
HAL Id: hal-00551432
https://hal.science/hal-00551432

Submitted on 7 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design of Parallel LDPC Interleaver Architecture: A
Bipartite Edge Coloring Approach

Awais Hussein Sani, Philippe Coussy, Cyrille Chavet, Eric Martin

To cite this version:
Awais Hussein Sani, Philippe Coussy, Cyrille Chavet, Eric Martin. Design of Parallel LDPC Interleaver
Architecture: A Bipartite Edge Coloring Approach. IEEE International Conference on Electronics,
Circuits, and Systems, Athens, Greece (ICECS) 2010, Dec 2010, Athens, Greece. pp.XX-YY. �hal-
00551432�

https://hal.science/hal-00551432
https://hal.archives-ouvertes.fr

Design of Parallel LDPC Interleaver Architecture: A Bipartite Edge Coloring Approach

Awais SANI, Philippe COUSSY, Cyrille CHAVET, Eric MARTIN.

Lab-STICC, Université de Bretagne-Sud, Lorient

Abstract- Parallel hardware architecture proves to be an

excellent compromise between area, cost, flexibility and high

throughput in the hardware design of LDPC decoder.

However, this type of architecture suffers from memory

mapping problem: concurrent read and write accesses to data

have to be performed at each time instance without any conflict.

In this paper, we present an original approach based on the

tanner graph modeling and a modified bipartite edge coloring

algorithm to design parallel LDPC interleaver architecture.

1. INTRODUCTION

Near Shannon limit error correcting capabilities of Low Density

Parity Check (LDPC) codes [1] has gained a lot of attention in

information theory community. Due to very high decoding

throughput and communication performance, LDPC codes are

increasingly included in the standards such as DVB-S2 and DVB-

T2 [3], WiFi (IEEE 802.11n) [4] or WiMAX (IEEE 802.16e) [5].

LDPC codes are linear block codes and are represented either by

parity check matrix H or by Tanner graph [2], which is a bipartite

graph. In its tanner graph representation two types of vertices,

variable nodes (VNs) and check nodes (CNs), construct the two

vertex sets of bipartite graph (cf. Figure 1). VNs represent the

codewords (i.e. data to be processed) and CNs corresponds to the

parity-check sums (i.e. operations to be done on the data). A VN is

connected to a CN by an edge if and only if it is checked by that

check node.

Variable nodes

Check nodes

P0

Pp-1

B0

Bb-1

In
te

rc
o

n
e

c
tio

n
n

e
tw

o
rk

a. Tanner graph of an LDPC b. Decoder architecture

Figure 1 LDPC code and architecture

The decoding process is carried out by an iterative message-

passing algorithm called “Belief Propagation Algorithm”. In this

algorithm, VN and CN iteratively exchange their soft-information to

qualify the likelihood of the variable in accordance with the

associated parity-check equation [1].

Currently, three main families of decoder architecture for LDPC

codes have been proposed in the literature:

• Serial decoder

• Partially-Parallel decoder

• Fully-Parallel decoders

Serial decoders suffer from low throughput and fully-parallel

decoders from prohibitive area. Thus only partially-parallel

architectures are considered in practical hardware design of LDPC

decoders. In partially-parallel architecture several processing

elements PEs are used and set of variable nodes and set of check

nodes are allotted to each PE. High throughput requirement can be

achieved using a proper number of PEs, while the interconnection

network cost tends to be less critical as compared to fully-parallel

implementation. Typical architecture for partially-parallel decoder

is shown in Figure 1 in which P PEs are connected with B memory

banks where P = B.

The computation at variable node and check node is quite simple.

When designing parallel hardware architecture, the implementation

issues mainly arise due to the communication structure between VNs

and CNs. The communication structure becomes more and more

challenging with the increase in the number of nodes, the number

of node degrees, the number of iterations and the parallelism.

Hence, parallel implementation suffers from memory accesses

collision problem in which more than one PE concurrently accesses the

same memory bank to read or write data.

In this paper, we present a memory mapping methodology based on

bipartite graph which is able to provide all the PEs conflict free parallel

access to the memory banks. This algorithm provides conflict free

memory mapping for all types of decoding methods, code types,

codeword lengths and code rates.

The remainder of the paper is organized as follows. Section 2 presents a

state of the art related to parallel LDPC decoder design. Section 3

introduces the mapping problem. Section 4 describes some definitions

related to bipartite graph needed to understand the proposed approach.

Section 5 details the mapping algorithm we propose. Finally, section 6

explains the algorithm through a pedagogical example.

2. RELATED WORKS

Currently three classes of approaches to design partially-parallel LDPC

decoder architecture exist to tackle the collision problem:

• Design LDPC codes to avoid collision problem [6], [7],

• Use extra memory elements and control logic in the

interconnection network in order to remove conflicts [8], [9], [10],

• Find a memory mapping to provide conflict free access to all the

memory banks at any time instance [11], [15], [16].

In the first category of decoder implementation, structured or

architecture oriented LDPC codes are designed in order to avoid

conflicts in accessing data from memory banks. These codes remove

the memory access conflicts and simplify the interconnection network

through the use of a barrel shifter [6] or a network [7]. However,

constraints in the development of structured LDPC codes may cause

degradation in code performance.

In the second class of decoder implementation, memory access conflicts

are removed either through the addition of extra memory elements or

complex interconnection network or both. In [8], configuration

memories are used along with 2D-mesh network for LDPC codes of

different block size and code rates. In [9], concurrent accesses to the

same memory banks are avoided through the use of heterogeneous

network. However, this network becomes complex with increasing

degree of parallelization and suffers from reduction in the achievable

throughput. In [10], Binary de Bruijn network is employed for

providing flexible on-chip network for LDPC decoder. Concurrent

accesses to the same memory bank are avoided through dedicated

routing algorithm which deflects one of the conflicted packets at the

router. The flexibility in these complex interconnection networks is paid

through additional hardware, increased decoding latency and power

consumption.

In the last class, methodologies for solving collision problem are

proposed to map the data in different memory banks for conflict free

concurrent read/write accesses. In [11], the authors propose to use a

mapping algorithm to remove memory conflicts in flexible LDPC

decoders. However, the proposed approach is based on a simulated-

annealing algorithm, so the user cannot predict when the algorithm will

end. Moreover, it fails to optimize either the storage elements or the

interconnection network. Finally, different heuristics [15], [16] have

been proposed to solve the mapping problem in turbo and LDPC

decoding. However, they consider in-place memory access in which

data have to be read from and write to the same memory location.

Finally, conflict graph can be used. In this model, a node represents a

data and two nodes are connected if and only if the associated data are

accessed at the same time. Node coloring approach can then be used to

solve the mapping problem: each color corresponds to one memory

bank. Unfortunately only one color can be assigned to one node i.e. a

data can be stored in only one memory bank. This constraint may

require more memory banks than needed (see [17] for more details).

Similarly, number of algorithms have been proposed for coloring the

edges of a bipartite graph by constructing partitions ([13] and [14] for

example). Unfortunately, like node coloring approaches they can

not be used to solve the mapping problem because each data is

supposed to be stored in one memory bank only i.e. only one color

can be assigned to one edge.

3. PROBLEM FORMULATION

To explain the problem, we consider a set of K data elements {d0,
d1,…, dK-1} and a set of P processing elements {PE0, PE1,…, PEP-1}

which iteratively process these K data elements in N time instances

{t0, t1,…, tN-1}.

In order to store these K data elements and to achieve parallel

iterative processing of data for high throughput a set of B memory

banks {b0, b1,…, bB-1}, where B = P, is used. All the memory

banks have the same size M which is equal to M = K/P.

Mapping problem

Store K data elements in B memory banks in such a manner that P

processing elements can access B memory banks in parallel at each

time instance for first reading and then writing B data elements

without any conflict.

To highlight this problem, we introduce a data access matrix in

which we have P rows, related to the processing elements, and N

columns, related to the time instances. Data elements in each row

are processed by the processing element connected with this row.

Similarly data elements in each column need to be accessed in

parallel by P processing elements for partially parallel decoding

architecture. Figure 2 represent the data access matrix in which we

have K = 6, P = B = 3, M = 2 and N = 6. Each data is processed

by 3 times which shows the iterative nature of the data access.

However, data accesses are interleaved in time and there is no

regularity in processing the data elements; e.g., data 3 is

successively processed in time instances t1 and t2 whereas the first

access to the data element 4 occurs at time instance t3.

t6t5t4t3t2t1

452463PE3

136152PE2

245631PE1

t6t5t4t3t2t1

452463PE3

136152PE2

245631PE1

Parallelism

Time
Figure 2: Data Access Matrix

Memory Mapping Constraints

To successfully map the data (i.e. to allow conflict free parallel

memory access) in (1) a given number of memory banks and (2) to

tackle the iterative nature of data access in error correction coding,

the mapping matrix must fulfill the two following constraints:

1- At each time instance, all the memory banks have to be used

one and only one time.

2- The bank of the last write access to a data must be the same

as the bank of its first read access.

Formal modeling of mapping problem

To tackle the mapping problem, we introduce the concept of

multiple read and multiple write access in the formal modeling of

mapping problem in which we can not only access the data with in-

place strategy (if it is possible) but we can also read a data element

from one memory bank and then write it in a different one in order

to map the data in minimum required memory banks. This

approach is based on the edge coloring of the bipartite graph and

presented in section 5.

4. DEFINITIONS

A graph G = (V,E) is a collection of node, set V, and edge, set E. If

v,w ∈ V then an edge (v,w) ∈ E is incident to v and to w, and

vertices v and w are said adjacent. A subgraph of G is a graph

whose vertices and edges are in G.

To delete edge (v,w) from G means to form the subgraph G – (v,w),
consisting of all vertices of G and all edges of G except (v,w).
A graph G = (S1 ∪ S2, E) is bipartite, if S1 and S2 divide the

vertices set so that each edge is incident to a vertex in S1 and a

vertex in S2 i.e. S1 ∩ S2 = ∅.

The degree of vertex v is the number of edges incident to v. A graph is

regular if all vertices have the same degree. A graph is semi regular, if
either all the vertices in S1 or all the vertices in S2 have the same degree.

A path P is a sequence of edges (v1, v2), (v2, v3),..., (vn-1, vn). The ends of

P are vertices v1 and vn. If v1 ≠ vn, P is open; otherwise P is closed. A

graph is connected if there is a path between any two distinct vertices.

We define a partition in semi regular bipartite graph as a subgraph

including all time vertices.

Lemma 1: When the degree dt of the time vertex in a semi regular graph is

even then we have dt/2 partitions in which each time vertex’s degree dt’ is 2.

Lemma 2: When the degree dt of the time vertex in a semi regular graph

is odd then we have  2td partitions in which each time vertex’s

degree dt’ is 2 and one subgraph in which dt’ is 1.

We finally define a proper partition in semi regular bipartite graph as a

partition that respects either Lemma 1 or Lemma 2.

An edge coloring of G is an assignment of a color to each edge in G. An

edge chromatic number, χ`(G), is the fewest number of colors

necessary to color each edge of a graph so that no two edges incident to

the same vertex have the same color.

In [12], König proved that if the maximum vertex degree of a bipartite

graph is d then, χ`(G) = d.

5. PROPOSED APPROACH
The proposed algorithm is divided into three steps. In the first step we

construct a bipartite graph based on data access matrix. In the second

step, we divide our graph into different proper partitions. In the third

step, the edges of each partition are colored.

Step I: A bipartite graph G = (T∪ L, E) is constructed based on data

access matrix (e.g. figure 3) in which vertex set T represents all the time

instances and vertex set L represents all the data elements used in the

computation. An edge (t, l) is incident to the data element vertex l and

to the time instance vertex t if l needs to be processed at t (i.e. data l
will be read and next written at time t). Moreover, different data

accesses are represented based on the relative position i of edges at the

data vertex i.e. first edge at l represents the first read and write accesses

and so on. However, the read access that follows the ith write access is

the (i+1)modulo(degree(l))th edge at the data node l. An edge that

represents the jth read access will be next referred in this paper as a

direct edge and the edge corresponding to the associated write access as

the induced edge. This placement property will be used during steps II

and III. One interesting property of LDPC decoding is that the number
of accesses to data or processing elements at any time instance is
always equal which implies that corresponding bipartite graph is
always semi regular. This implies that all the time nodes in the bipartite

graph have the same degree dt.

1

2

3

4

5

6

T
im

e

Time Nodes Data Nodes

t1

t2

t3

t4

t5

t6

ith Write Access

(i+1)th read Access

Data Node l

a. Bipartite graph for Figure 2 b. l representation

Figure 3: Bipartite representation

Step II: In this step, bipartite graph G is divided into proper partitions.

In order to simplify the coloring algorithm next used in step III, one

constraint named partitioning constraint is introduced: no more than 2

read or write accesses have to be done at each time instance in a proper

partition. Following this constraint always allows to construct proper

partitions. Each proper partition is constructed using the partitioning

algorithm which is shown in Figure 4.a. In this algorithm, two processes

working side by side apply at each time and data vertex: Process of
traversal and Process of elimination. Process of traversal randomly

selects one edge available at the current data or time node and records

its induced edge. Process of elimination removes all the edges from the

current partition which contradict the partitioning constraint. Hence if

dt’ number of selected direct edges (i.e. read accesses) appear in a time

node then the remaining (i.e. non-selected) available edges at that time

instance are eliminated. Also, if dt’ number of recorded induced

edges (i.e. write accesses) appear in a time node then the direct

edges associated to the remaining (i.e. non-recorded) induced

edges of that time node are eliminated.

Hence, the algorithm starts constructing a path pcur by choosing

any data vertex lcur and then by applying process of traversal which

selects randomly an edge (lcur, tcur) to reach at the time vertex tcur.

Process of elimination is then applied to remove all the edges

which contradict the partitioning constraint. At tcur, the process of

traversal is again applied to choose another edge (tcur, lnext) to reach

at the data vertex lnext. Again the process of elimination is applied

to remove all the edges which contradict the partitioning

constraint. At that time pcur = {(lcur, tcur), (tcur, lnext)}. The

algorithm continues until pcur is completed, i.e. the process of

traversal does not find any valid edge to be included in pcur. The

path is added in the current subgraph sgcur. The algorithm tests if

the sgcur is a partition (i.e. all the time node has been traversed).

Once a partition has been extracted the algorithm stops. Otherwise,

the algorithm starts constructing another path pnext by using the

remaining edges of G (that have not been removed by the process

of elimination). Once sgcur becomes a partition, the algorithm starts

constructing another partition on the remaining graph G = G-sgcur.
Step II is explained through a pedagogical example in the next

section.

Step III: Thanks to the construction of proper partitions respecting

the partitioning constraint, our coloring algorithm, which flow

chart is shown in Figure 4.b, colors each partition with at most two

colors. For this it uses a strategy to color each edge in each

partition so that there is no conflict in the read and write access at

each time node.

For each uncolored partition sgcur, the algorithm starts by removing

the read conflict accesses by assigning different color to each edge

(li, tcur) of tcur. After that, following the placement property (see

step I description) the algorithm searches in G for each edge (li,
tcur) of tcur for the induced edge (tpred, li). Since only two write

accesses are possible at each time node (by partitioning constraint),

the algorithm searches in G for the direct edge (lm, tk) of the

induced edge (tpred, lm) that belongs to sgcur. The algorithm then

colors (lm, tk) differently from (li, tcur) and continues until it reaches

the starting node whose both direct edges are already colored.

While the partition is not completely colored the algorithm selects

another time node tcur and repeats. It should be noticed that simply

giving different colors to both the direct edges at each time node in

each partition without taking into account the write access memory

conflicts makes the algorithm recursive.

At each node: Traverse the path &

remove the edges which do not

follow the constraints.

Path is completed

Partition is completed

Graph is traversed

Yes

Yes

Yes

Algorithm is completed.

No

Remove the partition.

No

No

Each partition is colored with 2 colors.

Alternately remove the read and write

access conflict for each edge.

Partition is completed

Graph is traversed

Yes

Yes

Algorithm is completed.

No

No

a. Partitioning Algorithm b. Coloring Algorithm

Figure 4: Partitioning and Coloring Algorithms

6. PRACTICAL IMPLEMENTATION

Let us present an example based on the data access matrix in

Figure 2. The first step is the construction of bipartite graph which

is already depicted in Figure 3. This semi regular bipartite graph

has each time vertex with degree dt is 3. Following Lemma 2, we

will have after applying step II, 1 partition in which each time

vertex’s degree dt’ is 2 and one subgraph in which dt’ is 1. To

better understand the modeling approach we propose, we use in his

paper a mapping matrix. In this matrix, two columns are added in

each time instance column of the data access matrix introduced in

section 3. The first column shows the memory banks which are used for

read access and second column shows the memory banks which are

used for write access at this time instance. The mapping matrix of

Figure 2 is shown in Figure 5.

 R W R W R W R W R W R W

1 3 6 5 4 2

2 5 1 6 3 1

3 6 4 2 5 4

t1 t2 t3 t4 t5 t6

Figure 5: Mapping matrix for data access matrix of Figure 2

The algorithm starts constructing the path p1 by using the first available

edge of data 1 which is (1, t1), leading to p1 = {(1, t1)}. The selected

edge (1, t1) and its corresponding recorded induced edge (1, t6) appears

respectively as bold and dotted line in Figure 6.a. Using the placement
property the write access of the edge (1, t1) indeed appears on the edge

(1, t6). The process of elimination is applied and no edge is removed.

The process of traversal continues and adds the edge (t1, 3) into the path
p1 = {(1, t1), (t1, 3)}. According to the partitioning constraint only two

read accesses are possible at each time node. Since two read accesses

are completed at t1 therefore the process of elimination deletes all the

remaining edges at t1: (t1, 2) in that case. Deleted edges are simply

removed from the graph in Figure 6.b. Edge (3, t5) is then selected and

added in the path. Since this edge is both a recorded induced edge and a

direct selected edge, it thus appears in bold and dotted line in Figure

6.c.

The process continues until we traverse the path p1 = {(1, t1), (t1, 3), (3,
t5), (t5, 5), (5, t4)} and reach at the time node t4. At this point, recorded

induced edges at t2 increase to two and the process of elimination

deletes all the direct edges associated to the remaining (i.e. non-

recorded) induced edges at t2. All this process is shown in Figure 6.d.
1

2

3

4

5

6

t1

t2

t3

t4

t5

t6

1

2

3

4

5

6

t1

t2

t3

t4

t5

t6

a. b.

1

2

3

4

5

6

t1

t2

t3

t4

t5

t6

1

2

3

4

5

6

t1

t2

t3

t4

t5

t6
c d

Figure 6: Path construction through Partitioning Algorithm

The traversal continues until the path extends to p1 = {(1, t1), (t1, 3), (3,
t5), (t5, 5), (5, t4), (t4, 6), (6, t2), (t2, 3)} as shown in Figure 7.a. No more

edge can be added in the current path. We thus obtain a subgraph sg1 =
p1. However, the current subgraph sg1 is not a partition because the time

nodes t3 and t6 are not included in p1. Using the process of traversal, the

path p2 is obtained: p2 = {(1, t3), (t3, 4), (4, t6), (t6, 1)} (see Figure 7.b).

The partition sg1 is the union of all the traversed paths, sg1 = p1 + p2

(see Figure 7.c)

Unfortunately, the graph is not completely traversed so the algorithm

removes sg1 to obtain the graph G’ = G - sg1 and applies again the

processes on the remaining graph to obtain the following paths,

p’1 = {(2 , t1)}, p’2 = {(2 , t4)}, p’3 = {(2 , t6)}, p’4 = {(4 , t5)}, p’5 =

{(5 , t2)}, p’6 = {(6 , t3)}. Similarly partition sg2 is the sum of all the

traversed paths as given below, sg2 = p’1 + p’2 + p’3 + p’4 + p’5 + p’6

(see Figure 7.d).

After the construction of sg2, the algorithm finds that the graph is

completely traversed and is terminated.

1

2

3

4

5

6

t1

t2

t3

t4

t5

t6

1

2

3

4

5

6

t1

t2

t3

t4

t5

t6
a. Path p1 b. Path p2

1

2

3

4

5

6

t1

t2

t3

t4

t5

t6

1

2

3

4

5

6

t1

t2

t3

t4

t5

t6
c. partition sg1 d. partition sg2

Figure 7: Path construction through Partitioning Algorithm

After the generation of the partitions, each partition is colored

depending on the degree dt’ of its time node. For example, the sg1

is colored with, dt’ = 2, colors and the sg2 is colored with, dt’ = 1,

color. To color the partition sg1, we apply the already presented

coloring algorithm. We start by coloring the edges connected with

t1 with different colors b0 and b1 to avoid a conflict access. Edge

(t1, 1) = b0 and edge (t1, 3) = b1 as shown in Figure 8.a. In this

figure, bold grey straight line represents color b0 and thin bold grey

dotted line represents color b1. The corresponding mapping matrix

is shown in Figure 8.b.

After that we search in G for the induced edges of these previously

colored edges. Induced edge of (t1, 1) is (1, t6) so we search for the

other direct edges that belong to sg1 and which have an induced

edge at t6 in G. Edge (t3, 4) must be colored with different color of

(t1, 1) in order to remove the write access conflict at t6. So we color

(t3, 4) = b1 (see Figure 8.c). The write access of (t1, 2) occurs also

at t6. However (t1, 2) does not belong to sg1, it is not colored at that

time. The corresponding mapping matrix is shown in Figure 8.d.

1

2

3

4

5

6

t1

t2

t3

t4

t5

t6

a. First step of sg1 coloring b. Mapping matrix: first step of sg1 coloring

1

2

3

4

5

6

t1

t2

t3

t4

t5

t6

c. Second step of sg1
coloring

d. Mapping matrix: second step of sg1
coloring

Figure 8: Conflict free edge coloring of sg1

This process continues until the partition is completely colored.

The complete coloring of sg1 is shown in Figure 9.a. The

corresponding mapping matrix is presented in Figure 9.b.

1

2

3

4

5

6

t1

t2

t3

t4

t5

t6

a. Coloring of sg1 b. Complete coloring of sg1

Figure 9: Conflict free edge coloring of sg1

The coloring of sg2 is easier: all the edges are colored with one single

color b2. The complete coloring of G is shown in Figure 10.a. The

corresponding mapping matrix is presented in Figure 10.b.

1

2

3

4

5

6

t1

t2

t3

t4

t5

t6

a. Coloring of G b. Mapping matrix
Figure 10: Conflict free edge coloring of G and corresponding mapping

7. CONCLUSION

In this paper, we have presented a conflict free mapping approach for

designing any parallel iterative decoding and for any type of LDPC

code. The approach introduces the concept of multiple read/write access

and uses a modified bipartite edge coloring algorithm. In future works,

additional constraints will be added in the algorithm to support the

conflict free mapping for specific interconnection networks such as

barrel shifter, butterfly or binary De Bruijn. This effort will enhance the

design of flexible network of reduced size, higher throughput and lower

hardware cost.

REFERENCE

[1] Gallager, R. G., 1962. “Low Density Parity Check Codes”. IRE Trans.
Information Theory , 21-28.
[2] Tanner, R. M., 1981. “A recursive approach to low complexity codes”.

IEEE Trans. Inform. Theory, 533-547

[3] “Frame structure channel coding and modulation for the second generation

digital terrestrial television broadcasting system (DVB-T2),” DVB
DocumentA122, 2008.

[4] IEEE 802.11n. “Wireless LAN Medium Access Control and Physical Layer

specifications: Enhancements for Higher Throughput”,IEEE P802.11n/D1.0, 2006

[5] “Air interface for fixed and mobile broadband wireless access systems,” in
P802.16e/D12 Draft, (Washington, DC, USA), pp. 100-105, IEEE, 2005

[6] M.M. Mansour, N.R. Shanbhag, “High-throughput, LDPC decoders,” IEEE
Trans. on Very Large Scale Integration VLSI Systems, vol.11, pp.976-996, 2003.

[7] Y.Chen, D.Hocevar, “A FPGA and ASIC implementation of rate 1/2,

8088-b irregular low density parity check decoder”. in Global
Telecommunication Conf., 113-117, 2003.
[8] Theocharides, T., Link, G., Vijaykrishnan, N., and Irwin, M. J., 2005.

“Implementing LDPC Decoding on a Network-on-Chip”. in Proc. of the
international Conference on VLSI Design, 134-137.

[9] Kienle, F., Thul, M. J., and When, N., 2003. “Implementation Issues of

Scalable LDPC-Decoders”. in Proceeding of 3rd International Symposium on
Turbo Codes and Related Topics, Brest, France, 291-294.
[10] H.Moussa, A.Baghdadi, M.Jezequel.“Binary de Bruijn on-chip netwok for a

flexible multiprocessor LDPC decoder”.45th ACM/IEEE DAC, p.429-434, 2008.
[11] F.Quaglio, F.Vacca, C.Castellano, A.Tarable, M G.Asera. “Interconnection

Framework for High-Throughput, Flexible LDPC Decoders”. In proceeding
Design Automation and Test in Europe Conference and Exhibition, 2006.
[12] D. König, “Graphok és alkalmazásuk a determinánsok és a halmazok

elméletére”. Mathematikai és Természettudományi Értzsitö 34 (1916) 101-119.

[13] H.N. Gabow, “Using Euler partitions to edge color bipartite multigraphs”,

International Journal of Computer and Information Sciences 5 (1976) 345-355.

[14] R.Cole, J. Hopcroft, “On edge coloring bipartite graphs”, SIAM Journal on
Computing 11 (1982) 540-546.

[15] A.Tarable, S. Benedetto, and G.Montorsi, “Mapping interleaving laws to

parallel turbo and LDPC decoder architectures”, IEEE Trans.Inf.Theory, vol. 50,

no.9, pp.2002-2009, Sep. 2004.

[16] C. Chavet, P. Coussy, P. Urard and E. Martin, “Static Address Generation

Easing: a Design Methodology for Parallel Interleaver Architecture. In
proceeding ICASSP 2010.

[17] C. Chavet, P. Coussy, “A memory Mapping Approach for Parallel

Interleaver design with multiples read and write accesses”. In Proceedings of the

IEEE International Symposium on Circuits and Systems (ISCAS) 2010.

[18] http://www.ict-davinci-codes.eu/

