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Abstract

We present a proof of concept for a new approach for Energy Dispersive X
Ray Diffraction (EDXRD) imaging in “line parallel” configuration. It follows
an inverse problem approach using a physical model of the diffraction phe-
nomenon. Using this approach, we show that it is possible to achieve a spatial
super-resolution of poly-crystalline objects (i.e. estimating more voxels than
detectors).

1 Introduction
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Figure 1: Schematic view of
the setup and notations used in
the model.

EDXRD is used to provide information
about crystalline structure of material. It con-
sists in measuring coherent photons scattered
by a sample at a fixed angle. The sample
is irradiated by a polychromatic X ray pencil
beam. The spectrum obtained is linked to the
atomic planar spacing of the sample accord-
ing to the Bragg law and thus can be used for
materials identification.

X Ray Diffraction Imaging (XRDI) is a
modality where measurements are made in
many volume elements (voxels) of the stud-
ied object. For practical use of this technique
in security screening [5], acquisition speed is
a critical requirement. As pointed out in [6],
each single acquisition is time consuming, and
thus, designing massively parallel acquisition
scheme is a necessity. One of the simplest
technical solution for such scheme is the “line-
parallel” XRDI defined in [6] and illustrated
by the figure 1.

In this paper, we present a method for data processing in line-parallel XRDI.
In this framework, a line of scatter detectors provides diffraction profiles of parts
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of the object at different depths along the irradiation beam. Using the fact that
areas observed by each scatter detectors overlapped, we propose method which
enhances spatial resolution of this line-parallel XRDI. Following an inverse prob-
lems approach, this method uses a physical model to estimate the interference
functions in each and every voxels of the studied sample. It thus provides a
super-resolution of the interference function map where there is more voxels
than detectors.

2 Direct Model

The EDXRD setup is composed of a collimated poly-chromatic X-ray source
and a collimated spectroscopic detector D placed at angle θ from the beam
axis. The studied object O is placed at the center of the diffractometer defined
as the intersection of the scatter collimator axis and the source collimator axis.

To define our direct model, we consider an elementary surface of one detector
dd, an elementary surface of the source ds and an elementary volume of the
object do. This triplet define the scattering angle θ. In the case the studied
sample is a crystal, the average number of photons m(λ) arriving at each energy,
on the detector dd is given by crystallographic theory (see [2, 4]):

m(E) =
r2
e (h c)3

16 π E3
N(E)A(E) L(θ) G(ds,do,dd) f(x) , (1)

where :

• N(E) is the number of photons emitted by the source at energy E,

• A(E) is the attenuation of the object at energy E,

• L(θ) is the Lorentz factor,

• G(ds,do,dd) is a geometrical factor accounting for the effects of collima-
tors and of the distance between source object and detectors,

• f(x) is the interference function of the studied sample. It is expressed in
momentum transfer x = E

h c
sin

(

θ

2

)

. It depends on the form factor, the
volume of the crystal cell, the multiplicity, the texture of the considered
crystal.

This last term f(x) is the function we wish to estimate for material identification.
Integrating this function over whole source, object and detectors, we are

able, after discretization, to build an operator H that models the diffraction in
our setup :

m = B · (H · f) , (2)

where :

• B is the spectral response of detectors,

• m is the modeled measurements vector of size NE × ND with NE the
number of energy channel and ND the number of detectors,

• f is the interference function map of size Nx ×NV with Nx the number of
estimated momentum transfer channel and NV is the number of voxels.

Finally, during the aquisition by the detector data are corrupted by photon
counting noise n which follows a Poisson law.
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2.1 Model validation
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Figure 2: Scattering measurements on a Graphite sample (in
gray) and their modeling (in red) using the model defined by
equation 2. An automatically estimated continuous background,
accounting non modeled effects (multiple and Compton scatter-
ing) was added to fit these data.

We have validated this direct model using experimental measurements of
known material. In figure 2, we present, for one detector, the experimental
scattering measurements of a piece of graphite. The setup used was the same
that the one used for simulation and described in section 4.1. These data can
be compared with their model in red. As we can see, our model fits quite well
the measurements proving the effectiveness of our model.

3 The inverse problems approach

We aim to retrieve the interference function map f using the measurements
y (of size NE × ND). In an inverse problem approach (see [9]), we estimate
theses unknowns that best reproduce the measurements y according to the
direct model defined by equation 2. As there is more unknowns than data, this
problem is ill-posed and we propose to resolve it in a maximum a posteriori
(MAP) framework by defining some priors about these unknowns. These prior
will be injected in the problem by some regularization functions. The main issue
about priors definition was the fact that pure amorphous (e.g. liquids) and pure
crystalline materials present very different diffraction profiles. To bypass this
problem, we defined two maps, one for crystalline, the other for amorphous
materials such as f = f cryst + famorph. Different priors are then defined for f ,
f cryst and famorph :

• Interference function of crystal is almost null everywhere except on values
verifying the Bragg law. Corresponding regularization function φcryst(f cryst)
is a ℓ1 norm designed to enforce sparsity [3].

• Interference function of amorphous materials is smooth in the momentum
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transfer space. Corresponding regularization function φamorph(famorph) is
simple quadratic smoothing regularization function.

• Along the depth dimension, in an additional spatial prior, we suppose
that if there is a change of materials between two adjacent voxels, the
interference function will change radically. φspatial(f) is a vector valued
TV regularization function [8].

• in addition, force the estimated maps f cryst and famorph to be positive.

Finally, the estimated map fMAP is the solution that minimizes a cost function
φcost(f). This function is composed of a likelihood function φML(f) ensuring
the agreement between the model and the data plus the a priori functions
(regularization functions) φcryst(f), φamorph(f) and φspatial(f) :

fMAP = arg min
f

[

φML(f)+α φcryst(f cryst)+β φamorph(famorph)+γ φspatial(f)
]

,

(3)
where α, β and γ are three tuning hyper-parameters which are used to bal-
ance the influence of both priors and likelihood and that have to be properly
tuned. The minimization is made using a limited memory continuous optimiza-
tion method (L-BFGS [7]).

4 Simulation
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Figure 3: Schematic view of the
setup used for our simulation.
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Figure 4: Composition of the simu-
lated sample and field of view of each
detector.
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This method was then tested on several realistic simulated data with three
or four components. We present here a result in simulation with only crystalline
materials.

4.1 Simulated setup

The setup dimension are described by the figure 3. The sample is irradiated by a
140 kV X-ray tube with a tungsten anode. We consider that the X-ray spectrum
follows the Birch and Marshall empirical spectrum [1]. The diameter of the focal
spot is 1 mm. The incident X-ray beam is collimated with a slit of 0.2 mm in
width, 8 mm in height and 8 cm in length. The scattered photons are detected
with an line of five detectors oriented at θ = 4.26 degree. The collimators located
in front of each detectors have a slit of 0.02 mm in width, 8 mm in height and
8 cm length. The resolution in energy of each detector is fwhm = 0.9 keV
and is supposed to be constant on the whole energy range considered in these
experiments. With such a couple source/detector, we consider energies between
15 keV and 160 keV. This corresponds to 1818 energy channels of the detector.

4.2 Data simulation

The sample was composed of a line 30 voxels of size 2 × 2 × 2 mm along the X
ray beam axis (depth). The sample is composed of three crystalline powders.
As illustrated on figure 3, following the z axis, we dispose first 12 voxels of
NaCl, 3 voxels of graphite, 3 voxels of TNT and finally 12 more voxels of NaCl.
This disposition corresponds to the f vectors which is presented on figure 4.
The figure shows momentum transfer versus voxels indices. The four different
areas of the figure correspond to the four components. As all the materials are
crystalline, bright line at momentum transfer position corresponding to crystal
inter-planar spacing can be seen on the figure. Figure 4 presents also the field
of view of each detector which is about 6 voxels. The total volume “seen” by our
setup is about 20 voxels. In this configuration, we simulated measurements using
our direct model using theoretical attenuation of such object. To process more
realistic simulated data, we added a continuous background. These simulated
data were then corrupted by photon noise. These data are presented on figure 5.

All these spectra exhibit several peaks above a continuous background. As
the field of view of each detector is quite wide (cf. Fig. 4), these peaks may
be due to different materials. For example, the spectrum of the third detector
exhibits peaks caused by TNT and graphite and the spectrum of the fourth
detector exhibits peaks caused by TNT and NaCl.

5 Results and discussion

The data were processed by our algorithm. The estimated map of the crystalline
component of interference functions fMAP

cryst is presented on figure 6 and can
be compared with the map f used for the simulation shown on figure 7. As
we can see, the algorithm effectively estimate interference functions in each
observed voxel. For example, in the voxels 4 to 12 and 18 to 24, the three
main peaks of NaCl are correctly placed at 1.8, 2.5 and 3.08 nm−1. Due to
the energy range of the detector, the interference functions were not estimated
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Figure 5: Scattering measurements on the five detectors.
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Figure 6: Crystalline component of
estimated interference function map
fMAP

cryst by processing data presented in
figure 5.
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Figure 7: Theoretical interference func-
tion map f used in the simulation. It
shows momentum transfer in function
of the voxel position is depth (z). The
darker is a pixel, higher is the inter-
ference function at corresponding voxel
and momentum transfer.

for momentum transfer below than 1 nm−1 and higher than 4.5 nm−1. The
interference functions of voxels before 4 and after 24 are zero as these voxel are
out of the field of view of our setup.

As our purpose is to estimate powder diffraction diagram of the crystalline
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parts for material identification we do not show the amorphous component of
estimated map. In reality the amorphous component famorph does not only
account for amorphous parts of the sample but for continuous background too.
Indeed, a continuum in the data can be view by our model as a continuum in the
momentum transfer space. Thus, as our goal was only to estimate crystalline
component, this formulation, even if it have no physical meaning, can be used
to explain continuum.

Moreover, the separation between each materials which was difficult to assess
by a simple observation of the data is now obvious. In some case, the interference
function of one voxel may spread to the next voxel. This happens when an
interference function peak is very low or when the number of photons measured
at corresponding energy is close to zero. This is particularly the case for the
graphite peak at 4.1 nm−1 (137 keV at θ = 4.26◦) which spreads on almost all
observed voxels.

As a conclusion, these results demonstrate the super-resolution capability of
our method. Indeed, we effectively estimate interferences functions in twenty
voxels with only five scatter detectors, improving thus the resolution by a factor
of four.

To process the simulation, we supposed that we know the attenuation and
the source spectrum. This is usually not the case in reality. One solution is
to place a spectrally resolved detector in transmission that may give a good
estimation of the product of the source spectrum by the attenuation. However,
preliminary results show that even a very coarse approximation of the spectrum
and the attenuation affect only the magnitude but not the position of peaks.
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