The compensation approach for walks with small steps in the quarter plane - Archive ouverte HAL
Article Dans Une Revue Combinatorics, Probability and Computing Année : 2013

The compensation approach for walks with small steps in the quarter plane

Résumé

This paper is the first application of the compensation approach (a well-established theory in probability theory) to counting problems. We discuss how this method can be applied to a general class of walks in the quarter plane $Z_{+}^{2}$ with a step set that is a subset of $\{(-1,1),(-1,0),(-1,-1),(0,-1),(1,-1)\}$ in the interior of $Z_{+}^{2}$. We derive an explicit expression for the generating function which turns out to be nonholonomic, and which can be used to obtain exact and asymptotic expressions for the counting numbers.
Fichier principal
Vignette du fichier
AdLeRa13.pdf (325.89 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00551472 , version 1 (03-01-2011)
hal-00551472 , version 2 (07-10-2012)
hal-00551472 , version 3 (04-07-2013)

Identifiants

Citer

Ivo Adan, Johan van Leeuwaarden, Kilian Raschel. The compensation approach for walks with small steps in the quarter plane. Combinatorics, Probability and Computing, 2013, 22 (2), pp.161-183. ⟨10.1017/S0963548312000594⟩. ⟨hal-00551472v3⟩
152 Consultations
140 Téléchargements

Altmetric

Partager

More