N

N

Newton polygons for character sums and Poincaré series
Régis Blache

» To cite this version:

‘ Régis Blache. Newton polygons for character sums and Poincaré series. 2011. hal-00551461

HAL Id: hal-00551461
https://hal.science/hal-00551461

Preprint submitted on 3 Jan 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00551461
https://hal.archives-ouvertes.fr

NEWTON POLYGONS FOR CHARACTER SUMS AND
POINCARE SERIES.

REGIS BLACHE

ABSTRACT. In this paper, we precise the asymptotic behaviour of Newton
polygons of L-functions associated to character sums, coming from certain
n variable Laurent polynomials. In order to do this, we use the free sum
on convex polytopes. This operation allows the determination of the limit
of generic Newton polygons for the sum A = A; & Az when we know the
limit of generic Newton polygons for each factor. To our knowledge, these are
the first results concerning the asymptotic behaviour of Newton polygons for
multivariable polynomials when the generic Newton polygon differs from the
combinatorial (Hodge) polygon associated to the polyhedron.

0. INTRODUCTION

In the following, we note k a finite field with ¢ = p® elements, and k, its degree
r extension in an algebraic closure k fixed once and for all. Let x = (x1,...,%,)
be an n-tuple of indeterminates, and f(x) = > ;.z» a;x' € k[x,x '] be a Laurent
polynomial in n variables with coefficients in k. If v denotes a non trivial additive
character of k, let ¢, := 1 0Try_/; be the character induced by ¢ on k; ; let x be a
multiplicative character of ()", and x,. := x 0Ny, its extension to (k))". From
f, ¥ and x, we form the character sums over each extension of k

S(fix) = Y w(f)x(),

xeG™ (k)

then from these sums we define the L-function

LT =esp | Y8000

r>1

When y is trivial, we simply denote this function by L(f;T"). From the works of
Dwork and Grothendieck (¢f. [8], [I0]) we know that it is rational.

Let us begin with a trivial y; this is the most classical case in the literature.
The first result about the L-function is due to Deligne [6, Théoréme 8.4]. For a
polynomial of degree d prime to p, whose higher degree form defines a nonsingular
hypersurface in the projective space P" !, the function L'(f,T) (here the sums are
defined over A", not over G;,,) has degree (d — 1)".

More generally, one can associate to the polynomial f its Newton polyhedron at
infinity, which is the convex polyhedron A defined in affine space R™ as the convex
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hull of the origin and the support of f (that is: the set of i € Z" such that a; is
non zero). Then when certain forms of f, coming from the facets of A, are non
degenerate, Adolphson and Sperber [I] have shown that the function L(f;T)-D"""
is a polynomial with degree n!V(A), where V is the usual volume over R".

Let us denote ai,...,a,v(a) the reciprocal roots of this polynomial. These
are algebraic integers having the following properties: their complex modulus is
la;| = ¢2, for integers 0 < w; < n. Moreover any conjugate (over Gal(Q/Q))
of «; have the same modulus. The distribution of the w; is known [, Theorem
1.8]. On the other hand, for any prime ¢ # p, «; is a f-adic unit. Finally we have
lai|p, = g%, for some rational s; between 0 and n. In this paper we shall study
these valuations.

As usual, we identify the g-adic valuations of the reciprocal roots of a polynomial
with the slopes of the segments in its g-adic Newton polygon. We shall denote by
NP, (f) (resp. NP4(f,x)) the g-adic Newton polygon of L(f; T) (resp. L(f,x;T))in
the following. If II is a convex polygon with length [, i.e. the graph of a continuous,
piecewise linear function ¢ over the interval [0,!] affine over each of the intervals
[i —1,4] and such that ¢(0) = 0, we shall denote IT = (7;)1<i<; when the slope over
the interval [ — 1,4] is m;. If TI; and IIy are two convex polygons of length I, we
shall write II; < IIs when II; lies above I3, and their endpoints coincide.

Adolphson et Sperber have given [I, Theorem 3.10] a lower bound for the Newton
polygons of the functions L(f;T)~D""" when f runs over the (non degenerate)
polynomials with fixed Newton polyhedron A. This bound is usually called the
Hodge polygon of the polyhedron A, denoted HP(A). This is an invariant depending
only on A, that we describe in the next paragraph. Remark that generally this is
not the Hodge polygon of a crystal (cf. [12]), nor a geometric Hodge polygon, these
families of polygons having all their slopes integral. However, it is shown in [9] that
the procedure giving the Hodge polygon from A is the same that the one giving the
Hodge spectrum at infinity of a complex polynomial having Newton polyhedron A.
This gives a Hodge theoretical interpretation of this polygon.

Denote by C(A) := R4 A the cone of A in R", Ma := C(A)NZ" the monoid
associated to this cone, and A the algebra k[xM2]. One can define a map from
C(A) to Ry, the weight associated to A, by

wa(u) =min{p € Ry, u € pA}.
The vertices of A lie in Z", thus the image of Ma by wa lies in Q ; more precisely
there is a positive integer D such that Imwa C %N . We shall call the least integer
D having this property the denominator of A. The weight wa turns the algebra
A into a graded algebra

i
Aa = @izoAA_%, .AA% = Vect{x", wa(u) = 5}

to which we associate the Poincaré series
Puy(t) =) dim Ay ot
i>0
Kouchnirenko [T4, Lemme 2.9] has shown that for non degenerate f, this series is
actually a rational function. Precisely, the series Pa(t) := (1 — tP)"P4, (t) is a

polynomial with degree less than or equal to nD. If we set Pa(t) := > ¢;t%, the
Hodge polygon HP(A) is the convex polyhedron starting at the origin, and formed
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by the segments of horizontal length ¢; and slope %. In the following, we shall
also call this polygon the polygon coming from the Poincaré series Pa,. With
our notations, Adolphson and Sperber’s result can be rewritten in the following
way: for any polynomial f in k[x,x~!], non degenerate with respect to its Newton
polyhedron A we have NP, (f) < HP(A).

It is natural to ask how the polygons NP,(f) behave when f varies along the
(nondegenerate) polynomials with fixed Newton polyhedron. Unfortunately these
variations are difficult to control; explicit calculations for polynomials of little de-
gree in one variable show that one cannot hope a complete answer to this ques-
tion. To overcome this problem, we shall work with generic Newton polygons.
Grothendieck’s specialization theorem [12] ensures the lower bound of the polygons
NP, (f) exists, and it is attained for every point in a Zariski open dense subset of the
space of nondegenerate polynomials with fixed Newton polygon A. This polygon
does not depend on ¢, only on p, we denote it GNP(A, p). In the one dimensional
case, one can calculate this polygon explicitely [4], [16], and the Hasse polynomial,
determining the hypersurface of the space of polynomials outside which we have
NP, (f) = GNP(A, p).

Let us speak about the behaviour of the generic Newton polygon when p varies.
From ramification theory, one can easily see that a necessary condition for this
polygon to coincide with the Hodge polygon is p = 1 mod D. Adolphson and
Sperber conjectured this condition is sufficient. This is true when n < 3, but in
higher dimensions one has to replace D by a (generally strict) multiple D*, as shown
in [I8], [19]. We can rewrite this result

liminf GNP(A, p) = HP(A).
;D*}OO
Wan conjectured [I9, Conjecture 1.11] that under certain extra hypotheses the limit
exists, that is
lim GNP(A,p) = HP(A).
pP—o0

This result is known for one variable Laurent polynomials [4], [16]. In this paper
we prove this conjecture for the following families of polyhedra
i/ A is the convex hull of points {d;e;, —d}e;}1<i<n, where (e, ..., e,) formsa
basis for the Z-module Z", and the d;, d; are nonnegative integers, (d;, d}) #
(0,0); this is Theorem [B.1]
it/ A is the convex hull of points {d;f;, —d}f; }1<i<n, where f1,...,f, generate
a submodule M of Z" such that 2Z" c M; see Theorem 5.1
To our knowledge, these are the first results on the asymptotic behaviour of
Newton polygons associated to higher dimensional character sums, when the de-
nominator D is neither 1 nor 2. Note that the first case implies the conjecture for
the polynomials studied by Deligne.

N Another, more difficult, question, is the following: choose a Laurent polynomial
f whose coefficients are in Q; denote by Q 7 the extension of Q generated by the
coeflicients of ]7 For each prime p in Q, choose p a prime dividing p in the field Q P

with residue field F,;. One can ask for the variation of the Newton polygons NP, ( f

mod p) of the reductions modulo p of fwhen p tends to infinity. Consider the space
of polynomials with coefficients in Q, with fixed simplicial Newton polyhedron A,
and having non zero coeflicients for some monomials such that the sub monoid of
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Ma generated by their exponents contains all the points in Ma except a finite
number. In this situation Wan conjectures [19, Conjecture 1.12] that there is a
(Zariski) dense open subset defined over Q of the space of these polynomials such
that for any f in this open we have

lim NP,(f mod p)=HP(A).

p—oo
This result is known for the space of polynomials of degree d in one variable [21],
Theorem 1.3], and for the space of Laurent polynomials of degrees d and d’ in one
variable [T5]. We will show it for certain spaces of Laurent polynomials whose New-

ton polyhedron has one of the forms described above (cases i/, ii/): see Theorems
and

When the multiplicative character x is no longer trivial, the situation is quite
different. Adolphson and Sperber have shown (under the same non degeneracy
conditions) that the L-function has the same degree as in the purely additive case
(¢f. 2], [3]). They also gave a lower bound for Newton polygons associated to
such sums. Again, one can describe this lower bound in terms of Poincaré series,
but in this new situation it depends on the residue of p modulo the order of the
character y. As a consequence, one cannot hope a limit for the generic Newton
polygons when p tends to infinity, except when the order of x is two (actually this
particular case gives the case ii/ above). We get a weaker result in this case: when
p goes to oo along a residue class modulo the order of the multiplicative character,
we still have a limit. This is a generalisation of the one dimensional results in [5].
See theorems [4.]] and for more details.

This paper is organized as follows: in the first chapter, we use the free sum
of convex polytopes, and express the associated Hodge polygon from the Hodge
polygons of the factors. In the second, we use results from f-adic cohomology
(mostly Kiinneth formula) to express Newton polygons associated to (L-functions
from character sums associated to) certain polynomials in several variables from
Newton polygons associated to one variable polynomials. In the third chapter, we
show Wan’s conjectures in case i/: we recall briefly the one variable situation, from
which we deduce theorems [B.1] and In chapter 4, we give some applications to
sums twisted by a multiplicative character, and show the existence of a limit when
one restricts to residual classes. Finally, we use the preceding results, and Poisson’s
formula to show case ii/ of Wan’s conjectures in the last chapter.

Notations.

In order to make the reader more comfortable, and since we shall use several
operations on convex polygons, we group here the different notations and for each
we give the reference in the text. Let II;, IIs be polygons, and a > 0 a real number

II; x IIs  product Definition
II; +II, sum Definition E.1]
ally vertical scaling Definition 4.1]

II; [[T;  juxtaposition Definition
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1. FREE SUMS OF POLYTOPES AND THEIR HODGE POLYGONS.

In this chapter, we fix once and for all two convex polytopes A; in R™ and As
in R™. We recall the definition of their free sum A; ® Ao, and give some of its
properties; then we express the Poincaré series of the graded algebra Aa,ga, from
those of Aa, and Aa,, in order to express the Hodge polygon of A; & As from
those of A1 and As.

We first describe the free sum of polytopes (¢f. [11], 16.1.3]); in the following we
suppose that our polytopes always generate the ambient affine space; moreover the
dimension of a polytope is the dimension of the smallest affine space containing it,
and we assume the dimension of the empty polytope to be —1.

Definition 1.1. Let Ay and Ao be two convex polytopes, lying respectively in R™
and R™?. Their free sum is the convex polytope which is the convexr hull of A1 x
{0} U{0} x Ay in R™ T2 We denote it by A @ As.

Remark 1.1. There is a difference between the operation we have just defined and
the usual (or Minkowski) sum of polytopes. For instance, if A; = [0,d;] C R
and Ag = [0,d2] C R, then their free sum Ay & Ag is the triangle with ver-
tices (0,0),(d1,0) and (0,dz), but their usual sum is the rectangle with vertices
(O, 0), (dl, 0), (O, d2) and (dl, d2)

We now determine the facets not containing the origin of the free sum of two
polytopes, each one containing the origin. These results must be well known, but
since we did not find a suitable reference, and many proofs in this paper depend
on it, we recall them here.

By their very definition, the facets of a polytope are its intersections with its
supporting hyperplanes, but also the whole polytope and the empty set @; the last
two ones are generally called the “improper facets”.

Proposition 1.1. Let Ay and Ay be two convex polytopes containing the origin,
and A := Ay ® Ao be their free sum. The facets of A mot containing the origin
are the polytopes o := o1 ® 02, 0; being a facet of A; not containing the origin for
i=1,2.

Moreover, if for each © = 1,2 the facet o; has dimension d;, then o is a facet of
A of dimension dy + do + 1.

Proof. First we show that if o1 (resp. o02) is a facet (perhaps empty) of Ay (resp.
As) not containing the origin, then o1 @ o4 is a facet of A not containing the origin.
Let Hy with equation Y ;' a;x; = 1 (resp. Ho with equation Y2, b;y; = 1) be a
supporting hyperplane of Ay (resp. Ag) for the facet o1 (resp. o2). For an empty
facet we take all the a; equal to 0. Since A; contains the origin, it is contained
in the half-space H; = {(z1,...,Zp,), Yoit; a;x; < 1} in R™, and the same is
true for Ay and H; in R™. Consider the hyperplane H in R™*" having equation
St aimi+ Y2, biy; = 1. From the definition of A as a convex hull, this polytope
is contained in the half-space H~ of R"* "2 and the intersection HNA must contain
o1 x {0} and {0} x 2. As a consequence, H is a supporting hyperplane of A, and
the facet o := H N A it determines contains the convex hull of o1 x {0} U{0} X o2,
i.e. the free sum o1 @ 0.

To show the reverse inclusion, choose a point z(z1, ..., 2n,4n,) in 0. Then z is in
A, a barycenter of (x,0) and (0,y) two points respectively in A; x {0} and {0} x Ag;
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thus there exists a real number A € [0,1] such that z; = Az; for 1 < i < ng and
Zny+i = (1=N)y; for 1 <4 < ny. Aslong aszisin H, we have > a;z;+ Y bizn, +i =
1; on the other hand we have Y ' a;z; < 1 and > .2, byy; < 1. These last
inequalities must be equalities, in other words x € 01,y € 02, and x € 01 ® g2. We
have thus shown that ¢ = o1 @ 03 is a facet of A not containing the origin.

Conversely let o be a facet of A not containing the origin, and H a supporting
hyperplane for it. Since o is a convex polytope, it is the convex hull of its extremal
points, which are the extremal points of A contained in . Now from their definition,
the extremal points of A have the form (x1,0) or (0,x2), where x; describes the
extremal points of A;. Denote by S7 the set of extremal points of o of the first
type, and S the set of extremal points of ¢ of the second type. Then o is the
convex hull of S7; U S5, in other words it is the free sum of o1 and o5, where o; is
the convex hull of S;, and it is sufficient to show that o; is a facet of A;. If S; = (),
there is nothing to prove; else from its construction H; = H NR™ is a supporting
hyperplane for A; in R™, and o; = A N H; is a facet of A,.

We end the proof with the assertion on the dimension: the facet o; is the convex
hull of a set S; of points not containing the origin, among which we can choose a
maximal subset S/ with d; + 1 affinely independent points. The sets in affine space
R™*2 T, = 8] x {0} and T, = {0} x S} are disjoint, and affinely independent
from their definition. The set T' = T UT5 is a maximal subset of di + ds + 2 affinely
independent points in S = 57 x {0} U {0} x Sa; finally since o is the convex hull of
S, we get the last assertion. O

Since A; contains the origin, its facets not containing it have dimension at most
n; — 1; from this we deduce the

Corollary 1.1. The codimension 1 facets of A not containing the origin are the
o = 01 ® 02, where 0; is a codimension 1 facet of A; not containing the origin.

Moreover if Hy having equation Y a;,x; = 1 (resp. Ha having equation Y byy; =
1) is the supporting hyperplane of Ay along o1 (resp. of Ag along o2), then the
supporting hyperplane of A along o has equation > a;x; + > biy; = 1.

We shall now express the different objects associated to the polytope A in the
introduction from those associated to each of the A;. First we give an alternative
definition of the weight: let u(uy,...,un,1n,) be a point in C(A). The half-line
R u meets the boundary of the polytope A in a point of a codimension 1 facet o
not containing the origin. If H is the supporting hyperplane for this facet, having
equation a1x1 + - -+ + Any4nyTnq+ny = 1, the weight of u is

’UJA(U.) = a1U1 + - Ay fng Ung 4y -

Lemma 1.1. Let Ay and As be two convex polytopes containing the origin, and
A = A1 B As be their free sum. Denote by o; a facet of A;. Then
i/ the cone C(oy ® 02) in R™ "2 is the product C(c1) x C(02) ;
ii/ the monoid M is the monoid Ma, x Ma, in Z" 1" ;
iii/ the weight wa is the map wa, + wa, from C(A) to Ry sending the point
u = (ur,u2) to wa, (u1) + wa, (u2)
iv/ the denominator D of A is the least common multiple of the denominators

Dy and Dy of Ay and As.



NEWTON POLYGONS FOR CHARACTER SUMS AND POINCARE SERIES. 7

Proof. First we show assertion ¢/: the point u(uy, uz) is in the cone C(o1 @ 02) if
and only if one can choose a real number p such that (puy, pus) is in 01 ® 2. From
its definition, this polytope contains exactly the points (Ax1, (1 — A)x2), A € [0,1],
x; € 0;. Each u; is in C(0;), and the converse is trivial.

The second assertion is an easy consequence of the definition of the monoid
associated to a convex polytope, and assertion i/, applied to o; = A;.

To show i/, we use Corollary[[.T] and the description of the weight given above.
Let o be a codimension 1 facet of A not containing the origin, such that the half
line R;u meets the boundary of A in a point of 0. From Corollary [LT] we have
0 = 01 @ 02, 0; being a codimension 1 facet of A; not containing the origin. As
a consequence, if u = (uy,ug), assertion i/ ensures that u; € C(0;). If we note
Hy a1+ -+ an,xn, =1 (resp. Hy @ apy41Tny 41+ + Qnyfng Ty +ny = 1) the
supporting hyperplane for A; along o1 (resp. for Ay along o2) and if uy (w1, ..., Un,)
(resp. U2 (Uny+1,-- - Uny4ny)), We must have wa, (U1) = aru1 + - - + ap, Up, (resp.
WA, (U2) = Gny41Un,+1 + *  + Gnytnoling+n,). Using Corollary [l again, the
equation of the supporting hyperplane for A along o is a121 4+« -+ Gny 1y Tnytny =
1, and wa(u) = a1u1 + -+ - + Ay +noUn,+n, ; this is the desired result.

The last assertion is a direct consequence of i/ and the definition of the denom-
inator of a convex polytope. ([l

We deduce from assertion i/ that the algebra Aa is isomorphic to the tensor

product (over k) of the algebras Aa, and Aa,. Let us look at the grading; if x "

.. . . u;, U . - .
isin A, &, from assertion 4ii/, the monomial x" = x7'x,” is in A, &, With
D, ’

k1 ko k

Dy "Dy D
We get the following decomposition for each piece of the grading of Aa :
Asgy = D Ans it @A B2
k_1+k_27£
Dy

Dy~ D

the factorisation of the Poincaré series of Aa with the ones of A, and Aa,
D D
Pa, (t) = P-AAl (tDl )P-AA2 (tDQ )7

and finally the factorisation Pa(t) = Pa, (tD%)PA2 (tD%)

We end this section showing, from the formula above, that the Hodge polygon
of the free sum A = A; @ Ao can be expressed from the polygons of each factor. In
order to show this, we introduce a new operation on convex polytopes. Recall that
we have chosen to note a convex polygon of length a starting at O by (s;)1<i<a
when it is the juxtaposition of segments of (horizontal) length 1 and slope s;.

Definition 1.2. Let II; and Ils be two convex polygons. If
I = (si)1<i<a, M2 = (8))1<i<s,

the product of Iy and Iy (denoted I1; x Il ) is the convex polygon starting at O
defined by

IT = (i + 8})1<i<a, 1<j<b-
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Remark that the horizontal length of II is the product of the lengths of II; and
I, and that the horizontal length of the segment with slope s in II is

= >t

sitsi=s

where £; (resp. ) is the horizontal length of the segment with slope s; (resp. s})
in IT; (resp. Ip).

We deduce the following description for the Hodge polygon HP(A) from the
Hodge polygons of its factors.

Proposition 1.2. Let Ay and Ay be convex polytopes, A their free sum. Then the
Hodge polygon of A is the product of the Hodge polygons of its factors

HP(A) = HP(A;) x HP(Ay).

Proof. Let E,(cll) (resp. E,(CZ)) be the horizontal slope of the segment in HP(A1) (resp.

HP(As)) with slope g—ll (resp. 1’5—22) The segment with slope % in the product

HP(A;) x HP(As) has horizontal length £ = 3 ﬂ,(cll)fl(;) where the sum runs over kq,

ko such that g—ll + 1% = %. We conclude remarking that the definition of HP(A)
from Pa, joint with the factorisation of Pa, gives the same result. O

2. CHARACTER SUMS.

All along this chapter we choose two Laurent polynomials over k, fi; and fo
respectively in nj et ny variables. We note the corresponding indeterminates x;
and x3, and f = (f1, f2) the Laurent polynomial in the n := n; + ny variables
X = (Z1,...,Tn,4n,) defined by f(x) = fi(z1,...,2n,) + fo(Tny41, -+ Tnytny)- I
is an immediate consequence of Definition [T that if A; and As denote respectively
the Newton polytopes of f; and fo in R™ and R"™?, the Newton polytope of f is
A, the free sum of Ay and As.

The aim of this section is to express the ¢-adic cohomology spaces associated to
the character sums coming from f in terms of the spaces associated to fi; and fs;
our main tool is Kiinneth formula. From these results we will deduce bounds on
the generic Newton polygon associated to A from those associated to A; and As.

We begin by showing that the non degeneracy of fi; and fo implies the non
degeneracy of f.

Lemma 2.1. Let f1 and fa be two Laurent polynomials with respective Newton
polytopes A1 and As. If f1 and fo are non degenerate with respect to their Newton
polytopes, then f = (f1, f2) is non degenerate with respect to A = Ay & A,.

Proof. Recall that if f is a polynomial with Newton polytope at infinity A, and o
a facet of the polytope A, the polynomial f, is the sum of the monomials f whose
exponent is in 0. Then f is non degenerate with respect to A exactly when for any

facet o not containing the origin, the polynomials gé e 1 < i < ng+ ne have no

common zero in (*)"17"2. From Lemma [ every facet of A not containing the
origin can be written o1 @ o2, where o1 is a facet of Ay (resp. g a facet of Ay).
One easily verifies f,(X) = f1.0,(X1) + f2,0,(X2) and we have

Ofs { Ohuoy o 1<i<m

ox;
2oy g4 n+1<i<n;+ny

ox;

8171'
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Thus x = (x1, X2) is a common zero for the polynomials g-—i‘;, 1 < i< ny+ng when

X1 is a common zero for the 821;’ , 1 < i< n; and x5 is a common zero for the
8](;2:5"_’2 ,n1 +1 < i< njy+ny. In other words, non degeneracy of f; and fo implies
that of f. O

Let 1) be a non trivial additive character over k, and L be the Qy-sheaf over A,lC
associated to 1 and the Artin-Schreier covering y?—y = x. Let x be a multiplicative
character of k* and L, the associated @Z—sheaf over Gy, .

For X a k-scheme of finite type, f a regular function over X (i.e. a morphism
f:X— Al), and g a regular function not vanishing over X, one can define as in the
introduction the function L(X, f, g;T), and Grothendieck’s trace formula allows us
to reinterpret it in terms of characteristic polynomials of Frobenius action on the
cohomology spaces of the sheaf f*L, ® g*Ly

L(X,f,g,T) = Hdet (I_TF|H2(X®E7JC*£¢ ®g*£)())(_1) - '

We come back to our situation. Consider the three functions f; : G — Al
1<i<2 and f = (fi, fo) : G" — A'. We fix a character y; (resp. x2) of (k*)™
(resp. (k™)™2), and we denote by x the character (x1,x2) of (k*)". From the
definition of f, we have (denoting pr; the canonical projections of G],, = G} x G2
on each of its factors) the following: f*Ly ® L, = ®§:1 prf (f¥Ly ® Ly,) is the
tensor product of the sheaves f Ly ® L,,. From Kiinneth formula, we have

H (G, [ Ly ® Ly) = HZ(G, [T Ly © Ly,) @ HE(GLF, f3 Ly © Ly, ).

Now f is non degenerate exactly when both f; and f2 are; in this case we simply
rewrite the above relation

HN Gy, 7Ly @ L) = HI (Gl fTLy © Ly,) © H* (G, f3 Ly © Ly,)
from [7, Theorem 1.3] when y is trivial, [3, Theorem 4.2] in the general case. In
other words, the function L(f, x; T)(’l)%1 is the polynomial whose reciprocal roots
are the product of couples of reciprocal roots of the polynomials L(f1, x1; T)(*l)nlf1
and L(fa, x2; )™

Recall that for a Laurent polynomial f we denote by NP,(f,x) the Newton

polygon of the polynomial L(f, x; T)(’l)nfl. We first deduce from the results above
a factorisation of NPy(f, x) that we shall use later.

Lemma 2.2. Notations being as above, we have the following equality of Newton
polygons

NP, (f,x) = NPy(f1,x1) X NP4(fa, x2)-

For a n-dimensional polytope A, and x a multiplicative character as above, let
us define the generic Newton polygon GNP(A,y,p) as the lower bound for the
polygons NP, (f, x) when f runs over the non degenerate polynomials with Newton
polytope A. When A is a free sum, we deduce from Lemma a bound for the
generic Newton polygon above, from the generic Newton polygons of the factors in
the free sum.

Corollary 2.1. Let Ay and As be to convex polytopes, and A their free sum. We
have
GNP(AhXbp) X GNP(A27X27p) j GNP(A7X7p)
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Proof. Grothendieck’s specialisation theorem (see for instance [I2]) ensures that
for any ¢, there is a (Zariski) dense open subset Ua, y,,p of Ma,, the coefficient
space for the non degenerate polynomials with polytope A;, such that for any f;
in Un,; y,;.p, we have NP, (fi, xi) = GNP(A;, xi,p). From Lemma 2] if both f;
and fo are non degenerate, f = (f1, f2) is also non degenerate with respect to A,
and we get the inclusion Ma, X Ma, C Ma. We deduce from Lemma that
the lower bound for the polygons NP,(f, x) when f runs over Ma, X My, is the
polygon GNP(Aq, x1,p) x GNP(As, x2,p) (and it is attained for the polynomials
with coefficients in Ua, v, ,p XUA, x»,p)- Finally, from the definition of GNP (A, x, p)
as the lower bound for the polygons NP, (f, x) when f describes Ma, we get the
result. O

3. ASYMPTOTIC BEHAVIOUR IN THE ADDITIVE CASE.

We consider the following situation: let n be a fixed integer, and (ey,...,e,) be
a basis for the Z-module Z". We also choose non negative integers dy,d}, ..., d,,d.,
such that for any ¢ we have (d;,d}) # (0,0) (else the situation we shall describe
reduces to a lower dimensional one). We denote by A the convex polytope in R"
which is the convex hull of the points {d;e;, —d}e;}1<i<n and the origin if necessary.
The aim of this section is to show the following result

Theorem 3.1. When p tends to infinity, the generic Newton polygon associated to
A and the prime p, GNP(A, p), tends to the Hodge polygon HP(A).

We shall give the proof at the end of this section; it is a consequence of the results
above and the one dimensional case of this theorem, which is already known. We
begin by recalling what is known in this case; the interested reader shall look at
M4, [16], [21].

Let f be a Laurent polynomial in the variable z, f(z) = Z?:—d/ a;x’, a_gaqg # 0.
Clearly the Newton polytope at infinity associated to f is the segment in R with
endpoints —d’ and d; the weight is given, for any n € Z, by w(n) = max(%, — 7).
We deduce from its definition that the polygon HP([—d’, d]) has endpoints the origin
and the point with coordinates (d + d, d+Td/), and has a segment of length 1 for
each of the following slopes

1 d—1 1 d—1 1 d—1 .,
0,1,3,...,7,@,...,7 (O,E,...,Tlfd —0)

From now on we shall denote s1, ..., sq+q these slopes, ordered increasingly. As a
consequence we deduce an alternative description of the polygon HP([—d', d]): it is
the polygon starting at the origin and passing through the points (é,s1 + - - + s;)
forany 1 <i<d-+d.

As in [I7], one can associate to f a differential operator over a space of overcon-
vergent series, and a Frobenius operator. These operators commute to each other,
allowing the following reinterpretation of the function L(f;T): it is the character-
istic polynomial of the Frobenius operator acting on the first de Rham cohomology
space. Now one estimates (for p large enough), the principal parts of the coefficients
of its matrix, and give congruences for its minors, i.e. for the coefficients of the
L-function.

Let 7 be the unique root of the polynomial X?~!+p (in a fixed algebraic closure
of the field Q, of p-adic numbers) satisfying the congruence ¢ (1) = 1 + w[r?]. We
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have Qp(w) = Qp(cp), and we set K = Qp(cp,cq,l). For any a in k, we write a
for its Teichmiiller lifting (if « = 0, then @ = 0, else the reduction of @ modulo the
maximal ideal is a, and @ € p,_4). Let f be the polynomial in Kz, x_ll] obtained
from f by lifting its coefficients as above. If we set L(f;T) =1+ Ef:ld M;T?, we
get, for any 1 < i < d+ d’, the congruence in K
Mi = uiPQ’C’l’:’i(ﬁ_d/, “ee ,Add)ﬂ'ayi mod 7Tayi+1,
where u; is an unit in the valuation ring of K, and the polynomials 735’5,, ;, can be
chosen with their coefficients in QQ, depending only on the degrees d and d’, and the
respective residues p, p’ of p modulo d, d'.
If 0 <ip <d, 0<iy<d are two integers determined by the condition

{s1,- s} ={0}U{Z, 1< <} U, 1<) <),

then we can express Y; from the symmetric group on i elements, acting on the set
{—iQ,...,O,...,il} :
i1

Yi=min 3" [u(pj - o()].

where [2] denotes the least integer greater than or equal to x.

As a consequence we get a rather precise description of the one dimensional case
for a fixed, sufficiently large prime p: on one hand the generic Newton polygon
(with respect to the valuation vg), GNP([—d’, d], p), has vertices the origin and the
points with coordinates (%, %)195(”(1/, on the other hand the reduction modulo
p of the Hasse polynomial

d+d’
’ ’
PP 5 1 — PP (Y 1
H[—d’,d] (a_d/, ey ad) = | | Pd,d’,i(a—d/u ce ,ad),
i=1

defines a hypersurface in the space of Laurent polynomials of degrees d, d’ having
their coefficients in IF,,. Every polynomial, defined over F,, whose coefficients do
not belong to this hypersurface satisfies NP, (f) = GNP ([—d', d], p).
When p varies, one easily checks that for all 1 < ¢ < d + d’ we have
. Y

lim —— =51+ -+ sy,

p—oop—1
i.e. the generic Newton polygon converges to the Hodge polygon. Finally, let us
define the polynomial (with coefficients in Q)

Hi—ara(X—ar,...,Xq) = H HE (X —ars - Xa).
(p.p" ) E(Z)dL)* X (L) d' L) >
If f € Q[z,27!] is a Laurent polynomial with A(f) = [-d’,d]: f(z) = Z?Zid, At
and if we choose for any prime p a prime p above p in the ring of integers of

the extension Q; of Q defined by the coefficients of f, we have lim;, o, NP,(f
mod p) = HP([-d', d]) as long as

Hi—ar af(Aar, .-, Ag) #0.

In other words there exists a Zariski dense open subset U/, defined over Q, of the
space of Laurent polynomials in one variable over Q having Newton polyhedron at
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infinity [—d’, d], such that for any f in U, the limit lim, ,oc NP,(f mod p) exists
and is exactly the Hodge polygon.

We are ready show Theorem B.11

Proof. We begin by reducing the problem to the following case: e; is the ¢-th vector
of the canonical basis of R". One can define a left action of M,,(Z) on the space of
Laurent polynomials in n variables, associating to the polynomial f(x) = Eaixi
and the matrix M the polynomial M f(x) = f(Mx) = > a;(Mx)! = 3" a;ix™!, where
Mx is the n-tuple of variables with i-th equal to H?:l a:}n”, and Mi is the usual
multiplication of M and the column vector i. If M € GL, (%), the map x — x is
one-to-one over (k*)", and all its extensions. Thus we get L(™ f;T) = L(f;T).

Let now f be a Laurent polynomial of the form f(x) = > ", Z‘;;id; a;;x7%,
whose Newton polyhedron at infinity is A. Choosing for M the base change ma-
trix from {e1,...,e,} to the canonical basis, we get M f(x) = >""" | Z;li:idg i),
whose associated Newton polyhedron is the convex hull of the points with coordi-
nates

(d1,0,...,0),(—=d},0,...,0),...,(0,...,0,dy),(0,...,0,—d,),

and the origin. This polytope is the free sum of the segments [—d, d;], 1 <i <,
and Corollary 2] ensures us

On the other hand, from Proposition [[2] we have HP(A) = HP([—d},d1]) x

- x HP([d],,d,]). The result comes from the fact that for each i, the poly-
gon GNP([-d.,d;],p) tends to HP([—d},d;]) when p tends to co : the polygon
GNP(A, p) is between two polygons having the same limit. O

Remark 3.1. In the case p = 1 modulo lem(d,d’), we know (cf. [17]) that the
polygons GNP ([—d', d], p) and HP([—d',d]) coincide. As a consequence, when p =1
modulo D = lem(d;, d})1<i<n, the polygons GNP(A,p) and HP(A) coincide, and
the Adolphson-Sperber conjecture [Il p. 386] is true in this case.

Let us consider the second question, that is: does there exist a dense open subset
U, defined over Q, in the space of polynomials having their coefficients in Q, and
Newton polyhedron A such that for any f in Ua, we have lim,_,.c NP, (f mod p) =
HP(A), where p is a prime above p in the ring of integers of the extension Qy
generated by the coefficients of f. Since we do not consider all polynomials having
Newton polygon at infinity A, we cannot answer this question. But concerning the
subfamilies we have considered, we get the following result

Theorem 3.2. There exists a dense open subset U defined over Q in the space of

polynomials of the form f(z) = >, E?;fw AijxI¢ with their coefficients in Q
such that for any polynomial in U, we have

lim NP,(f mod p) =HP(A).

p—o0

Proof. For a polynomial of the form f(z) = Y1 , Z?;fw A;;x7% we have NP, (f
mod p) = GNP([-d}, d1],p) X - -+ x GNP([—d.,, dy],p) if and only if its coefficients
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satisfy
H Hf_k(’ii’idk] (Akv_d;c’ ooy Aga,) #0 mod p,
k=1

where py (resp. p},) is the remainder of the euclidean division of p by dj, (resp. by
d}.). Note H* this polynomial, with p = (p1,p1,...,pn,ph) € (Z/d1Z)* x --- X
(Z/d),Z)*. We know that the polynomials Hf_k;iz% 4,) have their coefficients in Q,
hence H? has its coefficients in Q. If we set

H(Xy) = [[H(X5) = [ Hi—apa(Xi),
P =1

then for any f whose coefficients lie outside the hypersurface with equation H = 0,
and for any sufficiently large p, we have

NP,(f mod p) = GNP([—d},d}],p) x --- x GNP([—d,,, d,],p),
and we get the result since the last polygon tends to HP(A). (Il

4. ASYMPTOTIC BEHAVIOUR IN THE TWISTED CASE.

In this section, (ei,...,e,) denotes again a basis for the Z-module Z", and A
the convex polytope in R™ which is the convex hull of the points {d;e;, —d}e; }1<i<n
and the origin if necessary. We shall study the asymptotic behaviour of Newton
polygons of the form NP,(f, x), f a polynomial with Newton polytope A, and x a
multiplicative character of k> with fixed order. This study has been done in the one
dimensional case in [5], and we generalize it here. The results are rather different
from the preceding section since we shall not get a unique limit, but a limit for each
invertible class modulo the order of the character x. Note that all results before
Theorem [.1] are true for any polytope A.

Denote by w the Teichmiiller character of £, which is a generator for the group of
characters of k*. For a fixed n-tuple § = (1, ...,d,) of integers, denote by y = w?
the character on (k*)" defined by x(21,...,2,) = w(21)% ... w(2,)%". Let f be a
polynomial with Newton polytope A (generating R™), non degenerate. Adolphson
and Sperber have shown that the function L(f, x; T)(’l)%1 is a polynomial, having
degree n!V(A); they also gave a lower bound for its Newton polygon [3, Theorem
3.17], that we shall call in the sequel Hodge polygon associated to A and 8, and
denote by HP(A, qf—l).

We first describe this polygon, when the polytope A generates R™. If i and
0 < § < g—2 are two integers, let 69 be the remainder modulo ¢ — 1 of the integer
p'd ; remark that the sequence (5(i))i is periodic with period a divisor of a = log,, .
We also note 6 = (5@, .. ,57(li)).

Let N be the lattice g(_—l)l +Z" in R". We set M, s0) := C(A)N N@  and
A s the Ax-module k[xMAﬁ(” ]. There exists a minimal positive integer D such
that each of the images of the MAJ;(I») by wa is contained in %N ; we call this

integer the denominator of (A,8") in the following. Endowed with the weight,
AA,S“) turns to a graded Aa-module, to which we associate a Poincaré series and
a polynomial Py 5 as in the introduction. Let I be the polygon coming from
this polynomial. Each of the polynomials P, si has degree at most nD, and
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satisfies Py 5 (1) = n!V(A). In this way we get a family of polygons M indexed
by 0 <4 < a, each one having length n!V(A).

Definition 4.1. Let II and II' denote two polygons having the same length; we
denote by II + II' the polygon whose slope on the segment [i,i + 1] is the sum of
the slopes of the polygons I1 and II' on this segment. For a real number r > 0, we
denote by rII the polygon obtained from II by multiplying all its slopes by r.

With these notations, we can describe the Hodge polygon as

5 19!
HP(A, ——) == 11 .
(A =7 a;

We are also able to express the Hodge polygon associated to a free sum of
polytopes and two multiplicative characters from the Hodge polygons associated
to each factor. It is the transposition of Proposition is this new frame, and
we omit the proof, which is very similar to the one for the Hodge polygon of the
algebra An.

Proposition 4.1. Let Ay, Ay be two convex polytopes, respectively in R™ and
R"2, and A be their free sum. If we set

61 = (51, ce ,6n1), 52 = (5n1+17 N 75n1+n2)7 and 6 = (51,62) = (51, ce 76n1+n2)7
the Hodge polygon HP(A, q%) is the product of the Hodge polygons of its factors

HP(A,%):HP(AM 511)><HP(A2, 92
= - -

1)'

The one dimensional case has been studied in [5]; the reader wanting more
precisions should refer to this paper. In this case, the Hodge polygon can be
described from the classical Hodge polygon for additive character sums, and the
valuation of the Gauss sum associated to y, as given by Stickelberger’s classical
theorem; for this reason we shall call this new polygon the Hodge Stickelberger
polygon, and slightly change our notations.

To justify these changes, we begin by recalling the point of view in [5]. The au-
thors study the asymptotic behaviour in the non generic case of Laurent polynomials
in one variable of the form f(2®). Poisson formula’s reduces this problem to the
following situation: the Laurent polynomial f € k[z, z~!] has Newton polytope the
segment [—d’, d], and x is a multiplicative character of order s. It is not necessarily
defined over k, but over one of its extensions k' of cardinality ¢’ = 1 modulo s. If o’
denotes the Teichmiiller character for k%, one can write x = w’®, with § = (ZILTl)T
for some integer 1 < r < s — 1. Now the Hodge polygon HP([—d', d], q,%;_l) is the
polygon starting at the origin, ending at the point having coordinates (d+d’, d+Td/),
and with a segment of length one for each of the following slopes

— — /_ — p—
1-A d—X A d—-1+X (1d)\’---’dd/\ifd/—0>v

d PR d 7?"”’ d/

_ 1 G : : : o
where we set A = oz, (@) (=1 P ( q = T) with s, denoting the sum of the p-digits
of the integer @. Note that it is exactly the valuation (with respect to vg) of
the Gauss sum associated to x, as given by Stickelberger theorem.
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An other way to express A is the following: if o, is the permutation of the set
{0,...,s — 1} induced by multiplication of p in Z/sZ, and if o is the cycle with
length ¢ in o, containing r in its support, then we have A = %. A consequence
is that A does not depend on p nor ¢’, only on its remainder modulo s.

Definition 4.2. The polygon we have just described is the Hodge Stickelberger
polygon associated to the polytope [—d’, d] and the rational number £. We denote
it by HS([—d', d], £, v), where v is the remainder of p modulo s.

[Py

Once again, there exists a generic Newton polygon GNP([-d’,d], x,p), and a
Hasse polynomial with its coefficients in Q; neither of them depend on the power
of p we choose. Moreover, the Hasse polynomial just depends on the respective
remainders v, p and p’ of p modulo s, d and d’ ; we denote it by Hf;’j;,7d]7l7u.

The major difference with the additive case is that, for a fixed polytospe7 there
exist several Hodge-Stickelberger polygons, depending on the remainder of p modulo
the order of the multiplicative character x.

As a consequence, there is no hope that the generic Newton polygons converge
when p tends to +00. Nevertheless, when p tends to +oo along a class in (Z/sZ)*,
we get a limit :

lim GNP([-d,d],x,p) :HS([—d’,d],g,u).

p—+oo

p=v [s]
On the other hand, if we define H(_ga =, = I1, , H{" 4.2+ then for any poly-
nomial f € Q[z,z~!] of the form f(z) = Zfzfd, A;xt, and such that
Hi—ara,z v(Aar, ..., Ag) #0,
we have lim , ;.. NP,(f mod p,x) = HS([-d',d], %,v) (where as above p denotes

p=v [

a prime above p in the ring of integers of the field Q; generated by the coefficients
of f). In other words, there exists a Zariski dense open subset Uz, defined over

Q in the space of polynomials with Newton polytope [—d’,d] and coefficients in Q,
such that for any f in Uz ,, the limit lim ,, 40 NP4(f mod p, x) exists and is the
° p=v [s]
Hodge-Stickelberger polygon.
We are ready to pass to higher dimensions. We first define Hodge-Stickelberger
polygons in this new frame

Definition 4.3. Let A be a convex polytope, g = (%, ..., =) an n-tuple of rational
numbers, p a prime with remainder v modulo s = lem(sy,...,8,) and q a power

of p such that ¢ =1 mod s. The Hodge-Stickelberger polygon associated to these

data is 5
r
HS(A, - = HP(A, ——
S( ,S,V) ( 7q_1

)

where § = ((‘171)761 ..., = )

S1 Sn

Remark 4.1. One easily checks from the definition that this polygon does not
depend on q, the power of p we have to choose. Moreover it only depends on the
remainder of p modulo s, whence our notation.

Proposition 1] can be rewritten for Hodge-Stickleberger polygons. If
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i/ Ay and Ay are two convex polytopes, and A = A; @ Ay is their free sum ;

. 1‘1 rs _ r, ro, . .
W/ g 5 and = (S_l’ S_2) are respectively ni, no and n-tuples of rational
numbers;
iii/ v is an invertible residue modulo s := lem(sy, s2), and v; its image modulo
Si5

then we have

HS(A, L, ) = HS(A1, 2L 1) x HS(Ag, 22, 1),
S S1 S2

Recall that (eq,...,e,) is a basis for the Z-module Z", and A is the convex
polytope in R" defined as the convex hull of the points {d;e;, —d\e;}1<i<n and

the origin if necessary. Choose, for any sufficiently large prime p, a multiplicative
(a—D)r;

character y; = w for 1 < i < n, where ¢ is a suitable power p. We denote by

g1
X = (X1,---,Xn) the character of (F,)" induced by the y;, and § = (£ I

o).
Then the polygon '

HS(A, =,v) = HS([=dj, di], =, 1) x - x HS([~d,, du], =, )
S1 n
only depends on the residue of p modulo s :=lem(sy, ..., sp).

With these notations, we transpose Theorems [3.1] and to this new frame

Theorem 4.1. When p tends to infinity along the class v in (Z/sZ)*, the generic
Newton polygon associated to A, the prime p and the character x, GNP(A, x,p),
tends to the Hodge-Stickelberger polygon HS(A, §,v).

Theorem 4.2. There exists a dense open subset U in the space of polynomials of
the form f(x) =31, Z;li:idg ai;x7¢ with their coefficients in Q such that for any
polynomial in U, we have
lim NP,(f mod p,x)=HS(A,,v).

s

p—+oo
p=v [s]

Moreover this open is defined over Q.

Remark 4.2. In case lem(d,d') divides all p-digits of la=br (for instance when
p = 1 modulo lem(d, d’, s)) one knows (cf. [5l Prop081t10n 3.7])) that the polygons
GNP([-d',d], x,p) and HS([—d',d], %,1) are the same. As a consequence, if for
any 1 < i < n lem(d;, d}) dzmdes the p-digits of = 1)” (this is the case when
p = 1 modulo D = lem(d;, d}, s;)1<i<n ), the polygons GNP(A, x,p) and HP(A, £ s 1)

coincide, and this gives a particular case of an extension of Adolphson and Sperber
conjecture to twisted sums.

We end this chapter focusing on the particular case s = 2. For a fixed odd prime
number p, let x2 denote the quadratic character, defined over qu ( ¢ any power of p)

by x2(z) = wz (z). All multiplicative characters of order 2 of (F)" can be writ-
ten as x5, with e = (e1,...,&,) € {0,1}", and x§(z1,. .., Zn) = x3' (@1) .. . X5" (2n)-
Since prime numbers strictly larger than 2 are odd, the Hodge-Stickelberger poly-
gon actually does not depend on the residue of the prime p, and we denote it
by HS(A, §). For the same reason, one can describe directly this polygon from a
Poincaré series.
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Lemma 4.1. Let A be a convex polytope generating R™, and An,e the graded
Ana-module associated to this situation. Then the polygon HS(A, §) is the polygon
coming from the Poincaré series of An <.

In this case, the independence of the Hodge polygon from p gives the existence
of a limit.

Corollary 4.1. Let A be as above. When p tends to infinity, the generic Newton
polygon of A associated to the prime p and the quadratic character x5, GNP(A, x5, p),
tends to the Hodge-Stickelberger polygon HS(A, §).

Corollary 4.2. Let A be as above. There is a dense open subset U in the space of
polynomials f(z) =>"1 E?;_w a;;x7¢ with their coefficients in Q such that for
any f in U, we have
€
lim NP d = HS(A, -).
Jlim NP(f mod p, x2) (4,3)

Moreover this open is defined over Q.

5. POLYNOMIALS ASSOCIATED TO POLYTOPES OF EXPONENT TWO.

In this section we extend the convergence results for the generic Newton polygons
to slightly more general polytopes: fix an integer n, and let (f1,...,f,) be a free
family in Z", generating a submodule N contained in 2Z". As in the preceding
chapters, we choose integers dy,d},...,dy,d, with (d;,d;) # (0,0). We denote by
A the convex polytope in R™ which is the convex hull of the set {d;f;, —d}f;}1<i<n
and the origin if necessary. We shall express additive exponential sums associated
to certain polynomials with Newton polytope A from the twisted sums studied in
the former chapter; then we shall use Corollaries [4.1] and to obtain the limit.

The aim of this section is to show the following results

Theorem 5.1. The generic Newton polygon associated to A and the prime p,
GNP(A, p), tends to the Hodge polygon HP(A) when p tends to infinity.

Theorem 5.2. There exists a dense open subset U defined over Q in the space of
polynomials of the form f(x) =Y 1, Z;li:id/_ ai;xi (with their coefficients in Q)
such that for any polynomial whose coefficients belong to U, we have

plLrIgo NP,(f mod p)=HP(A).

In the following, p is an odd prime number.

Let F = (f1,...,f,) be a free family in Z", generating a submodule N such that
the quotient Z™ /N is a group with exponent 2. We note M = (f;;) the base change
matrix from the canonical basis to the family F in M,,(Z), and k the dimension of
Z" /N as Fy-vector space. We have the exact sequence

(1) 0—=2Z" = Z" = Z"/N ~F5 -0,
where the first arrow is the action of M.

One can find a basis (e1,...,e,) in Z" (as a Z-module) such that the family
€1,...,€nk,2€n_k+1,---,2€, is a basis for the Z-module N. In other words, the

matrix M is equivalent, over M,,(Z), to the diagonal matrix whose first n — k
diagonal coefficients are 1, and the last k ones are 2; remark that det M = 2*.
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Definition 5.1. We note My the linear map on Fy induced by the matriz obtained
from M by reducing its coefficients modulo 2. Let E be its kernel, and for all
€= (81,...,6n) € E, notee = (e1,...,6n) the lifting of € to {0,1}". Finally, let
E be the subset in {0,1}" consisting of the € when € runs over E.

We will use the set F we have just defined in order to describe the integral points
in a fundamental domain of Z"/N. Recall that for x = (z1,...,2,), we have set

Mx = (y1,...,yn), where y; = H?Zl $§] We will also use the set E to describe

the image of the morphism ¢, : x =™ x from (kX)" to itself, and to express the
additive sums (as long as their L functions) associated to the polynomial f(Mx)
from twisted sums associated to f and certain quadratic characters. Finally recall
that we set x5, € = (e1,...,e,) € {0,1}"™, the multiplicative character of k*"
defined by x5(x) = x5! (z1) ... X5" (zn).

Lemma 5.1. i/ The set of integral points contained in the polytope
0,1[f; % -~ x [0,1[f, = {fo 0<z < 1}
i=1

8 {f = %Z?:l Eifi, IS E}
it/ The subgroup of multiplicative characters of (k)™ orthogonal to the image
of pur is
(Imppr)* = {x5, e € E}.

Proof. The polytope [0, 1[f; x - - - x [0, 1[f, is a fundamental domain for the action of
N on R” by translations. As a consequence it contains det M = 2* integral points.
Since M, has rank k, E contains 2* elements, and it is sufficient to verify that
the points f. are integral when e describes E. From its construction, the vector
>, eif; vanishes in Fy, thus each coordinate of Y. | &;f; is even, this shows
assertion i/.

Since we assumed p odd, the group (k)™ is isomorphic to (Z/(¢" — 1)Z)", with
q" — 1 even. Taking the tensor product of the exact sequence () by the group
Z/(q" — 1)Z, we obtain the exact sequence

(2) (Z/(d" = 1)Z)" = (Z/(d" = 1)Z)" = F5 = 0.

Thus the image of the morphism ¢y has index 2¥ in (kX)", and we just have to
show an inclusion. One easily checks that x§(Mx) = x5! (z1) ... x5" (¥n), where ¢;
is the i-th coordinate of the vector Me. As above, when € is in E, the vector Me
has all coordinates even. Thus x§ is orthogonal to the image of s, and this ends
the proof. O

We now express additive sums associated to a Laurent polynomial of the form
f(x).

Proposition 5.1. Let f € k[x,x 1] be a Laurent polynomial, and M be as above;
recall that M f is the Laurent polynomial f(Mxz). Then we have the following de-
compositions

i/ for the character sums

YoM =30 Y FEONGX) ;

zek™ €€E pepxm
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it/ for the L function
LT =TT LU X8, T).
eckE

Proof. These are different avatars of Poisson’s formula applied to our situation. We
just show the first one: from assertion 4/ of Lemma 5.1} we have

Sectry VR = #Keron Dyerg, YUF))
= #Reron (e Sxetimpnn Snecr e YIXG0))
= Yeer Exe(k;()n V(f(x))x5(x),

and this is exactly the desired result. O
We deduce a splitting of the Newton polygon; for this we need another operation

Definition 5.2. Let II; and Il be two convex polygons having slopes (si)1<i<q et
(8h)1<i<p; their concatenation is the convex polygon Iy [[ Iz having slopes
(8iy 85)1<i<a,1<j<b-
With this definition, we deduce from Proposition [B.1] the following result

Corollary 5.1. The Newton polygon associated to the polynomial ™ f is the con-
catenation of the Newton polygons associated to the polynomial f and the characters
X5 when € runs over E

NP, (M f) = ] NP4(£,x5)-
eckE

We rewrite the Hodge polygon HP(A) from the polygons we have introduced in
the sections above

Lemma 5.2. Let Ay be the convex polytope R™ which is the convex hull of the
points {d;e;, —die; }1<i<n and the origin if necessary, for (e1,...,ey,) a basis of the
Z-module Z". Then the Hodge polygon associated to A splits in the following way

HP(A) = HP(A)) [ | [T HS(A g)

Proof. We come back to the very definition of the Hodge polygon in terms of the
Poincaré series of the algebras Aa and Aa,,s. Up to a permutation of the degrees
(di,d}), and a change between d; and d in some of them, we can assume that

dy =---=d; =0 and the d} are nonzero for [ +1 < i < n. From Lemma [5.1] the
points in Ma are the

fioe:=kifi + -+ kofy + o, k= (ki,... . kn) eN'xZ"7! e € E,

and the weight of such a point is

l n

ki + 2 ki + & ki + 2
wA(fk,s):Z diQ + Z max( diQ’_ d/-2>,
i=1 i=l+1 ?

We deduce, if D denotes the denominator of A, that the Poincaré series of the
algebra A can be written

Pa,(t) = Z Z tPwa(fice)

e€E keN xzm !



20 REGIS BLACHE

Fix € € E. The points in MAD e are the ex . = k11 + -+ + kpep, + ¢, k running
over N' x Z" " and e : =3 ZZ 1 €i€;, and we get

=23 n ki+ < ki+ &
wa, (k) Z 2+ZmaX< diz’_ d’.2>'

i=1 i=l+1

If De is the denominator of (A, §), the Poincaré series of Aa, ¢ can be written
— Dew (f ,s)
Pay, ;)= Y tPewallied),
keN! xZn
Note that wa,(Ma,,g) C wa(Ma), that is D divides D. Thus we can write
Pas(t)=> Py, s ( (tPe
eckE
and multiplying both terms by (1 — tP)", we get
D D
Pa(t) = Pa,(tP0) + Y Pa,s(tPe).
ccE\{0,...,0}

The result comes from the construction of the Hodge polygon of Ag, and Lemma
(4.1l which gives the link between HS(Ao, §) and the Poincaré series of Aa, e. O

From these preliminary results, we are able to show Theorems [5.1] and

Proof. (of Theorem [B.1]) First remark that

d;

n
=2 2. ¥ =M g(),
i=1 j=—d/
for the polynomial g(x) = Y 1", Ej;_ & aijxf. From Corollary 5.1 the generic

Newton polygon for the family of polynomials f(x) = >_" E _qr GijX xia;; €k
is given by

GNP(A()vp)H H GNP(A()v 7p)
ecE\{0,...,0}

Grothendieck’s specialisation theorem ensures that the generic Newton polygon of
the family of polynomials with Newton polytope A is

GNP [T| T  GNP(A0,5.p) | < GNP(Ap) < HP(A).
ecE\{0,...,0}

Finally Lemma[5.2] joint with Theorem B.I] applied to the polytope Ag, and Corol-
lary 1] ensure that the left-hand term tends to the right-hand one when p tends
to 0o. Thus the polygon GNP(A,p) tends to HP(A) when p tends to oo. O

Proof. (of Theorem [5.2) For f a polynomial such as
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with its coefficients in Q, we verify as above that

as

lim NP,(f mod p)=HP(A)

p—0o0

long as H(ai;) # 0, where the Hasse polynomial here is

H(Xi5) = H H Hiar a5 (Xij)-

i=leckE

REFERENCES

(1] A. ADOLPHSON, S. SPERBER : Exponential sums and Newton polyhedra: Cohomology and

[2
3

estimates, Ann. Math 130 (1989), 367-408.

] A. ADOLPHSON, S. SPERBER: On twisted exponential sums, Math. Ann. 290 (1991), 713-726.
] A. ADOLPHSON, S. SPERBER : Twisted exponential sums and Newton polyhedra, J. reine

angew. Math. 443 (1993), 151-177.

[4] R. BLACHE, E. FERARD : Newton stratification for polynomials: the open stratum, J. Number

Th. 123 (2007), 456-472.

[5] R. BLACHE, E. FERARD, H.J.ZHU : Hodge-Stickelberger polygons for L-functions of expo-

nential sums of P(x®), Math. Res. Letters 15 (2008), 1053-1072.

| P. DELIGNE : La conjecture de Weil : 1. Publ. Math. IHES 43 (1974), 273-307.
] J. DENEF, F. LOESER : Weights of exponential sums, intersection cohomology, and Newton

polyhedra. Inv. Math. 106 (1991), 275-294.

| B. DWORK: On the zeta function of a hypersurface. Publ. Math. IHES 12 (1962), 5-68.
| R. GARCIA LOPEZ : A note on L-series and Hodge spectrum of polynomials. El. Res. Ann.

Math. Sc. 16 (2009), 56-62.

[10] A. GROTHENDIECK : Formule de Lefschetz et rationalité des fonctions L, Séminaire Bourbaki,

exposé 279, 1964/65.

[11] M. HENK, J. RICHTER-GEBERT, G. ZIEGLER : Basic properties of convex polytopes, in Hand-

book of Discrete and Computational Geometry, CRC Press, 1997.

[12] N.M. KAtz : Slope filtration of F-crystals, Astérisque 63 (1979), 113-164.
[13] N. KoBLITZ: p-adic numbers, p-adic analysis, and zeta-functions, (Second edition), Graduate

Texts in Mathematics 58. Springer-Verlag, New York, 1984.

[14] A.G. KOUCHNIRENKO : Polyeédres de Newton et nombres de Milnor. Inv. Math. 32 (1976),

1-31.

[15] H. L1, H. J. ZHU : Zeta functions of totally ramified p-covers of the projective line. Rend.

Sem. Mat. Univ. Padova, 113 (2005), 203-225.

[16] C. L1u : Generic exponential sums associated to Laurent polynomials in one variable, Preprint

avalaible at http://arxiv.org/abs/0802.0271 (2008).

[17] P. RoBBA : Index of p-adic differential operators III. Applications to twisted exponential

sums. Astérisque, 119-120 (1984), 191-266.

[18] D. WAN : Newton polygons for zeta and L-functions, Ann. Math. 137 (1993), 249-296.
[19] D. WAN : Variation of p-adic Newton polygons for L-functions of exponential sums, Asian

J. Math. 8 (2004), 427-472.

[20] H. J. Znu: p-adic variation of L functions of one variable exponential sums, I. Amer. J.

Math. 125 (2003).

[21] H. J. Zuu : Asymptotic variation of L-functions of one-variable exponential sums. J. Reine

Angew. Math. 572 (2004), 219-233.

EqQuipE LAMIA, ITUFM DE LA GUADELOUPE
E-mail address: rblache@iufm.univ-ag.fr



	0. Introduction
	1. Free sums of polytopes and their Hodge polygons.
	2. Character sums.
	3. Asymptotic behaviour in the additive case.
	4. Asymptotic behaviour in the twisted case.
	5. Polynomials associated to polytopes of exponent two.
	References

