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NEWTON POLYGONS FOR CHARACTER SUMS AND

POINCARÉ SERIES.

RÉGIS BLACHE

Abstract. In this paper, we precise the asymptotic behaviour of Newton
polygons of L-functions associated to character sums, coming from certain
n variable Laurent polynomials. In order to do this, we use the free sum
on convex polytopes. This operation allows the determination of the limit
of generic Newton polygons for the sum ∆ = ∆1 ⊕ ∆2 when we know the
limit of generic Newton polygons for each factor. To our knowledge, these are
the first results concerning the asymptotic behaviour of Newton polygons for
multivariable polynomials when the generic Newton polygon differs from the
combinatorial (Hodge) polygon associated to the polyhedron.

0. Introduction

In the following, we note k a finite field with q = pa elements, and kr its degree
r extension in an algebraic closure k fixed once and for all. Let x = (x1, . . . , xn)
be an n-tuple of indeterminates, and f(x) =

∑
i∈Zn aix

i ∈ k[x,x−1] be a Laurent
polynomial in n variables with coefficients in k. If ψ denotes a non trivial additive
character of k, let ψr := ψ ◦Trkr/k be the character induced by ψ on kr ; let χ be a

multiplicative character of (k×)n, and χr := χ◦Nkr/k its extension to (k×r )
n. From

f , ψ and χ, we form the character sums over each extension of k

Sr(f, χ) =
∑

x∈Gn
m(kr)

ψ(f(x))χ(x),

then from these sums we define the L-function

L(f, χ;T ) = exp



∑

r≥1

Sr(f, χ)
T r

r


 .

When χ is trivial, we simply denote this function by L(f ;T ). From the works of
Dwork and Grothendieck (cf. [8], [10]) we know that it is rational.

Let us begin with a trivial χ; this is the most classical case in the literature.
The first result about the L-function is due to Deligne [6, Théorème 8.4]. For a
polynomial of degree d prime to p, whose higher degree form defines a nonsingular
hypersurface in the projective space Pn−1, the function L′(f, T ) (here the sums are
defined over An, not over Gnm) has degree (d− 1)n.

More generally, one can associate to the polynomial f its Newton polyhedron at
infinity, which is the convex polyhedron ∆ defined in affine space Rn as the convex
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2 RÉGIS BLACHE

hull of the origin and the support of f (that is: the set of i ∈ Z
n such that ai is

non zero). Then when certain forms of f , coming from the facets of ∆, are non

degenerate, Adolphson and Sperber [1] have shown that the function L(f ;T )(−1)n−1

is a polynomial with degree n!V (∆), where V is the usual volume over Rn.
Let us denote α1, . . . , αn!V (∆) the reciprocal roots of this polynomial. These

are algebraic integers having the following properties: their complex modulus is

|αi| = q
wi
2 , for integers 0 ≤ wi ≤ n. Moreover any conjugate (over Gal(Q/Q))

of αi have the same modulus. The distribution of the wi is known [7, Theorem
1.8]. On the other hand, for any prime ℓ 6= p, αi is a ℓ-adic unit. Finally we have
|αi|p = q−si , for some rational si between 0 and n. In this paper we shall study
these valuations.

As usual, we identify the q-adic valuations of the reciprocal roots of a polynomial
with the slopes of the segments in its q-adic Newton polygon. We shall denote by
NPq(f) (resp. NPq(f, χ)) the q-adic Newton polygon of L(f ;T ) (resp. L(f, χ;T )) in
the following. If Π is a convex polygon with length l, i.e. the graph of a continuous,
piecewise linear function ϕ over the interval [0, l] affine over each of the intervals
[i− 1, i] and such that ϕ(0) = 0, we shall denote Π = (πi)1≤i≤l when the slope over
the interval [i − 1, i] is πi. If Π1 and Π2 are two convex polygons of length l, we
shall write Π1 � Π2 when Π1 lies above Π2, and their endpoints coincide.

Adolphson et Sperber have given [1, Theorem 3.10] a lower bound for the Newton

polygons of the functions L(f ;T )(−1)n−1

when f runs over the (non degenerate)
polynomials with fixed Newton polyhedron ∆. This bound is usually called the
Hodge polygon of the polyhedron ∆, denoted HP(∆). This is an invariant depending
only on ∆, that we describe in the next paragraph. Remark that generally this is
not the Hodge polygon of a crystal (cf. [12]), nor a geometric Hodge polygon, these
families of polygons having all their slopes integral. However, it is shown in [9] that
the procedure giving the Hodge polygon from ∆ is the same that the one giving the
Hodge spectrum at infinity of a complex polynomial having Newton polyhedron ∆.
This gives a Hodge theoretical interpretation of this polygon.

Denote by C(∆) := R+∆ the cone of ∆ in R
n, M∆ := C(∆) ∩ Z

n the monoid
associated to this cone, and A∆ the algebra k[xM∆ ]. One can define a map from
C(∆) to R+, the weight associated to ∆, by

w∆(u) = min{ρ ∈ R+, u ∈ ρ∆}.

The vertices of ∆ lie in Zn, thus the image ofM∆ by w∆ lies in Q+; more precisely

there is a positive integer D such that Imw∆ ⊆ 1
DN. We shall call the least integer

D having this property the denominator of ∆. The weight w∆ turns the algebra
A∆ into a graded algebra

A∆ = ⊕i≥0A∆, i
D
, A∆, i

D
= Vect{xu, w∆(u) =

i

D
}

to which we associate the Poincaré series

PA∆(t) :=
∑

i≥0

dimA∆, i
D
ti.

Kouchnirenko [14, Lemme 2.9] has shown that for non degenerate f , this series is
actually a rational function. Precisely, the series P∆(t) := (1 − tD)nPA∆(t) is a
polynomial with degree less than or equal to nD. If we set P∆(t) :=

∑
ℓit

si , the
Hodge polygon HP(∆) is the convex polyhedron starting at the origin, and formed
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by the segments of horizontal length ℓi and slope si
D . In the following, we shall

also call this polygon the polygon coming from the Poincaré series PA∆ . With
our notations, Adolphson and Sperber’s result can be rewritten in the following
way: for any polynomial f in k[x,x−1], non degenerate with respect to its Newton
polyhedron ∆ we have NPq(f) � HP(∆).

It is natural to ask how the polygons NPq(f) behave when f varies along the
(nondegenerate) polynomials with fixed Newton polyhedron. Unfortunately these
variations are difficult to control; explicit calculations for polynomials of little de-
gree in one variable show that one cannot hope a complete answer to this ques-
tion. To overcome this problem, we shall work with generic Newton polygons.
Grothendieck’s specialization theorem [12] ensures the lower bound of the polygons
NPq(f) exists, and it is attained for every point in a Zariski open dense subset of the
space of nondegenerate polynomials with fixed Newton polygon ∆. This polygon
does not depend on q, only on p, we denote it GNP(∆, p). In the one dimensional
case, one can calculate this polygon explicitely [4], [16], and the Hasse polynomial,
determining the hypersurface of the space of polynomials outside which we have
NPq(f) = GNP(∆, p).

Let us speak about the behaviour of the generic Newton polygon when p varies.
From ramification theory, one can easily see that a necessary condition for this
polygon to coincide with the Hodge polygon is p ≡ 1 mod D. Adolphson and
Sperber conjectured this condition is sufficient. This is true when n ≤ 3, but in
higher dimensions one has to replaceD by a (generally strict) multiple D∗, as shown
in [18], [19]. We can rewrite this result

lim inf
p→∞

GNP(∆, p) = HP(∆).

Wan conjectured [19, Conjecture 1.11] that under certain extra hypotheses the limit
exists, that is

lim
p→∞

GNP(∆, p) = HP(∆).

This result is known for one variable Laurent polynomials [4], [16]. In this paper
we prove this conjecture for the following families of polyhedra

i/ ∆ is the convex hull of points {diei,−d′iei}1≤i≤n, where (e1, . . . , en) forms a
basis for the Z-module Zn, and the di, d

′
i are nonnegative integers, (di, d

′
i) 6=

(0, 0); this is Theorem 3.1.
ii/ ∆ is the convex hull of points {difi,−d′ifi}1≤i≤n, where f1, . . . , fn generate

a submodule M of Zn such that 2Zn ⊂M ; see Theorem 5.1.

To our knowledge, these are the first results on the asymptotic behaviour of
Newton polygons associated to higher dimensional character sums, when the de-
nominator D is neither 1 nor 2. Note that the first case implies the conjecture for
the polynomials studied by Deligne.

Another, more difficult, question, is the following: choose a Laurent polynomial

f̃ whose coefficients are in Q; denote by Qf̃ the extension of Q generated by the

coefficients of f̃ . For each prime p in Q, choose p a prime dividing p in the field Qf̃ ,

with residue field Fq. One can ask for the variation of the Newton polygons NPq(f̃

mod p) of the reductions modulo p of f̃ when p tends to infinity. Consider the space
of polynomials with coefficients in Q, with fixed simplicial Newton polyhedron ∆,
and having non zero coefficients for some monomials such that the sub monoid of
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M∆ generated by their exponents contains all the points in M∆ except a finite
number. In this situation Wan conjectures [19, Conjecture 1.12] that there is a
(Zariski) dense open subset defined over Q of the space of these polynomials such

that for any f̃ in this open we have

lim
p→∞

NPq(f̃ mod p) = HP(∆).

This result is known for the space of polynomials of degree d in one variable [21,
Theorem 1.3], and for the space of Laurent polynomials of degrees d and d′ in one
variable [15]. We will show it for certain spaces of Laurent polynomials whose New-
ton polyhedron has one of the forms described above (cases i/, ii/): see Theorems
3.2 and 5.2.

When the multiplicative character χ is no longer trivial, the situation is quite
different. Adolphson and Sperber have shown (under the same non degeneracy
conditions) that the L-function has the same degree as in the purely additive case
(cf. [2], [3]). They also gave a lower bound for Newton polygons associated to
such sums. Again, one can describe this lower bound in terms of Poincaré series,
but in this new situation it depends on the residue of p modulo the order of the
character χ. As a consequence, one cannot hope a limit for the generic Newton
polygons when p tends to infinity, except when the order of χ is two (actually this
particular case gives the case ii/ above). We get a weaker result in this case: when
p goes to ∞ along a residue class modulo the order of the multiplicative character,
we still have a limit. This is a generalisation of the one dimensional results in [5].
See theorems 4.1 and 4.2 for more details.

This paper is organized as follows: in the first chapter, we use the free sum
of convex polytopes, and express the associated Hodge polygon from the Hodge
polygons of the factors. In the second, we use results from ℓ-adic cohomology
(mostly Künneth formula) to express Newton polygons associated to (L-functions
from character sums associated to) certain polynomials in several variables from
Newton polygons associated to one variable polynomials. In the third chapter, we
show Wan’s conjectures in case i/: we recall briefly the one variable situation, from
which we deduce theorems 3.1 and 3.2. In chapter 4, we give some applications to
sums twisted by a multiplicative character, and show the existence of a limit when
one restricts to residual classes. Finally, we use the preceding results, and Poisson’s
formula to show case ii/ of Wan’s conjectures in the last chapter.

Notations.

In order to make the reader more comfortable, and since we shall use several
operations on convex polygons, we group here the different notations and for each
we give the reference in the text. Let Π1, Π2 be polygons, and a > 0 a real number

Π1 ×Π2 product Definition 1.2

Π1 +Π2 sum Definition 4.1

aΠ1 vertical scaling Definition 4.1

Π1

∐
Π2 juxtaposition Definition 5.2



NEWTON POLYGONS FOR CHARACTER SUMS AND POINCARÉ SERIES. 5

1. Free sums of polytopes and their Hodge polygons.

In this chapter, we fix once and for all two convex polytopes ∆1 in R
n1 and ∆2

in Rn2 . We recall the definition of their free sum ∆1 ⊕ ∆2, and give some of its
properties; then we express the Poincaré series of the graded algebra A∆1⊕∆2 from
those of A∆1 and A∆2 , in order to express the Hodge polygon of ∆1 ⊕ ∆2 from
those of ∆1 and ∆2.

We first describe the free sum of polytopes (cf. [11, 16.1.3]); in the following we
suppose that our polytopes always generate the ambient affine space; moreover the
dimension of a polytope is the dimension of the smallest affine space containing it,
and we assume the dimension of the empty polytope to be −1.

Definition 1.1. Let ∆1 and ∆2 be two convex polytopes, lying respectively in Rn1

and R
n2 . Their free sum is the convex polytope which is the convex hull of ∆1 ×

{0} ∪ {0} ×∆2 in R
n1+n2 . We denote it by ∆1 ⊕∆2.

Remark 1.1. There is a difference between the operation we have just defined and
the usual (or Minkowski) sum of polytopes. For instance, if ∆1 = [0, d1] ⊂ R

and ∆2 = [0, d2] ⊂ R, then their free sum ∆1 ⊕ ∆2 is the triangle with ver-
tices (0, 0), (d1, 0) and (0, d2), but their usual sum is the rectangle with vertices
(0, 0), (d1, 0), (0, d2) and (d1, d2).

We now determine the facets not containing the origin of the free sum of two
polytopes, each one containing the origin. These results must be well known, but
since we did not find a suitable reference, and many proofs in this paper depend
on it, we recall them here.

By their very definition, the facets of a polytope are its intersections with its
supporting hyperplanes, but also the whole polytope and the empty set ∅; the last
two ones are generally called the “improper facets”.

Proposition 1.1. Let ∆1 and ∆2 be two convex polytopes containing the origin,
and ∆ := ∆1 ⊕ ∆2 be their free sum. The facets of ∆ not containing the origin
are the polytopes σ := σ1 ⊕ σ2, σi being a facet of ∆i not containing the origin for
i = 1, 2.

Moreover, if for each i = 1, 2 the facet σi has dimension di, then σ is a facet of
∆ of dimension d1 + d2 + 1.

Proof. First we show that if σ1 (resp. σ2) is a facet (perhaps empty) of ∆1 (resp.
∆2) not containing the origin, then σ1⊕σ2 is a facet of ∆ not containing the origin.
Let H1 with equation

∑n1

i=1 aixi = 1 (resp. H2 with equation
∑n2

i=1 biyi = 1) be a
supporting hyperplane of ∆1 (resp. ∆2) for the facet σ1 (resp. σ2). For an empty
facet we take all the ai equal to 0. Since ∆1 contains the origin, it is contained
in the half-space H−

1 = {(x1, . . . , xn1),
∑n1

i=1 aixi ≤ 1} in R
n1 , and the same is

true for ∆2 and H−
2 in R

n2 . Consider the hyperplane H in R
n1+n2 having equation∑n1

i=1 aixi+
∑n2

i=1 biyi = 1. From the definition of ∆ as a convex hull, this polytope

is contained in the half-spaceH− ofRn1+n2 , and the intersectionH∩∆must contain
σ1 × {0} and {0} × σ2. As a consequence, H is a supporting hyperplane of ∆, and
the facet σ := H ∩∆ it determines contains the convex hull of σ1 ×{0}∪ {0}× σ2,
i.e. the free sum σ1 ⊕ σ2.

To show the reverse inclusion, choose a point z(z1, . . . , zn1+n2) in σ. Then z is in
∆, a barycenter of (x, 0) and (0,y) two points respectively in ∆1×{0} and {0}×∆2;
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thus there exists a real number λ ∈ [0, 1] such that zi = λxi for 1 ≤ i ≤ n1 and
zn1+i = (1−λ)yi for 1 ≤ i ≤ n2. As long as z is in H , we have

∑
aizi+

∑
bizn1+i =

1; on the other hand we have
∑n1

i=1 aixi ≤ 1 and
∑n2

i=1 biyi ≤ 1. These last
inequalities must be equalities, in other words x ∈ σ1, y ∈ σ2, and x ∈ σ1⊕σ2. We
have thus shown that σ = σ1 ⊕ σ2 is a facet of ∆ not containing the origin.

Conversely let σ be a facet of ∆ not containing the origin, and H a supporting
hyperplane for it. Since σ is a convex polytope, it is the convex hull of its extremal
points, which are the extremal points of ∆ contained in σ. Now from their definition,
the extremal points of ∆ have the form (x1, 0) or (0,x2), where xi describes the
extremal points of ∆i. Denote by S1 the set of extremal points of σ of the first
type, and S2 the set of extremal points of σ of the second type. Then σ is the
convex hull of S1 ∪ S2, in other words it is the free sum of σ1 and σ2, where σi is
the convex hull of Si, and it is sufficient to show that σi is a facet of ∆i. If Si = ∅,
there is nothing to prove; else from its construction Hi = H ∩ Rni is a supporting
hyperplane for ∆i in R

ni , and σi = ∆ ∩Hi is a facet of ∆i.

We end the proof with the assertion on the dimension: the facet σi is the convex
hull of a set Si of points not containing the origin, among which we can choose a
maximal subset S′

i with di+1 affinely independent points. The sets in affine space
R
n1+n2 , T1 = S′

1 × {0} and T2 = {0} × S′
2 are disjoint, and affinely independent

from their definition. The set T = T1∪T2 is a maximal subset of d1+d2+2 affinely
independent points in S = S1 × {0}∪ {0}× S2; finally since σ is the convex hull of
S, we get the last assertion. �

Since ∆i contains the origin, its facets not containing it have dimension at most
ni − 1; from this we deduce the

Corollary 1.1. The codimension 1 facets of ∆ not containing the origin are the
σ = σ1 ⊕ σ2, where σi is a codimension 1 facet of ∆i not containing the origin.

Moreover if H1 having equation
∑
aixi = 1 (resp. H2 having equation

∑
biyi =

1) is the supporting hyperplane of ∆1 along σ1 (resp. of ∆2 along σ2), then the
supporting hyperplane of ∆ along σ has equation

∑
aixi +

∑
biyi = 1.

We shall now express the different objects associated to the polytope ∆ in the
introduction from those associated to each of the ∆i. First we give an alternative
definition of the weight: let u(u1, . . . , un1+n2) be a point in C(∆). The half-line
R

+u meets the boundary of the polytope ∆ in a point of a codimension 1 facet σ
not containing the origin. If H is the supporting hyperplane for this facet, having
equation a1x1 + · · ·+ an1+n2xn1+n2 = 1, the weight of u is

w∆(u) = a1u1 + · · ·+ an1+n2un1+n2 .

Lemma 1.1. Let ∆1 and ∆2 be two convex polytopes containing the origin, and
∆ := ∆1 ⊕∆2 be their free sum. Denote by σi a facet of ∆i. Then

i/ the cone C(σ1 ⊕ σ2) in Rn1+n2 is the product C(σ1)× C(σ2) ;
ii/ the monoid M∆ is the monoid M∆1 ×M∆2 in Z

n1+n2 ;
iii/ the weight w∆ is the map w∆1 + w∆2 from C(∆) to R+ sending the point

u = (u1,u2) to w∆1(u1) + w∆2(u2)
iv/ the denominator D of ∆ is the least common multiple of the denominators

D1 and D2 of ∆1 and ∆2.
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Proof. First we show assertion i/: the point u(u1,u2) is in the cone C(σ1 ⊕ σ2) if
and only if one can choose a real number ρ such that (ρu1, ρu2) is in σ1⊕σ2. From
its definition, this polytope contains exactly the points (λx1, (1− λ)x2), λ ∈ [0, 1],
xi ∈ σi. Each ui is in C(σi), and the converse is trivial.

The second assertion is an easy consequence of the definition of the monoid
associated to a convex polytope, and assertion i/, applied to σi = ∆i.

To show iii/, we use Corollary 1.1, and the description of the weight given above.
Let σ be a codimension 1 facet of ∆ not containing the origin, such that the half
line R+u meets the boundary of ∆ in a point of σ. From Corollary 1.1, we have
σ = σ1 ⊕ σ2, σi being a codimension 1 facet of ∆i not containing the origin. As
a consequence, if u = (u1,u2), assertion i/ ensures that ui ∈ C(σi). If we note
H1 : a1x1 + · · ·+ an1xn1 = 1 (resp. H2 : an1+1xn1+1 + · · ·+ an1+n2xn1+n2 = 1) the
supporting hyperplane for ∆1 along σ1 (resp. for ∆2 along σ2) and if u1(u1, . . . , un1)
(resp. u2(un1+1, . . . , un1+n2)), we must have w∆1(u1) = a1u1 + · · ·+ an1un1 (resp.
w∆2(u2) = an1+1un1+1 + · · · + an1+n2un1+n2). Using Corollary 1.1 again, the
equation of the supporting hyperplane for ∆ along σ is a1x1+ · · ·+an1+n2xn1+n2 =
1, and w∆(u) = a1u1 + · · ·+ an1+n2un1+n2 ; this is the desired result.

The last assertion is a direct consequence of iii/ and the definition of the denom-
inator of a convex polytope. �

We deduce from assertion ii/ that the algebra A∆ is isomorphic to the tensor
product (over k) of the algebras A∆1 and A∆2 . Let us look at the grading; if xui

i

is in A
∆i,

ki
Di

, from assertion iii/, the monomial xu = xu1
1 xu2

2 is in A∆, k
D
, with

k1
D1

+
k2
D2

=
k

D
.

We get the following decomposition for each piece of the grading of A∆ :

A∆, k
D

=
⊕

k1
D1

+
k2
D2

= k
D

A
∆1,

k1
D1

⊗A
∆,

k2
D2

,

the factorisation of the Poincaré series of A∆ with the ones of A∆1 and A∆2

PA∆(t) = PA∆1
(t

D
D1 )PA∆2

(t
D
D2 ),

and finally the factorisation P∆(t) = P∆1(t
D
D1 )P∆2(t

D
D2 ).

We end this section showing, from the formula above, that the Hodge polygon
of the free sum ∆ = ∆1⊕∆2 can be expressed from the polygons of each factor. In
order to show this, we introduce a new operation on convex polytopes. Recall that
we have chosen to note a convex polygon of length a starting at O by (si)1≤i≤a
when it is the juxtaposition of segments of (horizontal) length 1 and slope si.

Definition 1.2. Let Π1 and Π2 be two convex polygons. If

Π1 = (si)1≤i≤a, Π2 = (s′i)1≤i≤b,

the product of Π1 and Π2 (denoted Π1 × Π2) is the convex polygon starting at O
defined by

Π = (si + s′j)1≤i≤a, 1≤j≤b.
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Remark that the horizontal length of Π is the product of the lengths of Π1 and
Π2, and that the horizontal length of the segment with slope s in Π is

ℓ =
∑

si+s′j=s

ℓiℓ
′
j ,

where ℓi (resp. ℓ
′
j) is the horizontal length of the segment with slope si (resp. s

′
j)

in Π1 (resp. Π2).
We deduce the following description for the Hodge polygon HP(∆) from the

Hodge polygons of its factors.

Proposition 1.2. Let ∆1 and ∆2 be convex polytopes, ∆ their free sum. Then the
Hodge polygon of ∆ is the product of the Hodge polygons of its factors

HP(∆) = HP(∆1)×HP(∆2).

Proof. Let ℓ
(1)
k1

(resp. ℓ
(2)
k2

) be the horizontal slope of the segment in HP(∆1) (resp.

HP (∆2)) with slope k1
D1

(resp. k2
D2

). The segment with slope k
D in the product

HP(∆1)×HP(∆2) has horizontal length ℓ =
∑
ℓ
(1)
k1
ℓ
(2)
k2

where the sum runs over k1,

k2 such that k1
D1

+ k2
D2

= k
D . We conclude remarking that the definition of HP(∆)

from P∆, joint with the factorisation of P∆, gives the same result. �

2. Character sums.

All along this chapter we choose two Laurent polynomials over k, f1 and f2
respectively in n1 et n2 variables. We note the corresponding indeterminates x1

and x2, and f = (f1, f2) the Laurent polynomial in the n := n1 + n2 variables
x = (x1, . . . , xn1+n2) defined by f(x) = f1(x1, . . . , xn1) + f2(xn1+1, . . . , xn1+n2). It
is an immediate consequence of Definition 1.1 that if ∆1 and ∆2 denote respectively
the Newton polytopes of f1 and f2 in R

n1 and R
n2 , the Newton polytope of f is

∆, the free sum of ∆1 and ∆2.
The aim of this section is to express the ℓ-adic cohomology spaces associated to

the character sums coming from f in terms of the spaces associated to f1 and f2;
our main tool is Künneth formula. From these results we will deduce bounds on
the generic Newton polygon associated to ∆ from those associated to ∆1 and ∆2.

We begin by showing that the non degeneracy of f1 and f2 implies the non
degeneracy of f .

Lemma 2.1. Let f1 and f2 be two Laurent polynomials with respective Newton
polytopes ∆1 and ∆2. If f1 and f2 are non degenerate with respect to their Newton
polytopes, then f = (f1, f2) is non degenerate with respect to ∆ = ∆1 ⊕∆2.

Proof. Recall that if f is a polynomial with Newton polytope at infinity ∆, and σ
a facet of the polytope ∆, the polynomial fσ is the sum of the monomials f whose
exponent is in σ. Then f is non degenerate with respect to ∆ exactly when for any
facet σ not containing the origin, the polynomials ∂fσ

∂xi
, 1 ≤ i ≤ n1 + n2 have no

common zero in (k̄×)n1+n2 . From Lemma 1.1, every facet of ∆ not containing the
origin can be written σ1 ⊕ σ2, where σ1 is a facet of ∆1 (resp. σ2 a facet of ∆2).
One easily verifies fσ(x) = f1,σ1(x1) + f2,σ2(x2) and we have

∂fσ
∂xi

=

{
∂f1,σ1

∂xi
for 1 ≤ i ≤ n1

∂f2,σ2

∂xi
for n1 + 1 ≤ i ≤ n1 + n2
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Thus x = (x1,x2) is a common zero for the polynomials ∂fσ
∂xi

, 1 ≤ i ≤ n1+n2 when

x1 is a common zero for the
∂f1,σ1

∂xi
, 1 ≤ i ≤ n1 and x2 is a common zero for the

∂f2,σ2

∂xi
, n1 + 1 ≤ i ≤ n1 + n2. In other words, non degeneracy of f1 and f2 implies

that of f . �

Let ψ be a non trivial additive character over k, and Lψ be the Qℓ-sheaf over A
1
k

associated to ψ and the Artin-Schreier covering yq−y = x. Let χ be a multiplicative
character of k× and Lχ the associated Qℓ-sheaf over Gm,k.

For X a k-scheme of finite type, f a regular function over X (i.e. a morphism

f : X → A
1), and g a regular function not vanishing overX , one can define as in the

introduction the function L(X, f, g;T ), and Grothendieck’s trace formula allows us
to reinterpret it in terms of characteristic polynomials of Frobenius action on the
cohomology spaces of the sheaf f∗Lψ ⊗ g∗Lχ

L(X, f, g;T ) =
∏

i

det
(
I − TF |Hi

c(X ⊗ k, f∗Lψ ⊗ g∗Lχ)
)(−1)i−1

.

We come back to our situation. Consider the three functions fi : G
ni

m → A1,
1 ≤ i ≤ 2, and f = (f1, f2) : G

n
m → A1. We fix a character χ1 (resp. χ2) of (k

×)n1

(resp. (k×)n2), and we denote by χ the character (χ1, χ2) of (k×)n. From the
definition of f , we have (denoting pri the canonical projections of G

n
m = G

n1
m ×G

n2
m

on each of its factors) the following: f∗Lψ ⊗ Lχ =
⊗2

i=1 pr
∗
i (f

∗
i Lψ ⊗ Lχi

) is the
tensor product of the sheaves f∗

i Lψ ⊗ Lχi
. From Künneth formula, we have

H•
c (G

n
m, f

∗Lψ ⊗ Lχ) = H•
c (G

n1
m , f

∗
1Lψ ⊗ Lχ1)⊗H•

c (G
n2
m , f

∗
2Lψ ⊗ Lχ2).

Now f is non degenerate exactly when both f1 and f2 are; in this case we simply
rewrite the above relation

Hn
c (G

n
m, f

∗Lψ ⊗ Lχ) = Hn1
c (Gn1

m , f
∗
1Lψ ⊗ Lχ1)⊗Hn2

c (Gn2
m , f

∗
2Lψ ⊗ Lχ2 )

from [7, Theorem 1.3] when χ is trivial, [3, Theorem 4.2] in the general case. In

other words, the function L(f, χ;T )(−1)n−1

is the polynomial whose reciprocal roots

are the product of couples of reciprocal roots of the polynomials L(f1, χ1;T )
(−1)n1−1

and L(f2, χ2;T )
(−1)n2−1

.
Recall that for a Laurent polynomial f we denote by NPq(f, χ) the Newton

polygon of the polynomial L(f, χ;T )(−1)n−1

. We first deduce from the results above
a factorisation of NPq(f, χ) that we shall use later.

Lemma 2.2. Notations being as above, we have the following equality of Newton
polygons

NPq(f, χ) = NPq(f1, χ1)×NPq(f2, χ2).

For a n-dimensional polytope ∆, and χ a multiplicative character as above, let
us define the generic Newton polygon GNP(∆, χ, p) as the lower bound for the
polygons NPq(f, χ) when f runs over the non degenerate polynomials with Newton
polytope ∆. When ∆ is a free sum, we deduce from Lemma 2.2 a bound for the
generic Newton polygon above, from the generic Newton polygons of the factors in
the free sum.

Corollary 2.1. Let ∆1 and ∆2 be to convex polytopes, and ∆ their free sum. We
have

GNP(∆1, χ1, p)×GNP(∆2, χ2, p) � GNP(∆, χ, p).
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Proof. Grothendieck’s specialisation theorem (see for instance [12]) ensures that
for any i, there is a (Zariski) dense open subset U∆i,χi,p of M∆i

, the coefficient
space for the non degenerate polynomials with polytope ∆i, such that for any fi
in U∆i,χi,p, we have NPq(fi, χi) = GNP(∆i, χi, p). From Lemma 2.1, if both f1
and f2 are non degenerate, f = (f1, f2) is also non degenerate with respect to ∆,
and we get the inclusion M∆1 ×M∆2 ⊂ M∆. We deduce from Lemma 2.2 that
the lower bound for the polygons NPq(f, χ) when f runs over M∆1 ×M∆2 is the
polygon GNP(∆1, χ1, p) × GNP(∆2, χ2, p) (and it is attained for the polynomials
with coefficients in U∆1,χ1,p×U∆2,χ2,p). Finally, from the definition of GNP(∆, χ, p)
as the lower bound for the polygons NPq(f, χ) when f describes M∆, we get the
result. �

3. Asymptotic behaviour in the additive case.

We consider the following situation: let n be a fixed integer, and (e1, . . . , en) be
a basis for the Z-module Zn. We also choose non negative integers d1, d

′
1, . . . , dn, d

′
n

such that for any i we have (di, d
′
i) 6= (0, 0) (else the situation we shall describe

reduces to a lower dimensional one). We denote by ∆ the convex polytope in Rn

which is the convex hull of the points {diei,−d′iei}1≤i≤n and the origin if necessary.
The aim of this section is to show the following result

Theorem 3.1. When p tends to infinity, the generic Newton polygon associated to
∆ and the prime p, GNP(∆, p), tends to the Hodge polygon HP(∆).

We shall give the proof at the end of this section; it is a consequence of the results
above and the one dimensional case of this theorem, which is already known. We
begin by recalling what is known in this case; the interested reader shall look at
[4], [16], [21].

Let f be a Laurent polynomial in the variable x, f(x) =
∑d
i=−d′ aix

i, a−d′ad 6= 0.
Clearly the Newton polytope at infinity associated to f is the segment in R with
endpoints −d′ and d; the weight is given, for any n ∈ Z, by w(n) = max(nd ,−

n
d′ ).

We deduce from its definition that the polygon HP([−d′, d]) has endpoints the origin

and the point with coordinates (d + d′, d+d
′

2 ), and has a segment of length 1 for
each of the following slopes

0, 1,
1

d
, . . . ,

d− 1

d
,
1

d′
, . . . ,

d′ − 1

d′

(
0,

1

d
, . . . ,

d− 1

d
if d′ = 0

)
.

From now on we shall denote s1, . . . , sd+d′ these slopes, ordered increasingly. As a
consequence we deduce an alternative description of the polygon HP([−d′, d]): it is
the polygon starting at the origin and passing through the points (i, s1 + · · ·+ si)
for any 1 ≤ i ≤ d+ d′.

As in [17], one can associate to f a differential operator over a space of overcon-
vergent series, and a Frobenius operator. These operators commute to each other,
allowing the following reinterpretation of the function L(f ;T ): it is the character-
istic polynomial of the Frobenius operator acting on the first de Rham cohomology
space. Now one estimates (for p large enough), the principal parts of the coefficients
of its matrix, and give congruences for its minors, i.e. for the coefficients of the
L-function.

Let π be the unique root of the polynomial Xp−1+p (in a fixed algebraic closure
of the field Qp of p-adic numbers) satisfying the congruence ψ(1) ≡ 1 + π[π2]. We
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have Qp(π) = Qp(ζp), and we set K = Qp(ζp, ζq−1). For any a in k, we write ã
for its Teichmüller lifting (if a = 0, then ã = 0, else the reduction of ã modulo the

maximal ideal is a, and ã ∈ µq−1). Let f̃ be the polynomial in K[x, x−1] obtained

from f by lifting its coefficients as above. If we set L(f ;T ) = 1 +
∑d+d′

i=1 MiT
i, we

get, for any 1 ≤ i ≤ d+ d′, the congruence in K

Mi ≡ uiP
ρ,ρ′

d,d′,i(ã−d′ , . . . , ãd)π
aYi mod πaYi+1,

where ui is an unit in the valuation ring of K, and the polynomials Pρ,ρ
′

d,d′,i can be

chosen with their coefficients in Q, depending only on the degrees d and d′, and the
respective residues ρ, ρ′ of p modulo d, d′.

If 0 ≤ i1 ≤ d, 0 ≤ i2 < d′ are two integers determined by the condition

{s1, . . . , si} = {0} ∪ {
j

d
, 1 ≤ j ≤ i1} ∪ {

j

d′
, 1 ≤ j ≤ i2},

then we can express Yi from the symmetric group on i elements, acting on the set
{−i2, . . . , 0, . . . , i1} :

Yi = min
σ∈Si

i1∑

j=−i2

⌈w(pj − σ(j))⌉,

where ⌈x⌉ denotes the least integer greater than or equal to x.
As a consequence we get a rather precise description of the one dimensional case

for a fixed, sufficiently large prime p: on one hand the generic Newton polygon
(with respect to the valuation vq), GNP([−d′, d], p), has vertices the origin and the

points with coordinates (i, Yi

p−1 )1≤i≤d+d′ , on the other hand the reduction modulo

p of the Hasse polynomial

Hρ,ρ′

[−d′,d](ã−d′ , . . . , ãd) :=

d+d′∏

i=1

Pρ,ρ
′

d,d′,i(ã−d′ , . . . , ãd),

defines a hypersurface in the space of Laurent polynomials of degrees d, d′ having
their coefficients in Fp. Every polynomial, defined over Fq, whose coefficients do
not belong to this hypersurface satisfies NPq(f) = GNP([−d′, d], p).

When p varies, one easily checks that for all 1 ≤ i ≤ d+ d′ we have

lim
p→∞

Yi
p− 1

= s1 + · · ·+ si,

i.e. the generic Newton polygon converges to the Hodge polygon. Finally, let us
define the polynomial (with coefficients in Q)

H[−d′,d](X−d′ , . . . , Xd) =
∏

(ρ,ρ′)∈(Z/dZ)××(Z/d′Z)×

Hρ,ρ′

[−d′,d](X−d′ , . . . , Xd).

If f ∈ Q[x, x−1] is a Laurent polynomial with ∆(f) = [−d′, d]: f(x) =
∑d

i=−d′ Aix
i,

and if we choose for any prime p a prime p above p in the ring of integers of
the extension Qf of Q defined by the coefficients of f , we have limp→∞ NPq(f
mod p) = HP([−d′, d]) as long as

H[−d′,d](A−d′ , . . . , Ad) 6= 0.

In other words there exists a Zariski dense open subset U , defined over Q, of the
space of Laurent polynomials in one variable over Q having Newton polyhedron at
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infinity [−d′, d], such that for any f in U , the limit limp→∞ NPq(f mod p) exists
and is exactly the Hodge polygon.

We are ready show Theorem 3.1.

Proof. We begin by reducing the problem to the following case: ei is the i-th vector
of the canonical basis of Rn. One can define a left action of Mn(Z) on the space of

Laurent polynomials in n variables, associating to the polynomial f(x) =
∑
aix

i

and the matrixM the polynomial Mf(x) = f(Mx) =
∑
ai(

Mx)i =
∑
aix

Mi, where
Mx is the n-tuple of variables with i-th equal to

∏n
j=1 x

mji

j , and M i is the usual

multiplication of M and the column vector i. If M ∈ GLn(Z), the map x 7→M x is
one-to-one over (k×)n, and all its extensions. Thus we get L(Mf ;T ) = L(f ;T ).

Let now f be a Laurent polynomial of the form f(x) =
∑n
i=1

∑di
j=−d′

i
aijx

jei ,

whose Newton polyhedron at infinity is ∆. Choosing for M the base change ma-

trix from {e1, . . . , en} to the canonical basis, we get Mf(x) =
∑n

i=1

∑di
j=−d′

i
aijx

j
i ,

whose associated Newton polyhedron is the convex hull of the points with coordi-
nates

(d1, 0, . . . , 0), (−d
′
1, 0, . . . , 0), . . . , (0, . . . , 0, dn), (0, . . . , 0,−d

′
n),

and the origin. This polytope is the free sum of the segments [−d′i, di], 1 ≤ i ≤ n,
and Corollary 2.1 ensures us

GNP([−d′1, d1], p)× · · · ×GNP([−d′n, dn], p) � GNP(∆, p).

On the other hand, from Proposition 1.2, we have HP(∆) = HP([−d′1, d1]) ×
· · · × HP([d′n, dn]). The result comes from the fact that for each i, the poly-
gon GNP([−d′i, di], p) tends to HP([−d′i, di]) when p tends to ∞ : the polygon
GNP(∆, p) is between two polygons having the same limit. �

Remark 3.1. In the case p ≡ 1 modulo lcm(d, d′), we know (cf. [17]) that the
polygons GNP([−d′, d], p) and HP([−d′, d]) coincide. As a consequence, when p ≡ 1
modulo D = lcm(di, d

′
i)1≤i≤n, the polygons GNP(∆, p) and HP(∆) coincide, and

the Adolphson-Sperber conjecture [1, p. 386] is true in this case.

Let us consider the second question, that is: does there exist a dense open subset
U∆, defined over Q, in the space of polynomials having their coefficients in Q, and
Newton polyhedron ∆ such that for any f in U∆, we have limp→∞ NPq(f mod p) =
HP(∆), where p is a prime above p in the ring of integers of the extension Qf
generated by the coefficients of f . Since we do not consider all polynomials having
Newton polygon at infinity ∆, we cannot answer this question. But concerning the
subfamilies we have considered, we get the following result

Theorem 3.2. There exists a dense open subset U defined over Q in the space of

polynomials of the form f(x) =
∑n

i=1

∑di
j=−d′

i
Aijx

jei with their coefficients in Q

such that for any polynomial in U , we have

lim
p→∞

NPq(f mod p) = HP(∆).

Proof. For a polynomial of the form f(x) =
∑n
i=1

∑di
j=−d′

i
Aijx

jei , we have NPq(f

mod p) = GNP([−d′1, d
′
1], p)× · · · ×GNP([−d′n, dn], p) if and only if its coefficients
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satisfy
n∏

k=1

H
ρk,ρ

′
k

[−d′
k
,dk]

(Ak,−d′
k
, . . . , Ak,dk) 6= 0 mod p,

where ρk (resp. ρ′k) is the remainder of the euclidean division of p by dk (resp. by
d′k). Note Hρ this polynomial, with ρ = (ρ1, ρ

′
1, . . . , ρn, ρ

′
n) ∈ (Z/d1Z)

× × · · · ×

(Z/d′nZ)
×. We know that the polynomials H

ρk,ρ
′

k

[−d′
k
,dk]

have their coefficients in Q,

hence Hρ has its coefficients in Q. If we set

H(Xij) =
∏

ρ

Hρ(Xij) =

n∏

i=1

H[−d′
i
,di](Xij),

then for any f whose coefficients lie outside the hypersurface with equation H = 0,
and for any sufficiently large p, we have

NPq(f mod p) = GNP([−d′1, d
′
1], p)× · · · ×GNP([−d′n, dn], p),

and we get the result since the last polygon tends to HP(∆). �

4. Asymptotic behaviour in the twisted case.

In this section, (e1, . . . , en) denotes again a basis for the Z-module Zn, and ∆
the convex polytope in R

n which is the convex hull of the points {diei,−d′iei}1≤i≤n
and the origin if necessary. We shall study the asymptotic behaviour of Newton
polygons of the form NPq(f, χ), f a polynomial with Newton polytope ∆, and χ a
multiplicative character of k× with fixed order. This study has been done in the one
dimensional case in [5], and we generalize it here. The results are rather different
from the preceding section since we shall not get a unique limit, but a limit for each
invertible class modulo the order of the character χ. Note that all results before
Theorem 4.1 are true for any polytope ∆.

Denote by ω the Teichmüller character of k×, which is a generator for the group of
characters of k×. For a fixed n-tuple δ = (δ1, . . . , δn) of integers, denote by χ = ωδ

the character on (k×)n defined by χ(x1, . . . , xn) = ω(x1)
δ1 . . . ω(xn)

δn . Let f be a
polynomial with Newton polytope ∆ (generating R

n), non degenerate. Adolphson

and Sperber have shown that the function L(f, χ;T )(−1)n−1

is a polynomial, having
degree n!V (∆); they also gave a lower bound for its Newton polygon [3, Theorem
3.17], that we shall call in the sequel Hodge polygon associated to ∆ and δ, and
denote by HP(∆, δ

q−1 ).

We first describe this polygon, when the polytope ∆ generates Rn. If i and
0 ≤ δ ≤ q− 2 are two integers, let δ(i) be the remainder modulo q− 1 of the integer
piδ ; remark that the sequence (δ(i))i is periodic with period a divisor of a = logp q.

We also note δ(i) = (δ
(i)
1 , . . . , δ

(i)
n ).

Let N (i) be the lattice δ
(i)

q−1 + Zn in Rn. We set M∆,δ(i) := C(∆) ∩ N (i), and

A∆,δ(i) the A∆-module k[x
M

∆,δ(i) ]. There exists a minimal positive integer D such

that each of the images of the M∆,δ(i) by w∆ is contained in 1
DN ; we call this

integer the denominator of (∆, δ(i)) in the following. Endowed with the weight,
A∆,δ(i) turns to a graded A∆-module, to which we associate a Poincaré series and

a polynomial P∆,δ(i) as in the introduction. Let Π(i) be the polygon coming from
this polynomial. Each of the polynomials P∆,δ(i) has degree at most nD, and
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satisfies P∆,δ(i)(1) = n!V (∆). In this way we get a family of polygons Π(i) indexed

by 0 ≤ i ≤ a, each one having length n!V (∆).

Definition 4.1. Let Π and Π′ denote two polygons having the same length; we
denote by Π + Π′ the polygon whose slope on the segment [i, i + 1] is the sum of
the slopes of the polygons Π and Π′ on this segment. For a real number r > 0, we
denote by rΠ the polygon obtained from Π by multiplying all its slopes by r.

With these notations, we can describe the Hodge polygon as

HP(∆,
δ

q − 1
) =

1

a

a−1∑

i=0

Π(i) .

We are also able to express the Hodge polygon associated to a free sum of
polytopes and two multiplicative characters from the Hodge polygons associated
to each factor. It is the transposition of Proposition 1.2 is this new frame, and
we omit the proof, which is very similar to the one for the Hodge polygon of the
algebra A∆.

Proposition 4.1. Let ∆1, ∆2 be two convex polytopes, respectively in Rn1 and
R
n2 , and ∆ be their free sum. If we set

δ1 = (δ1, . . . , δn1), δ2 = (δn1+1, . . . , δn1+n2), and δ = (δ1, δ2) = (δ1, . . . , δn1+n2),

the Hodge polygon HP(∆, δ

q−1 ) is the product of the Hodge polygons of its factors

HP(∆,
δ

q − 1
) = HP(∆1,

δ1

q − 1
)×HP(∆2,

δ2

q − 1
).

The one dimensional case has been studied in [5]; the reader wanting more
precisions should refer to this paper. In this case, the Hodge polygon can be
described from the classical Hodge polygon for additive character sums, and the
valuation of the Gauss sum associated to χ, as given by Stickelberger’s classical
theorem; for this reason we shall call this new polygon the Hodge Stickelberger
polygon, and slightly change our notations.

To justify these changes, we begin by recalling the point of view in [5]. The au-
thors study the asymptotic behaviour in the non generic case of Laurent polynomials
in one variable of the form f(xs). Poisson formula’s reduces this problem to the
following situation: the Laurent polynomial f ∈ k[x, x−1] has Newton polytope the
segment [−d′, d], and χ is a multiplicative character of order s. It is not necessarily
defined over k, but over one of its extensions k′ of cardinality q′ ≡ 1 modulo s. If ω′

denotes the Teichmüller character for k′×, one can write χ = ω′δ, with δ = (q′−1)r
s

for some integer 1 ≤ r ≤ s − 1. Now the Hodge polygon HP([−d′, d], δ
q′−1 ) is the

polygon starting at the origin, ending at the point having coordinates (d+d′, d+d
′

2 ),
and with a segment of length one for each of the following slopes

1− λ

d
, . . . ,

d− λ

d
,
λ

d′
, . . . ,

d′ − 1 + λ

d′

(
1− λ

d
, . . . ,

d− λ

d
if d′ = 0

)
,

where we set λ = 1
logp(q

′)(p−1)sp

(
(q′−1)r

s

)
with sp denoting the sum of the p-digits

of the integer (q′−1)r
s . Note that it is exactly the valuation (with respect to vq′ ) of

the Gauss sum associated to χ, as given by Stickelberger theorem.



NEWTON POLYGONS FOR CHARACTER SUMS AND POINCARÉ SERIES. 15

An other way to express λ is the following: if σp is the permutation of the set
{0, . . . , s − 1} induced by multiplication of p in Z/sZ, and if σ is the cycle with

length ℓ in σp containing r in its support, then we have λ =
∑

j∈σ
j

sℓ . A consequence
is that λ does not depend on p nor q′, only on its remainder modulo s.

Definition 4.2. The polygon we have just described is the Hodge Stickelberger
polygon associated to the polytope [−d′, d] and the rational number r

s . We denote
it by HS([−d′, d], rs , ν), where ν is the remainder of p modulo s.

Once again, there exists a generic Newton polygon GNP([−d′, d], χ, p), and a
Hasse polynomial with its coefficients in Q; neither of them depend on the power
of p we choose. Moreover, the Hasse polynomial just depends on the respective

remainders ν, ρ and ρ′ of p modulo s, d and d′ ; we denote it by Hρ,ρ′

[−d′,d],r
s
,ν .

The major difference with the additive case is that, for a fixed polytope, there
exist several Hodge-Stickelberger polygons, depending on the remainder of pmodulo
the order of the multiplicative character χ.

As a consequence, there is no hope that the generic Newton polygons converge
when p tends to +∞. Nevertheless, when p tends to +∞ along a class in (Z/sZ)×,
we get a limit :

lim
p→+∞

p≡ν [s]

GNP([−d′, d], χ, p) = HS([−d′, d],
r

s
, ν).

On the other hand, if we define H[−d′,d], r
s
,ν =

∏
ρ,ρ′ H

ρ,ρ′

[−d′,d], r
s
,ν , then for any poly-

nomial f ∈ Q[x, x−1] of the form f(x) =
∑d

i=−d′ Aix
i, and such that

H[−d′,d], r
s
,ν(A−d′ , . . . , Ad) 6= 0,

we have lim p→+∞

p≡ν [s]
NPq(f mod p, χ) = HS([−d′, d], rs , ν) (where as above p denotes

a prime above p in the ring of integers of the field Qf generated by the coefficients
of f). In other words, there exists a Zariski dense open subset U r

s
,ν , defined over

Q in the space of polynomials with Newton polytope [−d′, d] and coefficients in Q,
such that for any f in U r

s
,ν , the limit lim p→+∞

p≡ν [s]
NPq(f mod p, χ) exists and is the

Hodge-Stickelberger polygon.

We are ready to pass to higher dimensions. We first define Hodge-Stickelberger
polygons in this new frame

Definition 4.3. Let ∆ be a convex polytope, rs = ( r1s1 , . . . ,
rn
sn
) an n-tuple of rational

numbers, p a prime with remainder ν modulo s = lcm(s1, . . . , sn) and q a power
of p such that q ≡ 1 mod s. The Hodge-Stickelberger polygon associated to these
data is

HS(∆,
r

s
, ν) := HP(∆,

δ

q − 1
)

where δ =
(

(q−1)r1
s1

, . . . , (q−1)rn
sn

)
.

Remark 4.1. One easily checks from the definition that this polygon does not
depend on q, the power of p we have to choose. Moreover it only depends on the
remainder of p modulo s, whence our notation.

Proposition 4.1 can be rewritten for Hodge-Stickleberger polygons. If
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i/ ∆1 and ∆2 are two convex polytopes, and ∆ = ∆1 ⊕∆2 is their free sum ;

ii/ r1

s1
, r2

s2
and r

s =
(
r1

s1
, r2

s2

)
are respectively n1, n2 and n-tuples of rational

numbers;
iii/ ν is an invertible residue modulo s := lcm(s1, s2), and νi its image modulo

si;

then we have

HS(∆,
r

s
, ν) = HS(∆1,

r1

s1
, ν1)×HS(∆2,

r2

s2
, ν2).

Recall that (e1, . . . , en) is a basis for the Z-module Z
n, and ∆ is the convex

polytope in Rn defined as the convex hull of the points {diei,−d′iei}1≤i≤n and
the origin if necessary. Choose, for any sufficiently large prime p, a multiplicative

character χi = ω
(q−1)ri

si

q−1 for 1 ≤ i ≤ n, where q is a suitable power p. We denote by

χ = (χ1, . . . , χn) the character of (F×
q )

n induced by the χi, and
r
s = ( r1s1 , . . . ,

rn
sn
).

Then the polygon

HS(∆,
r

s
, ν) := HS([−d′1, d1],

r1
s1
, ν1)× · · · ×HS([−d′n, dn],

rn
sn
, νn)

only depends on the residue of p modulo s := lcm(s1, . . . , sn).

With these notations, we transpose Theorems 3.1 and 3.2 to this new frame

Theorem 4.1. When p tends to infinity along the class ν in (Z/sZ)×, the generic
Newton polygon associated to ∆, the prime p and the character χ, GNP(∆, χ, p),
tends to the Hodge-Stickelberger polygon HS(∆, rs , ν).

Theorem 4.2. There exists a dense open subset U in the space of polynomials of

the form f(x) =
∑n

i=1

∑di
j=−d′

i
aijx

jei with their coefficients in Q such that for any

polynomial in U , we have

lim
p→+∞

p≡ν [s]

NPq(f mod p, χ) = HS(∆,
r

s
, ν).

Moreover this open is defined over Q.

Remark 4.2. In case lcm(d, d′) divides all p-digits of (q−1)r
s (for instance when

p ≡ 1 modulo lcm(d, d′, s)) one knows (cf. [5, Proposition 3.7]) that the polygons
GNP([−d′, d], χ, p) and HS([−d′, d], rs , 1) are the same. As a consequence, if for

any 1 ≤ i ≤ n lcm(di, d
′
i) divides the p-digits of (q−1)ri

si
(this is the case when

p ≡ 1 modulo D = lcm(di, d
′
i, si)1≤i≤n), the polygons GNP(∆, χ, p) and HP(∆, rs , 1)

coincide, and this gives a particular case of an extension of Adolphson and Sperber
conjecture to twisted sums.

We end this chapter focusing on the particular case s = 2. For a fixed odd prime
number p, let χ2 denote the quadratic character, defined over F×

q ( q any power of p)

by χ2(x) = ω
q−1
2 (x). All multiplicative characters of order 2 of (F×

q )
n can be writ-

ten as χε
2, with ε = (ε1, . . . , εn) ∈ {0, 1}n, and χε

2(x1, . . . , xn) = χε12 (x1) . . . χ
εn
2 (xn).

Since prime numbers strictly larger than 2 are odd, the Hodge-Stickelberger poly-
gon actually does not depend on the residue of the prime p, and we denote it
by HS(∆, ε2 ). For the same reason, one can describe directly this polygon from a
Poincaré series.
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Lemma 4.1. Let ∆ be a convex polytope generating R
n, and A∆, ε

2
the graded

A∆-module associated to this situation. Then the polygon HS(∆, ε2 ) is the polygon
coming from the Poincaré series of A∆, ε2

.

In this case, the independence of the Hodge polygon from p gives the existence
of a limit.

Corollary 4.1. Let ∆ be as above. When p tends to infinity, the generic Newton
polygon of ∆ associated to the prime p and the quadratic character χε

2, GNP(∆, χε
2, p),

tends to the Hodge-Stickelberger polygon HS(∆, ε2 ).

Corollary 4.2. Let ∆ be as above. There is a dense open subset U in the space of

polynomials f(x) =
∑n

i=1

∑di
j=−d′

i
aijx

jei with their coefficients in Q such that for

any f in U , we have

lim
p→+∞

NPq(f mod p, χ2) = HS(∆,
ε

2
).

Moreover this open is defined over Q.

5. Polynomials associated to polytopes of exponent two.

In this section we extend the convergence results for the generic Newton polygons
to slightly more general polytopes: fix an integer n, and let (f1, . . . , fn) be a free
family in Z

n, generating a submodule N contained in 2Zn. As in the preceding
chapters, we choose integers d1, d

′
1, . . . , dn, d

′
n with (di, d

′
i) 6= (0, 0). We denote by

∆ the convex polytope in R
n which is the convex hull of the set {difi,−d′ifi}1≤i≤n

and the origin if necessary. We shall express additive exponential sums associated
to certain polynomials with Newton polytope ∆ from the twisted sums studied in
the former chapter; then we shall use Corollaries 4.1 and 4.2 to obtain the limit.

The aim of this section is to show the following results

Theorem 5.1. The generic Newton polygon associated to ∆ and the prime p,
GNP(∆, p), tends to the Hodge polygon HP(∆) when p tends to infinity.

Theorem 5.2. There exists a dense open subset U defined over Q in the space of

polynomials of the form f(x) =
∑n

i=1

∑di
j=−d′

i
aijx

jfi (with their coefficients in Q)

such that for any polynomial whose coefficients belong to U , we have

lim
p→∞

NPq(f mod p) = HP(∆).

In the following, p is an odd prime number.

Let F = (f1, . . . , fn) be a free family in Z
n, generating a submodule N such that

the quotient Zn/N is a group with exponent 2. We note M = (fij) the base change
matrix from the canonical basis to the family F in Mn(Z), and k the dimension of
Z
n/N as F2-vector space. We have the exact sequence

(1) 0 → Z
n → Z

n → Z
n/N ≃ F

k
2 → 0,

where the first arrow is the action of M .
One can find a basis (e1, . . . , en) in Z

n (as a Z-module) such that the family
e1, . . . , en−k, 2en−k+1, . . . , 2en is a basis for the Z-module N . In other words, the
matrix M is equivalent, over Mn(Z), to the diagonal matrix whose first n − k
diagonal coefficients are 1, and the last k ones are 2; remark that detM = 2k.
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Definition 5.1. We note M2 the linear map on F
n
2 induced by the matrix obtained

from M by reducing its coefficients modulo 2. Let E be its kernel, and for all
ε = (ε1, . . . , εn) ∈ E, note ε = (ε1, . . . , εn) the lifting of ε to {0, 1}n. Finally, let
E be the subset in {0, 1}n consisting of the ε when ε runs over E.

We will use the set E we have just defined in order to describe the integral points
in a fundamental domain of Zn/N . Recall that for x = (x1, . . . , xn), we have set
Mx = (y1, . . . , yn), where yi =

∏n
j=1 x

fji
j . We will also use the set E to describe

the image of the morphism ϕM : x 7→M x from (k×r )
n to itself, and to express the

additive sums (as long as their L functions) associated to the polynomial f(Mx)
from twisted sums associated to f and certain quadratic characters. Finally recall
that we set χε

2, ε = (ε1, . . . , εn) ∈ {0, 1}n, the multiplicative character of k×n

defined by χε
2(x) = χε12 (x1) . . . χ

εn
2 (xn).

Lemma 5.1. i/ The set of integral points contained in the polytope

[0, 1[f1 × · · · × [0, 1[fn =

{
n∑

i=1

xifi, 0 ≤ xi < 1

}

is {fε := 1
2

∑n
i=1 εifi, ε ∈ E}.

ii/ The subgroup of multiplicative characters of (k×r )
n orthogonal to the image

of ϕM is

(ImϕM )⊥ = {χε

2, ε ∈ E} .

Proof. The polytope [0, 1[f1×· · ·× [0, 1[fn is a fundamental domain for the action of
N on R

n by translations. As a consequence it contains detM = 2k integral points.
Since M2 has rank k, E contains 2k elements, and it is sufficient to verify that
the points fε are integral when ε describes E. From its construction, the vector∑n
i=1 εifi vanishes in F

n
2 , thus each coordinate of

∑n
i=1 εifi is even, this shows

assertion i/.
Since we assumed p odd, the group (k×r )

n is isomorphic to (Z/(qr − 1)Z)n, with
qr − 1 even. Taking the tensor product of the exact sequence (1) by the group
Z/(qr − 1)Z, we obtain the exact sequence

(2) (Z/(qr − 1)Z)
n → (Z/(qr − 1)Z)

n → F
k
2 → 0.

Thus the image of the morphism ϕM has index 2k in (k×r )
n, and we just have to

show an inclusion. One easily checks that χε
2(
Mx) = χe12 (x1) . . . χ

en
2 (xn), where ei

is the i-th coordinate of the vector Mε. As above, when ε is in E, the vector Mε

has all coordinates even. Thus χε
2 is orthogonal to the image of ϕM , and this ends

the proof. �

We now express additive sums associated to a Laurent polynomial of the form
f(Mx).

Proposition 5.1. Let f ∈ k[x,x−1] be a Laurent polynomial, and M be as above;
recall that Mf is the Laurent polynomial f(Mx). Then we have the following de-
compositions

i/ for the character sums
∑

x∈k×n
r

ψ(Mf(x)) =
∑

ε∈E

∑

x∈k×n
r

ψ(f(x))χε

2(x) ;
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ii/ for the L function

L(Mf, T ) =
∏

ε∈E

L(f, χε

2, T ).

Proof. These are different avatars of Poisson’s formula applied to our situation. We
just show the first one: from assertion ii/ of Lemma 5.1, we have
∑

x∈(k×r )n ψ(f(
Mx)) = #KerϕM

∑
y∈ImϕM

ψ(f(y))

= #KerϕM

(
1

#(ImϕM)⊥

∑
χ∈(ImϕM )⊥

∑
x∈(k×r )n ψ(f(x))χ(x)

)

=
∑

ε∈E

∑
x∈(k×r )n ψ(f(x))χ

ε
2(x),

and this is exactly the desired result. �

We deduce a splitting of the Newton polygon; for this we need another operation

Definition 5.2. Let Π1 and Π2 be two convex polygons having slopes (si)1≤i≤a et
(s′i)1≤i≤b; their concatenation is the convex polygon Π1

∐
Π2 having slopes

(si, s
′
j)1≤i≤a,1≤j≤b.

With this definition, we deduce from Proposition 5.1 the following result

Corollary 5.1. The Newton polygon associated to the polynomial Mf is the con-
catenation of the Newton polygons associated to the polynomial f and the characters
χε
2 when ε runs over E

NPq(
Mf) =

∐

ε∈E

NPq(f, χ
ε

2).

We rewrite the Hodge polygon HP(∆) from the polygons we have introduced in
the sections above

Lemma 5.2. Let ∆0 be the convex polytope R
n which is the convex hull of the

points {diei,−d
′
iei}1≤i≤n and the origin if necessary, for (e1, . . . , en) a basis of the

Z-module Zn. Then the Hodge polygon associated to ∆ splits in the following way

HP(∆) = HP(∆0)
∐




∐

ε∈E\{0,...,0}

HS(∆0,
ε

2
)


 .

Proof. We come back to the very definition of the Hodge polygon in terms of the
Poincaré series of the algebras A∆ and A∆0,

ε

2
. Up to a permutation of the degrees

(di, d
′
i), and a change between di and d′i in some of them, we can assume that

d′1 = · · · = d′l = 0 and the d′i are nonzero for l + 1 ≤ i ≤ n. From Lemma 5.1, the
points in M∆ are the

fk,ε := k1f1 + · · ·+ knfn + fε, k = (k1, . . . , kn) ∈ N
l × Z

n−l, ε ∈ E,

and the weight of such a point is

w∆(fk,ε) =

l∑

i=1

ki +
εi
2

di
+

n∑

i=l+1

max

(
ki +

εi
2

di
,−

ki +
εi
2

d′i

)
.

We deduce, if D denotes the denominator of ∆, that the Poincaré series of the
algebra A∆ can be written

PA∆(t) =
∑

ε∈E

∑

k∈Nl×Zn−l

tDw∆(fk,ε).
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Fix ε ∈ E. The points in M∆0,
ε

2
are the ek,ε = k1e1 + · · ·+ knen + eε, k running

over Nl × Z
n−l and eε := 1

2

∑n
i=1 εiei, and we get

w∆0(ek,ε) =

l∑

i=1

ki +
εi
2

di
+

n∑

i=l+1

max

(
ki +

εi
2

di
,−

ki +
εi
2

d′i

)
.

If Dε is the denominator of (∆0,
ε

2 ), the Poincaré series of A∆0,
ε

2
can be written

PA∆0, ε
2
(t) =

∑

k∈Nl×Zn−l

tDεw∆(fk,ε).

Note that w∆0(M∆0, ε2
) ⊂ w∆(M∆), that is Dε divides D. Thus we can write

PA∆(t) =
∑

ε∈E

PA∆0, ε
2
(t

D
Dε ),

and multiplying both terms by (1 − tD)n, we get

P∆(t) = P∆0(t
D
D0 ) +

∑

ε∈E\{0,...,0}

P∆0,
ε

2
(t

D
Dε ).

The result comes from the construction of the Hodge polygon of ∆0, and Lemma
4.1 which gives the link between HS(∆0,

ε

2 ) and the Poincaré series of A∆0,
ε

2
. �

From these preliminary results, we are able to show Theorems 5.1 and 5.2.

Proof. (of Theorem 5.1) First remark that

f(x) =

n∑

i=1

di∑

j=−d′i

aijx
jfi =M g(x),

for the polynomial g(x) =
∑n

i=1

∑di
j=−d′

i
aijx

j
i . From Corollary 5.1, the generic

Newton polygon for the family of polynomials f(x) =
∑n

i=1

∑di
j=−d′

i
aijx

jfi , aij ∈ k

is given by

GNP(∆0, p)
∐




∐

ε∈E\{0,...,0}

GNP(∆0,
ε

2
, p)


 .

Grothendieck’s specialisation theorem ensures that the generic Newton polygon of
the family of polynomials with Newton polytope ∆ is

GNP(∆0, p)
∐




∐

ε∈E\{0,...,0}

GNP(∆0,
ε

2
, p)


 � GNP(∆, p) � HP(∆).

Finally Lemma 5.2, joint with Theorem 3.1 applied to the polytope ∆0, and Corol-
lary 4.1, ensure that the left-hand term tends to the right-hand one when p tends
to ∞. Thus the polygon GNP (∆, p) tends to HP(∆) when p tends to ∞. �

Proof. (of Theorem 5.2) For f a polynomial such as

f(x) =

n∑

i=1

di∑

j=−d′i

aijx
jfi ,
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with its coefficients in Q, we verify as above that

lim
p→∞

NPq(f mod p) = HP(∆)

as long as H(aij) 6= 0, where the Hasse polynomial here is

H(Xij) =
n∏

i=1

∏

ε∈E

H[−d′
i
,di],

εi
2
(Xij).

�
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[4] R. Blache, É. Férard : Newton stratification for polynomials: the open stratum, J. Number

Th. 123 (2007), 456–472.
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