce the
number of data copies and the number of nodes neces-
sary for a pattern extraction.

To avoid unnecessary copies in the griblock[1] graphs,
the duplicate nodes have been placed at the later possi-
ble place, so that previous transformations are factorized
(instead of duplicating a pattern and extracting a region
twice, we extract the region once and duplicate it after-
ward).

To optimize gridblock[d] graphs we choose an optimal
order in which to chain the griblock[1] stages. In this or-
der all the no-overlap extraction stages (cf. section 3.1.2)
are at the top of the pipeline. This is interesting because
those stages throw away elements, therefore reducing
the number of elements that have to be handled down-
stream.

6

M
ul

tip
ly

A
cc

Pa
ra

lle
l

J

S

J

JS

JDS

D

x1.y1

x y0

1 y1
x1.y1

1

1
x0x0.y0

x x0

x x1

Fig. 8. Compiled graph for the matrix multiplication pro-

gram in sec. 4

4 MATRIX MULTIPLICATION REVISITED
We define a new StreamIt keyword datafilter, which helps
mixing our high-level language with normal StreamIt
code. A datafilter, is like a filter, with the difference that
it can have multiple inputs. It is instantiated with the
join keyword datafilter as in below example:
f l o a t−>f l o a t p i p e l i n e
MatrixMultiply (i n t x0 , i n t y0 , i n t x1 , i n t y1) {

j o i n RearrangeDuplicateBoth (x0 , y0 , x1 , y1) ;
add Mul t ip lyAccPara l l e l (x0 , x0) ;

}
(f l o a t , f l o a t)−> f l o a t d a t a f i l t e r
RearrangeDuplicateBoth (i n t x0 , i n t y0 , i n t x1 , i n t y1) {

shape [x0 , y0] A = input 0
shape [x1 , y1] B = input 1

f o r l in A [0 : 1 : , : :] x (0 : x0 , 0 : 0) :
f o r c in B [: : , 0 : 1 :] x (0 : 0 , 0 : y1) :

push zip (l , c)
}

The first input is seen as a stream of x0 × y0
matrices, the second as a stream of x1 × y1 matri-
ces. A [0:1:,::] x (0: x0 ,0:0) iterates over the rows of
A and B [::,0:1:] x (0:0,0: y1) over the columns of B.
push zip(l,c) interleaves and yields (row, column) pairs.

The datafilter body is compiled using the method
described the previous section, producing the graph in
figure 8, which is in fact simpler that the graph that
would have been generated by the original StreamIt pro-
gram in figure 1 (the identity filters have been removed).
StreamIt enforces that the stream nodes are connected
hierarchically, but this it is not a requirement for the
stream graphs produced in this paper.

We have not provided more examples for lack of
space, but we have successfully used our proposed
language to describe the data manipulations needed by
a Sobel filter, a Gauss filter, a transposition, a FIR, etc.

5 RELATED WORKS
Dataflow programming models have been studied ex-
tensively [7], and many variants have been proposed.
StreamIt[1] is both a stream language and an optimizing
compiler for the RAW[4] and SMP[8] architectures. It is
based on the cyclo-static dataflow model[6].

ZPL[9] is a parallel high-level language, allowing to
globally describe the repartition of data on a set of
processors and the communications between them. To
describe data slicings, ZPL introduces a region first-class
abstraction. Regions are n-dimensional arrays that can be
moved around the original data using directions (stride
vectors). The expressive power of ZPL in terms of region
descriptions is comparable to our proposed language.
Because there is less constraints on which directions are
applied to a region, ZPL allows more complex walks

through the data. Yet ZPL is not statically compilable
to Stream graphs, indeed the order in which directions
are applied depends on conditions which are not known
until execution time.

Array-OL is a dataflow model and graphical program-
ming language for signal processing [10]. The language
is build around the concept of filters which are repeat-
edly applied. Each filter iteration space is defined with
a pattern and a stride vector. The Array-OL model is
similar to our model, but does not allow nested iterations
over multiple streams.

The multidimensional shape type has been borrowed
from the Single Assignment C (SAC) language [11],
which proposes a functional C variant with multidimen-
sional array operations. The main focus of this language
is to optimize array manipulation by combining succes-
sive array operations into a single one.

Finally the slice notations used for grids and blocks are
those used in the Matlab[12] and Python[13] languages.

6 CONCLUSION
In this paper we present a novel language for describing
multidimensional data reorganizations. This frees the
programmer from having to write complicated graphs
with Join, Duplicate and Split nodes to express data
reorganization patterns as they are described in our Do-
main Specific Language. We show how to compile this
language to stream graphs and, as an example, integrate
it with StreamIt. The graphs generated are optimized to
avoid unnecessary data copies and are conservative in
the number of nodes used.

REFERENCES
[1] W. Thies, M. Karczmarek, and S. P. Amarasinghe, “StreamIt: A

Language for Streaming Applications,” in Proc. of the Intl. Conf.
on Compiler Construction, 2002.

[2] T. Goubier, F. Blanc, S. Louise, R. Sirdey, and V. David,
“Définition du Langage de Programmation ΣC, RT CEA LIST
DTSI/SARC/08-466/TG,” Tech. Rep., 2008.

[3] C. Aussaguès, E. Ohayon, K. Brifault, and Q. Dinh, “Using Multi-
Core Architectures to Execute High Performance-Oriented Real-
Time Applications,” To appear in Proc. of Int. Conf. on Parallel
Computing, 2009.

[4] M. Gordon, W. Thies, and S. Amarasinghe, “Exploiting Coarse-
Grained Task, Data, and Pipeline Parallelism in Stream Pro-
grams,” in Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, 2006.

[5] S.-w. Liao, Z. Du, G. Wu, and G.-Y. Lueh, “Data and Com-
putation Transformations for Brook Streaming Applications on
Multiprocessors,” in Proc. of the Intl. Symp. on Code Generation and
Optimization, 2006.

[6] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cycle-
static Dataflow,” in IEEE Trans. on Signal Processing, 1996.

[7] E. Lee and T. Parks, “Dataflow Process Networks,” in Proc. of the
IEEE, 1995.

[8] J. Sermulins, W. Thies, R. Rabbah, and S. Amarasinghe, “Cache
Aware Optimization of Stream Programs,” in Proc. of the ACM
conf. on Languages, Compilers, and Tools for Embedded Systems, 2005.

[9] S. J. Deitz, B. L. Chamberlain, and L. Snyder, “Abstractions for
dynamic data distribution,” in Proc. of the Workshop on High-Level
Parallel Programming Models and Supportive Environments, 2004.

[10] A. Amar, P. Boulet, and P. Dumont, “Projection of the Array-OL
Specification Language onto the Kahn Process Network Compu-
tation Model,” in Intl. Symp. on Parallel Architectures, Algorithms
and Networks, 2005.

[11] S.-B. Scholz, “Single Assignment C: Efficient Support for High-
Level Array Operations in a Functional Setting,” in J. Funct.
Program., 2003.

[12] MATLAB, Language Reference Manual v5, The MathWorks, Inc.,
1996.

[13] G. van Rossum, Python Reference Manual, CWI Report, 1995.

