The compensation approach for walks with small steps in the quarter plane
Résumé
This paper is the first application of the compensation approach (a well-established theory in probability theory) to counting problems. We discuss how this method can be applied to a general class of walks in the quarter plane $Z_{+}^{2}$ with a step set that is a subset of $\{(-1,1),(-1,0),(-1,-1),(0,-1),(1,-1)\}$ in the interior of $Z_{+}^{2}$. We derive an explicit expression for the generating function which turns out to be nonholonomic, and which can be used to obtain exact and asymptotic expressions for the counting numbers.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...