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L-FUNCTIONS OF EXPONENTIAL SUMS ON CURVES OVER

RINGS.

RÉGIS BLACHE

Abstract. Let C be a smooth curve over O/plO, O being the valuation ring
of an unramified extension of the field Qp of p-adic numbers, with residue field
k = Fq. Let f be a function over C, and Ψ be an additive character of order

pl over R; in this paper we study the exponential sums associated to f and Ψ
over C, and their L-functions. We show the rationality of the L-functions in a
more general setting, then in the case of curves we express them as products of
L-functions associated to polynomials over the affine line, each factor coming
from a singularity of f . Finally we show that in the case of Morse functions
(i.e. having only simple singularities), the degree of the L-functions are, up to
sign, the same as in the case of finite fields, yielding very similar bounds for
exponential sums.

0. Introduction

The aim of this paper is to study exponential sums over p-adic curves, and their
associated L-functions. Let Km denote the unramified extension of degree m of
Qp; we denote by Om its valuation ring. This is a local ring with maximal ideal
generated by p and residue field k := Fq, q := pm. Let l ≥ 2 be an integer; we
set R := Om/p

lOm, and, for any integer r ≥ 1, Rr := Omr/p
lOmr its “unramified

extension” of degree r. We fix an additive character Ψ of R of order pl, and denote
by Ψ(r) := Ψ ◦ TrRr/R the character induced on Rr.

If C is a smooth projective curve over R, and f is a function over C, we define
the sum

Sr(C, f) :=
∑

Π∈Cf (Rr)

Ψ(r)(f(Π)),

where Cf (Rr) is the set of Rr-points of C at which f is defined. We associate to
the sums (Sr(C, f))r≥1 the L-function

L(C, f ;T ) := exp




∑

r≥1

Sr(C, f)
T r

r



 .

In the case l = 1, these sums and their L-functions have been thoroughly studied;
it follows from Weil’s Theorem on the Riemann hypothesis over finite fields that
the L-function is a polynomial whose degree depends on the polar divisor of the
function f , and all of whose reciprocal roots are q-Weil numbers of weight 1, i.e.
algebraic integers all of whose conjugates have complex absolute value q

1
2 . Precisely,

if the polar divisor of f is (f)∞ =
∑
niPi, the degree of the L-function is at most

(exactly if p does not divide any of the ni)

2g − 2 +
∑

(ni + 1) deg(Pi),
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2 RÉGIS BLACHE

where g denotes the genus of C (cf. [5] Section 3, [9]).

When l ≥ 2, little is known when the genus of C ⊗ k is positive. A bound
is given in [14] in the case of plane nonsingular curves and polynomial functions
(note that the assumption of nonsingularity there is weaker that our assumption
of smoothness). The author gives a bound for sums similar to Sr(C, f), and l big
enough, in terms of the intersection multiplicities of the equation of the curve and
the polynomial to be summed. Some work has also been done when the summation
set is not the whole set of Rr-points of the curve, but the image of a section of
reduction modulo p: C(Rr) → C(kr) (cf. [1], [10], [12], [13]).

When l ≥ 2 and C is rational (i.e. when C⊗k has genus 0), the sums associated
to one-variable polynomials have drawn much attention (cf. [3], [11]), and recently
the case of rational functions has been studied (cf. [4]). In these works, the authors
give bounds for such sums when the residue field is the prime field Fp. The method
is based upon some kind of stationnary phase formula: the sum over the fiber of
reduction modulo p above α ∈ Fp is zero unless the reduction modulo p of the
function f has a singularity at α. It only remains to study locally the behaviour
of the function at its singularities using a Taylor expansion. We shall extend this
point of view to the case of curves: precisely, we show that the sum over the fiber
of reduction modulo p above P ∈ C(k) is zero unless the reduction modulo p of the
function f , say ρ(f) has a singularity at P (that is: the differential dρ(f), has a
zero at P ). We use local parameters to obtain a Taylor expansion for the function,
and compare it with a polynomial.

We adopt the langage of L-functions here, since it gives a unified point of view
between the case of finite fields and the case of rings. Moreover the evaluation of the
L-function allows bounds over any of the extensions; these bounds are reduced to
the estimation of the degree of the corresponding L-function, and the weights of its
reciprocal roots as q-Weil numbers. We begin by showing that the L-functions are
rational in the more general setting of schemes (not necessarily one-dimensional)
over R. Then we show a stationary phase formula, which allows us to write the
L-function as a product of local factors. Each of these local factors comes from a
singularity, and can be written as the L-function associated to a polynomial (coming
from the expansion of the function in terms of a local parameter) over the affine
line. Thus we are able to reduce the general case of curves to the well known case
of polynomials.

We emphasize on the case of Morse functions, i.e. functions whose reduction
modulo p has only simple singularities. In this case, we show that the situation is
very similar to the one in finite fields. Precisely, the degree of the L-function can be
estimated in terms of the polar divisor of the reduction modulo p of the function,
and in most cases, it remains the same as for finite fields. Only the weight of the
reciprocal roots as q-Weil numbers change, and for instance we get the following
bound (compare with [5] 3.5.2, [9] Corollary 3.5)

|S(C, f)| ≤

(
2g − 2 +

k∑

i=1

(ni + 1) deg(Pi)

)
q

l
2 ,

where the polar divisor of ρ(f) is (ρ(f))∞ =
∑k
i=1(ni + 1)Pi.

The paper is organized as follows: we begin by showing the rationality of the L-
functions we consider in the general setting of schemes over the ring R, using ℓ-adic
cohomology and Greenberg’s functor to reduce to the case of varieties over finite
fields. In section 2, we use once again Greenberg’s functor to describe precisely the
set C(Rr): we write this set as a disjoint union of fibers of reduction modulo p,
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then we show that over each fiber, the image of a local parameter describes tbe
maximal ideal pRr of Rr. This allows us to reduce the sum over C(R) to sums
attached to polynomials over the affine line in section 3; moreover we show that the
sum over the fiber above P ∈ C(k) vanishes unless the reduction modulo p of the
function has a singularity at P . Thus we can write the L-function as a product of
local factors. Finally we consider the case of Morse functions in section 4 and we
generalize in this case known results over finite fields.

Notations

Let l ≥ 2 be an integer ; we set R := Om/p
lOm. Sometimes this ring is called a

Galois ring, and denoted GR(pl,m). Recall that there is a canonical isomorphism
between this ring and Wl(k), the ring of Witt vectors of length l with coefficients
in k.

It is well known that R× has a cyclic subgroup T × of order q − 1. We set
T := T ×∪{0}, this is the Teichmüller of R, and every element in R can be written
uniquely as

x = x0 + px1 + · · ·+ pl−1xl−1, x0, . . . , xl−1 ∈ T .

One can consider R as the (unramified) extension of Z/plZ of degree m. The
Galois group of this extension is isomorphic to Z/mZ, generated by the Frobenius
F , whose action is described (when we write x ∈ R as above) by

F (x) = xp0 + pxp1 + · · ·+ pl−1xpl−1.

Recall that the additive characters of R are the morphims from (R,+) to (C
∗
,×);

they can be defined in the following way

Ψl,y(x) = exp

(
2iπ

pl
Tr(xy)

)
, y ∈ R,

where Tr := TrR/Z/plZ = Id+ F + · · ·+ Fm−1 is the trace. In the following we set
Ψ := Ψl,1.

If r ≥ 1 is an integer, let Rr := Omr/p
lOmr be the unramified extension of

degree r of R, and Ψ(r) := Ψ ◦ TrRr/R an additive character.
Recall that for any r ≥ 1 there is a canonical isomorphism w : Rr → Wl(kr)

between Rr and the ring of Witt vectors of length l with coefficients in kr.
In the following, we shall need to consider exponential sums and L-functions

both over the rings Rr and over the rings R′
r := Rr⊗Z/pl−1Z. In order to simplify

notations, we shall denote by Ψ′ := Ψl−1,1 and Ψ(r)′ the corresponding characters,

by S′
r(C, f) := Sr(C ⊗R′, f) the sum associated to Ψ(r)′ , and by

L′(C, f ;T ) := L′(C ⊗R′,Ψ′, f ;T )

the L-function attached to this situation.

1. Rationality of the L-functions.

Let X be a scheme of finite type over R, and f ∈ Γ(X,OX) a regular function
over X . Denote by X(Rr) the set of Rr-points of X , i.e. the set of morphisms from
Spec Rr to X .We consider the following family of exponential sums

Sr(X, f) :=
∑

Π∈X(Rr)

Ψ(r)(f(Π)),

and the associated L-function

L(X, f ;T ) := exp




∑

r≥1

Sr(X, f)
T r

r



 .
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The aim of this section is to show that such a function is rational.

We begin by recalling some facts about Greenberg’s functor: the proofs can be
found in [6]. To any k-scheme Y , we associate functorially a scheme WY over
Spec R, with the same underlying topological space, and structure sheaf OWY =
Wl(OY ), defined for every U open in Y by

Γ(U,OWY ) =Wl(Γ(U,OY )).

If X is a R-scheme, the functor associating HomR(WY,X) to every k-scheme Y is
representable by a k-scheme FX : we have a functorial isomorphism

HomR(WY,X) = Homk(Y,FX).

Now Greenberg’s functor is the functor X 7→ FX from the category of R-schemes
to the one of k-schemes. Note that we get a morphism λX : WFX → X corre-
sponding to the identity of FX by the adjunction formula; let γX : Γ(X,OX) →
Wl(Γ(FX,OFX)) be the morphism induced by λX on global sections.

Since we have WSpec kr = Spec Rr for any r ≥ 1, the adjunction formula gives
a bijection, we shall call Greenberg’s bijection in the sequel

X(Rr) = FX(kr),

between the set of Rr-points of X and the set of kr-points of FX . Moreover, if
Π ∈ X(Rr), and P ∈ FX(kr) is its image by the above bijection, the following
diagram commutes

Γ(X,OX)

Γ(Π)

��

γX
// Wl(Γ(FX,OFX))

Wl(Γ(P ))

��

R
w

// Wl(k)

that is, for every f ∈ Γ(X,OX) with image γX(f) := (f0, . . . , fl−1) ∈Wl(Γ(FX,OFX)),
and for every Rr-point Π of X , corresponding to the kr-point P of FX , we have
f(Π) = w−1(γX(f)(P )) = w−1(f0(P ), . . . , fl−1(P )). Thus from Greenberg’s bijec-
tion, we can rewrite the sum Sr in the following way

Sr(X, f) = Sr(FX, γXf) :=
∑

P∈FX(kr)

Ψ(r)(w−1γXf(P )),

thus the function L(X, f ; t) can be rewritten

(1) L(X, f ;T ) = exp




∑

r≥1

Sr(FX, γXf)
T r

r



 = L(FX, γXf ;T )

and it remains to show the rationality of this last function.

We denote by Wl the affine group variety of Witt vectors of length l, defined

over k (note that we have the isomorphism of algebraic varieties Wl = A
l
), and

by F the Frobenius morphism on Wl relative to k, defined by (X0, . . . , Xl−1) 7→
(Xq

0 , . . . , X
q
l−1). Let L be Lang’s isogeny on Wl, i.e L = F − IdWl

; it is surjective,
and we get the following sequence of group varieties over k

0 // Wl(k) // Wl
L

// Wl
// 0.

We denote by L the Wl(k) =Wl(k)-torsor over Wl defined by this exact sequence
(cf. [5], 1.7).
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Now let ℓ be a prime, different from p, and ψl be the character of order pl from

Wl(Fq) to Q
×

ℓ corresponding to Ψ ◦ w−1 via a fixed embedding of Qℓ into C. To

the torsor L, we associate a lisse rank 1 Qℓ-sheaf Lψl
:= ψl(L) over Wl.

Let g : Y → Wl be a morphism of varieties over k. Consider the sheaf g∗Lψl

on Y . If y is a closed point of Y , say y ∈ Y (kr), let y be a geometric point over

y. The fiber g∗Lψl,y is a Qℓ-vector space of dimension 1, on which Gal(k(y)/k(y))
acts. If Fy is the geometric Frobenius relative to k(y), it acts as multiplication by
ψl(TrWl(kr)/Wl(k)(g(y))); thus the trace of the action of Fy on g∗Lψl,y is this root
of unity.

Let Hi
c(Y, g

∗Lψl
), 0 ≤ i ≤ 2 dimY , denote the groups (in fact Qℓ-vector spaces

of finite dimension) of cohomology with compact supports attached to Y and the
ℓ-adic sheaf g∗Lψl

. The Frobenius morphism FY of Y acts linearly on these spaces,
and the Lefschetz trace formula [8] ensures us that for every n ≥ 1, we have

∑

y∈Y (kr)

ψl(TrWl(kr)/Wl(k)g(y)) =
2 dimY∑

i=1

(−1)iTr(F rY |H
i
c(Y, g

∗Lψl
)).

In terms of L-functions, we get

(2) L(Y, g;T ) =
2 dimY∏

i=1

det(1− TFY |H
i
c(Y, g

∗Lψl
))(−1)i+1

.

Finally, applying this formula to Y = FX and g = γXf , we get from (1)

Theorem 1.1. Let X be a scheme of finite type over R, and f a regular function
on X; then the L-function L(X, f ;T ) is a rational function.

2. The geometry of curves over local rings.

Let C be an irreducible, projective and smooth of relative dimension 1 scheme
over Spec (R); in the following we simply say “C is a smooth curve over R”. The
aim of this section is to study the sets C(Rr) for r ≥ 1 an integer. We first
write them as an union of fibers of reduction modulo p in Lemma 2.1, each fiber
corresponding to a point in C(kr), then we study the geometry of the fibers: we
show that they can be “realized” as affine spaces using Greenberg’s functor. Finally,
we study local parameters for the Rr-points of C, and we show in Theorem 2.4 that
they send bijectively a fiber on the set of elements in the maximal ideal of Rr.

Recall that Ck := C×Spec RSpec k is a smooth irreducible projective curve over

Spec k, and for any r ≥ 1 there is a bijection between the sets C(kr) and Ck(kr);
we shall identify these sets in the sequel. In the following we denote by Cr (resp.
Ckr ) the curve C ⊗ Rr (resp. Ck ⊗ kr); once again we get a bijection between the
sets Cr(kr) and Ckr (kr).

The morphism ̺ : Spec kr → Spec Rr induced by reduction modulo p associates
to every Rr-point Π a unique point P ∈ Cr(kr) via P = Π ◦ ̺. Conversely, since
the structural morphism Cr → Spec (Rr) is smooth, the map

HomSpec Rr
(Spec Rr, Cr) → HomSpec Rr

(Spec kr, Cr)

induced by ̺ is surjective ([7] 17.1.1), and every point in Cr(kr) comes from a
Rr-point in this way. Let P be a point in Cr(kr), and Π ∈ Cr(Rr) such that
P = Π ◦ ̺. If U is any affine open in Cr containing P , and Γ(U,OCr

) is the ring

of regular functions over U , the morphism P̃ = Π̃ ◦ ̺ = ˜̺◦ Π̃ from Γ(U,OCr
) to kr

corresponding to P factors via OCr,P . Thus the images via Π̃ of the elements of
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Γ(U,OCr
) which are invertible in OCr,P are in R×

r = ρ̃−1(k×r ), and Π̃ factors to a
morphism from OCr,P to Rr. Finally, Π is a Rr-point of the Rr-scheme Spec OCr ,P .
We deduce the following

Lemma 2.1. For any r ≥ 1, we have the disjoint union:

Cr(Rr) =
∐

P∈Cr(kr)

(Spec OCr,P )(Rr),

where (Spec OCr,P )(Rr) is the set of Rr-points of the R-scheme Spec OCr,P .

Let P be a point in Cr(kr); we now study precisely the set of Rr-points of the
affine scheme Spec OCr,P . We shall use Greenberg’s functor to describe the kr-
scheme FSpec OCr,P . In order to simplify notations, we assume r = 1 in the rest
of this section.

Let us describe the image of an affine R-scheme U ⊂ A
n
R under the functor F ,

and explicit the morphism λU in this case. If U = A
n
R is affine n-space over R, we

have FU = A
nl
k , the map λU := λ is the morphism corresponding to the morphism

of R-algebras

γ : R[x1, . . . , xn] → Wl

(
k[xij ] 0≤j≤l−1

1≤i≤n

)

α ∈ R 7→ w(α)
xi 7→ (xi0, . . . , xi,l−1).

and Greenberg’s bijection is just the map

w × · · · × w : A
n
R(R) = Rn → A

nl
k (k) = knl

(α1 . . . , αn) 7→ (w(α1), . . . , w(αn)).

In the following, in order to simplify notations, and since no confusion can occur,
we set: R[xi] := R[x1, . . . , xn], and k[xij ] := k[xij ]1≤i≤n,0≤j≤l−1. Let us write the
image γ(f) of a polynomial f ∈ R[xi].

We first fix some notations. Let δ be the morphism

δ : R[xi] → Wl(k[xi0])
xi 7→ (xi0, 0, . . . , 0)

δ|R = w, and Ui = (0, xi1, . . . , xi,l−1). If M = {m1, . . . ,mt} is a t-uple of positive
integers, we set |M | := m1 + · · · + mt, #M := t, and M ! := m1! . . .mt!. If
J = {j1, . . . , jt} is a t-uple of indexes in {1, . . . , n}, let JM be the set of indexes ji
in J , each counted with the multiplicity mi (note that #JM = |M |) ; we set

∂|M|f

∂xMJ
:=

∂|M|f

∂xm1

j1
. . . ∂xmt

jt

; UMJ :=
∏

ji∈JM

Uji = Um1

j1
. . . Umt

jt
.

Then we can write, for any f ∈ R[xi]:

γ(f) = δ(f) +

l−1∑

h=1

∑

M,|M|=h

∑

J,#J=#M

δ

(
1

M !

∂hf

∂xMJ

)
UMJ .

Note that 1
M !

∂hf
∂xM

J

is again a polynomial in R[xi]. Developing, we obtain another

description for γ: if γ(f) = (f0, . . . , fl−1), we have

f0 = f̄(xi0), fu = f (u)(xij) +

n∑

i=1

(
∂f̄

∂xi
(xi0)

)pu
xiu, 1 ≤ u ≤ l − 1,
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with f̄ the reduction modulo p of f , and f (u) in k[xij ]1≤i≤n, 0≤j≤u−1; in other
words, the polynomial fu depends only on the variables xij , 1 ≤ i ≤ n, 0 ≤ j ≤ u,
and it is linear in the variables xiu, 1 ≤ i ≤ n.

Now let U be an affine R-scheme U = Spec R[xi]/I, I = (f1, . . . , fm). For
every 1 ≤ t ≤ m, set γ(ft) = (ft0, . . . , ft,l−1); let I

′ be the ideal in k[xij ] gener-
ated by {ftu}1≤t≤m,0≤u≤l−1, and πI′ the surjection k[xij ] → k[xij ]/I

′. From its
construction, the morphism

Wl(πI′) ◦ γ : R[xi] →Wl(k[xij ]) →Wl(k[xij ]/I
′)

vanishes on I; it induces a morphism γU : R[xi]/I → Wl(k[xij ]/I
′). Now the

k-scheme Spec k[xij ]/I
′ is FU , and λU is the morphism of affine R-schemes corre-

sponding to γU .

We come back to the study of (Spec OC,P )(R). Let U be an affine open of
C containing P , U = Spec R[xi]/I, I = (f1, . . . , fm). Let mP be the maximal
ideal of P in R[xi]/I, and mPk

the ideal of P in (R[xi]/I) ⊗ k. Then we have
OC,P = (R[xi]/I)mP

, and since the elements in (R[xi]/I)\mP are precisely those
whose images by γU have first coordinate invertible in k[xi0]mPk

, we can extend γU
to a morphism

γC,P : OC,P → k[xi0]mPk
[xut]/I

′
mPk

with I ′mPk
the ideal in k[xi0]mPk

[xut] generated by the images of

(
f̄j ,

n∑

i=1

(
∂f̄j
∂x0i

)pk
xik + f

(k)
j

)

1≤j≤m

1≤k≤l−1

.

Finally, the image of Spec OC,P by Greenberg’s functor is

FSpec OC,P = Spec k[xi0]mPk
[xut]/I

′
mPk

≃ Spec OCk,P [xut]/

(
n∑

i=1

(
∂f̄j
∂xi0

)pk
xik + f

(k)
j

)

1≤j≤m
1≤k≤l−1

.

Now since C is smooth of relative dimension 1 over Spec R, the Jacobian criterion
says that there are n− 1 elements in I, say f1, . . . , fn−1, whose images in ImP

/I2mP

generate this R[x1, . . . , xn]mP
-module, and n − 1 indices (say 2, . . . , n) such that

the function

det

((
∂fj
∂xi

)

1≤j≤n−1
2≤i≤n

)

is not in mP . Since R[x1, . . . , xn]mP
is a local ring, Nakayama’s lemma tells us

that f1, . . . , fn−1 generate ImP
. Thus the ideal of FSpec OC,P in OCk,P [xut] is

generated by the
(

n∑

i=1

(
∂f̄j
∂xi0

)pk
xik + f

(k)
j

)

1≤j≤n−1
1≤k≤l−1

.

Now we apply the second part of the Jacobian criterion; assume for a while that
l = 2; then the ideal of FSpec OC,P in OCk,P [xtu] is generated by the n−1 functions
above with k = 1. We can rewrite this system as

((
∂f̄j
∂xi

)p)

1≤j≤n−1
2≤i≤n

(xi1)2≤i≤n =

(
−f

(1)
j −

(
∂f̄j
∂x1

)p
x11

)

1≤j≤n−1

.
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The matrix in the left hand side is invertible in OCk,P , and we get in this case that
FSpec OC,P = Spec OCk,P [x11]. The general case can be treated by induction on
l, considering the systems
((

∂f̄j
∂xi

)pl−1)

1≤j≤n−1
2≤i≤n

(xi,l−1)2≤i≤n =

(
−f

(l−1)
j −

(
∂f̄j
∂x1

)pl−1

x1,l−1

)

1≤j≤n−1

since the description of γ, joint with the induction hypothesis, ensures that f
(l−1)
j ∈

OCk,P [x11, . . . , x1,l−2]. Finally, we get

Proposition 2.2. If C is a smooth curve over R, and P a point of C(k), we have:

FSpec OC,P = Spec OCk,P [X1, . . . , Xl−1].

Thus FSpec OC,P (k) = A
l−1
k (k), and Greenberg’s bijection gives

Corollary 2.3. If C is a smooth curve over R, and P a point of C(k), we have
#Spec OC,P (R) = pm(l−1).

We now recall the definition of a local parameter for a R-point of C. The ideal
sheaf associated to a R-point Π of C (considered as a subscheme of C) is locally
principal thus there exists an element t ∈ OC,P such that the kernel of the morphism
Π : OC,P → R is the principal ideal (t) ⊂ OC,P . We call such an element a local
parameter for C at Π. If mP denotes the maximal ideal of OC,P , we have the
following properties for a local parameter t

i) t is not a zero divisor in OC,P ;
ii) t ∈ mP \m

2
P ;

iii) OC,P /(t
n) is a free R-module with basis 1, t, t2, . . . , tn−1 ;

iv) the quotient ring of OC,P , KC , is an OC,P -module generated by 1, t−1, . . . .

Note that to every R-point Π of C, corresponding to P in C(k), one can associate
a Cartier divisor (Π), defined as ((U, t), (V, 1)), where U is a suitable open in C
containing Π, t is a local parameter at Π, and V = C\{P}.

We are ready to show the main result of this section

Theorem 2.4. Let C be a smooth curve over R, P a point of C(k), and t a local
parameter for an R-point of Spec OC,P (R). Then the function t 7→ t(Π) from
Spec OC,P (R) to R, is a bijection onto pR.

Proof. This is a local question, so we restrict our attention to an affine open subset
containing P , say U = Spec R[x1, . . . , xn]/I, I = (f1, . . . , fm). Applying the Jaco-
bian criterion of smoothness to U at P , we get n − 1 functions among the fi, say
f1, . . . , fn−1, and n − 1 indexes in {1, . . . , n}. Let i be the remaining element of
this set, and ai be the i-th coordinate of P seen as a point in A

n
(k). Let αi ∈ R be

any element reducing to ai modulo p. If S is the closed subscheme of A
n
R defined

by the ideal (g1, . . . , gn−1, xi − αi), then P is in S(k), and the Jacobian criterion
says that S is smooth over Spec R at P , of relative dimension 0. Now OS,P is a
local ring of dimension 0, and a flat R-module with maximal ideal (p) and residue
field k. Therefore we have OS,P ≃ OC,P /(xi − αi)P ≃ R, and xi − αi is the local
parameter for an R-point above P . Moreover, when α varies in the class of αi
modulo p, we get ql−1 distinct morphisms from OC,P to R, and these are the ql−1

different R-points of Spec OC,P .
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Thus each of the functions xi − αi, αi = ai, is a local parameter for an R-point
of Spec OC,P (R). Conversely any of these R-points has a local parameter in this
family, say xi−αi, and its image by xi−α

′
i is αi−α

′
i. We have shown the theorem

for any one of these local parameters.
If t is a local parameter for a point Π in Spec OC,P (R), let t0 be the local

parameter for Π in the family above. Then t and t0 generate the same ideal in
OC,P , and we have t = ut0 for some u ∈ O×

C,P . Reducing this equality modulo

tl0, and since OC,P /(t
l
0) is a free R-module with basis 1, . . . , tl−1

0 , isomorphic to
R[t0]/(t

l
0), we get that t = c1t0+ ..., with c1 ∈ R×. Now the function x 7→ c1x+ . . .

is a bijection over pR, and we get the result.
�

3. The L-function as a product of local factors.

This section is the heart of the paper: we express the L-function associated to the
function f over C as a product of local factors, corresponding to the singularities
of the reduction modulo p of the function f . Each of these factors is the L-function

associated to an additive exponential sum and a polynomial over the affine line A
1
.

3.1. Rewriting the sums Sr(C, f). As above, C is a smooth curve over R, and f
is a function over C. For any point P ∈ C(k), we say that f is defined at P when

f ∈ OC,P . We denote by Pf the set of points P in C(k) such that f /∈ OC,P , i.e.
the set of poles of f . For any r ≥ 1, we can define the sums

Sr(C, f) :=
∑

Π∈Cf (Rr)

Ψ(r)(f(Π)),

where Cf (Rr) is the set of Rr-points of C at which f is regular. Note that from
Lemma 2.1, we have Cf (Rr) :=

∐
P∈C(kr)\Pf (kr)

(Spec OC,P )(Rr); thus we write

the sum as
Sr(C, f) :=

∑

P∈C(kr)\Pf (kr)

S
(r)
P (C, f),

S
(r)
P (f) :=

∑

Π∈Spec OC⊗Rr,P (Rr)

Ψ(r)(f(Π)).

We begin by rewriting the sum S
(r)
P (f) with the help of Theorem 2.4. First we

need a definition.

Definition 3.1. Let C be a curve as above, P a point in C(Rr), f a function
over C defined at P ; assume that the image of f in OC⊗Rr,P /(t

l) is fΠ(t) =
α0 + α1t + · · · + αl−1t

l−1, t being a local parameter at Π0 ∈ Spec OC⊗Rr,P (Rr).
We define the local polynomial associated to f at Π0 as the polynomial defined in
Rr[T ] by

fΠ0(T ) = α1T + pα2T
2 · · ·+ pl−2αl−1T

l−1.

Now we have

Proposition 3.2. Let P be a point in C(kr), f a function on C, defined at P . If
Π0 is a point in C(Rr) above P , and fΠ0 is the local polynomial associated to f at
Π0, we have:

S
(r)
P (f) = Ψ(r)(f(Π0))

∑

x∈R′
r

Ψ(r)(fΠ0(x)).
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Proof. Let f ∈ tlOC,P ; it follows from Theorem 2.4 that we have f(Π) = 0 for all Π
in Spec OC,P (R). Thus the map from Spec OC,P (R) to R sending Π to f(Π) only
depends on the image of f in OC,P /(t

l). Now the corollary in an easy consequence
of the preceding theorem applied to the curve C ⊗Rd, once we have remarked that
in the definition above we have f(Π0) = α0. �

As in the preceding section, let Ck be the reduction modulo p of C. We denote
by KC the sheaf of total quotient rings of OC ; this is a constant sheaf, whose
associated ring we also denote by KC . If U := Spec B is any affine open subset of
C, then KC = i(U)−1Γ(U,OC) = i(B)−1B, where i(B) is the set of elements of B
which are not zero divisors in any of the local rings Bm. These are just the elements
in B\pB, thus KC = B(p). The morphism ρU induced by reduction modulo p from
B to B0 := B/pB extends to a morphism from KC to the fraction field of B0 which
is K(Ck), the function field of Ck. It is easily seen that this last morphism does
not depend on the choice of U , and we denote it by ρ. Note that if Π is a Rd-point
of C, corresponding to P in C(kd), and t is a local parameter at Π, then t0 := ρ(t)
is a local parameter for Ck at P .

Definition 3.3. Let g ∈ K(Ck) be a function on Ck; we say that g has a singularity
at P ∈ Ck(k) if the divisor of dg has a zero at P . The multiplicity of the singularity
of g at P is the multiplicity of the divisor (dg)0 at P .

In the following, we denote by Σg the support of (dg)0, i.e. the set of singularities
of g.

Now we show some kind of a stationnary phase formula: if P is a point in C(kr),
and f is a function over C defined at P , the sum associated to f on the fiber
(Spec OCr,P )(Rr) is zero unless the reduction modulo p of f has a singularity at
P .

Proposition 3.4. Let P be a point of C(kr), and f ∈ OC,P . For any integer n ≥ 1,

let S
(nr)
P (f) be as above, i.e. the sum associated to f over the set of Rnr-points of

the fiber over P . If ρ(f) has no singularity at P , we have

S
(nr)
P (f) = 0.

Proof. Let f = α0 + α1t + · · · + αl−1t
l−1 + tlg, g ∈ OCr,P be the development of

f in terms of a local parameter t ∈ OCr,P at a Rr-point Π above P . Then the
reduction modulo p of t, t0 := ρ(t), is a local parameter at P for Ckr , and we have

ρ(f) = α0 + α1t0 + · · ·+ αl−1t
l−1
0 + tl0ρ(g),

and dρ(f) = α1+2α2t0+ · · ·+(l−1)αl−1t
l−2
0 + tl−1

0 h. Thus ρ(f) has no singularity
at P iff α1 6= 0, and in this case Lemma 2.10 in [2] gives the desired result. �

This result, joint with lemma 2.1, allows us to rewrite the sum over C(Rr)
associated to f in the following way

(3) Sr(C, f) =
∑

Π∈Cf (Rr)

Ψ(r)(f(Π)) =
∑

P∈Σρ(f)(kr)\Pf (kr)

S
(r)
P (f),

From the equation above and Proposition 3.2, we can rewrite the sum Sr(C, f)
as a sum of sums over the affine line, attached to the local polynomials at the
singularities of f .
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Proposition 3.5. Let r be a positive integer. Assume that

Σρ(f)(kr)\Pf (kr) = {P1, . . . , Pt},

and choose for any 1 ≤ i ≤ t a Rr-point Πi of C ⊗Rr above Pi. Let fΠi
denote

the local polynomial associated to f at Πi; then we have

Sr(C, f) =

t∑

i=1

Ψ(r)(f(Πi))S
′
r(A

1
, fΠi

).

3.2. Rewriting the L-function L(C, f ;T ). In terms of L-functions, we get from
equation (3):

L(C, f ;T ) =
∏

P∈Σρ(f)\Pf

LP (f ;T
dP ), LP (f ;T

dP ) := exp




∑

r≥1

S
(rdP )
P (f)

T rdP

rdP



 ,

where for each P in Σρ(f)\Pf , dP is the degree of the extension [k(P ) : k], with
k(P ) the residue field of P .

We now consider more closely these local terms; since f is defined over R, the
set Σρ(f)\Pf (k) is stable under the action of Gal(k/k), and rather than considering
the points of this set, we consider the orbits of the action of the Galois group. Thus
it is natural to use places of the function field K(Ck), rather than points in Ck(k).
We will group together terms in equation (3) coming from the same place since
they are very similar, in order to write the L-function as a product of local factors,
each coming from a place in the support of Σρ(f)\Pf .

Assume that P ∈ Σρ(f)(kd) is a point above a place P of degree d of K(Ck). It is

clear that the sum S
(r)
P (f) is zero unless d divides r. In this case, P corresponds to d

points P = P1, . . . , Pd of C(kr), which are conjugate under the action of Gal(kd/k).
Moreover, since C is defined over R, the fibers are conjugate under the action of

Gal(Rd/R). We define S
(r)
P (f) :=

∑d
i=1 S

(r)
Pi

(f), and we get

S
(dr)
P (f) =

∑
Π∈(Spec OC⊗Rdr,P )(Rdr)

Ψ(dr)(f(Π))

=
∑

σ∈Gal(Rd/R)

∑
Π∈(Spec OC,P1 )(Rdr)

Ψ(dr)(f(Πσ))

=
∑

σ∈Gal(Rd/R)

∑
Π∈(Spec OC,P1 )(Rdr)

Ψ(dr)(f(Π)σ)

= d
∑

Π∈(Spec OC,P1 )(Rdr)
Ψ(dr)(f(Π))

= dS
(dr)
P1

Thus if Π1 is an Rr-point above P1, we get

S
(dr)
P (f) = dΨ(dr)(f(Π1))S

′
dr(A

1
, fΠ1),

and the local factor at P can be rewritten

LP(f, T ) = exp
(∑

r≥1 S
(di)
P (f)T

dr

dr

)

= exp
(∑

r≥1Ψ
(dr)(f(Π1))S

′
dr(A

1
, fΠ1)

(Td)r

r

)

= L′(A
1
, fΠ1 ; Ψ

(d)(f(Π1))T
d),

the last equality coming from the fact that since f(Π1) is in Rd, we have
Ψ(dr)(f(Π1)) = Ψ(d)(f(Π1))

r for any r ≥ 1.

We end this section putting together the results above: we are able to write the
L-function L(C, f ;T ) as a product of local factors. Each of these factors corresponds

to an orbit of the action of Gal(k/k) on Σρ(f)\Pf (k) (i.e. to a place in the support
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of Σρ(f)\Pf ), and can be written as the L-function associated to a polynomial over
the affine line.

Theorem 3.6. Let f be a function on C, and P1, . . . ,Pt a set of representatives
for the orbits in Σρ(f)\Pf (k) under the action of Gal(k/k). If deg(Pi) = di, let
Πi be an Rdi-point above one of the points in C(ki) dividing Pi; then we have the
following decomposition in local factors for the L-function associated to f

L(C, f ;T ) =

t∏

i=1

L′(A
1
R′

di

, fΠi
; Ψ(di)(f(Πi))T

di)

where for each 1 ≤ i ≤ t, fΠi
is the local polynomial associated to f at Πi.

4. The case of Morse functions.

In this section we assume p ≥ 3 is an odd prime number, and we study the degree
of the L-functions L(C, f ;T ) and the weights as q-Weil numbers of their reciprocal
roots and poles when the function ρ(f) has only simple singularities, i.e. when all
the zeroes of dρ(f) occur with multiplicity one. We shall find results generalizing
closely those of Weil in the case of finite fields.

We begin by recalling results from [2]. Assume that f(T ) = α0 + α2T
2 + · · ·+

αnT
n ∈ R′[T ] is a polynomial with leading monomial of degree 2, i.e. that we have

vp(αd) > vp(α2) for any d > 2, where vp is the usual p-adic valuation. We denote by

e := vp(2α2) = vp(α2) the arithmetic multiplicity of f and let n := ⌊ l−e−3
2 ⌋, where

as usual ⌊r⌋ denotes the greatest integer less than r. Then we have the following

for the L-function L′(A
1
R′ , f ;T ) (cf. [2] Corollary 4.11):

• if l − e− 1 is even, then we have

L′(A
1
R′ , f ;T ) =

1

1− q
l+e−1

2 Ψ′(f(0))T
;

• if l − e− 1 is odd, we have the following expression for the L-function

L′(A
1
R′ , f ;T ) = 1− q

l+e−2
2 χ2(p

−eα2)GqΨ
′(f(0))T,

where χ2 is the multiplicative character of order 2 of R× (note that p−eα2

is in R×), and Gq :=
∑

x∈Fq
Ψ1(x

2) is the quadratic Gauss sum over Fq.

Note that in any case, the L-function is a rational function of degree (−1)l−1,
and that its reciprocal root or pole is a Weil number of weight l+ e− 1.

We come back to the case of curves; let C be a curve of genus g, and f ∈ K(C)
be a function on C.

Definition 4.1. We say that f is aMorse function on C when the differential dρ(f)
has only simple zeroes (i.e. when all the points in (dρ(f))0 occur with multiplicity
one), and when f is defined at all the points in the support of (dρ(f))0.

Lemma 4.2. Assume f is a Morse function, and let (dρ(f))0 :=
∑t
i=1 Pi, Pi being

a place of degree di on Ck. Let Pi be a place in Ckdi above Pi. Then there exists
Πi, a Rdi-point above Pi, such that the local polynomial associated to f at Πi has
leading monomial of degree 2 and arithmetic multiplicity one.
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Proof. Since dρ(f) has a simple zero at Pi, and p 6= 2, we can write ρ(f) = a0 +

a2t
2
0i + · · · + al−1t

l−1
0i in OCkdi

,Pi
/(tl0i), where t0i is a local parameter for Ckdi

at Pi. Fix Π, a Rdi-point above Pi, and t a local parameter for Cdi at Π as in
of Theorem 2.4; we can write f = α0 + α1t + · · · + αl−1t

l−1 in OCdi
,Pi
/(tl), for

some αi in Rdi reducing to ai modulo p (and actually α1 = pβ1). Let P (T ) :=
α0 + pβ1T +α2T

2 + · · ·+αl−1T
l−1 in R[T ]; since the reduction modulo p of P ′(T )

has a simple zero at 0, we can apply Hensel’s lemma and there exists a θi in Rdi
such that P ′(pθi) = 0. Thus P (T + pθi) = P (pθi) +α′

2T
2 +α′

3T
3 + · · ·+α′

l−1T
l−1,

with α′
i = ai.

Now from the proof of Theorem 2.4, we see that there exists an Rdi-point above
Pi, Πi, such that ti := t+ pθi is a local parameter at Πi; moreover the image of f
in OCdi

,Pi
/(tli) is f(Πi) + α′

2t
2
i + α′

3t
3
i + · · · + α′

l−1t
l−1
i , thus the local polynomial

associated to f at Πi is pα
′
2T

2+p2α′
3T

3 · · ·+pl−2α′
l−1T

l−1, which clearly has leading

monomial of degree 2 and arithmetic multiplicity one since α′
2 = a2 ∈ F

×
qdi . �

From Lemma 4.2 and the discussion preceding it, we get the following (notations
are as in the Lemma and its proof)

• if l is even, then we have

L′(A
1
R′

di

, fΠi
; Ψ(di)(f(Πi))T

di) =
1

1− q
ldi
2 Ψ(di)(f(Πi))T di

;

• if l is odd, then

L′(A
1
R′

di

, fΠi
; Ψ(di)(f(Πi))T

di) = 1− qdi
l−1
2 χ2(α

′
2)GqdiΨ

(di)(f(Πi))T
di,

thus we see that the (local) function L
(−1)l−1

P has degree di, and its reciprocal roots
are Weil numbers of weight l.

From Theorem 3.6, the function L(C, f ;T )(−1)l−1

is a polynomial of degree∑t
i=1 di; since we have

∑t
i=1 di = deg(dρ(f))0, we get the following

Theorem 4.3. Let f be a Morse function over C; then the function L(C, f ; t)(−1)l−1

is a polynomial of degree deg(dρ(f))0, and all of its reciprocal roots are Weil num-
bers of weight l.

Now we evaluate the number deg(dρ(f))0 in terms of the genus of Ck and the

pole orders of the function ρ(f). Let (ρ(f))∞ :=
∑k

i=1 niP
∞
i ∈ Div(Ck)(k) be

this divisor of poles. Assume that n1 · · ·nk is prime to p; then the divisor of

poles of the differential dρ(f) is (dρ(f))∞ =
∑k

i=1(ni + 1)P∞
i , and its degree is∑k

i=1(ni+1) deg(P∞
i ). The degree of the divisor (dρ(f)) is 2g−2, where g denotes

the genus of Ck; thus the degree of deg(dρ(f))0 is 2g − 2 +
∑k

i=1(ni + 1) deg(P∞
i ),

and we get the following generalisation of Proposition 3.4 in [9]

Corollary 4.4. Assume that f is Morse, and that the pole orders of ρ(f) are prime

to the characteristic. Then if the polar divisor of ρ(f) is
∑k

i=1 niP
∞
i , the function

L(C, f ; t)(−1)l−1

is a polynomial with degree

2g − 2 +

k∑

i=1

(ni + 1) deg(P∞
i ),

and all of its reciprocal roots are Weil numbers of weight l.
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Finally, since in any case we have the inequality

deg ((dρ(f))0) ≤ 2g − 2 +
k∑

i=1

(ni + 1) deg(P∞
i ),

we deduce the following bound for the sums Sr(C, f) in the case of simple singu-
larities, generalizing Corollary 3.5 in [9]

Corollary 4.5. Let f be a Morse function over C with

(ρ(f))∞ :=

k∑

i=1

niP
∞
i ∈ DivCk(k);

then we have the bound

|Sr(C, f)| ≤

(
2g − 2 +

k∑

i=1

(ni + 1) deg(P∞
i )

)
q

lr
2 .
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