
HAL Id: hal-00551432
https://hal.science/hal-00551432

Submitted on 7 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design of Parallel LDPC Interleaver Architecture: A
Bipartite Edge Coloring Approach

Awais Hussein Sani, Philippe Coussy, Cyrille Chavet, Eric Martin

To cite this version:
Awais Hussein Sani, Philippe Coussy, Cyrille Chavet, Eric Martin. Design of Parallel LDPC Interleaver
Architecture: A Bipartite Edge Coloring Approach. IEEE International Conference on Electronics,
Circuits, and Systems, Athens, Greece (ICECS) 2010, Dec 2010, Athens, Greece. pp.XX-YY. �hal-
00551432�

https://hal.science/hal-00551432
https://hal.archives-ouvertes.fr


Design of Parallel LDPC Interleaver Architecture: A Bipartite Edge Coloring Approach  
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Abstract- Parallel hardware architecture proves to be an 

excellent compromise between area, cost, flexibility and high 

throughput in the hardware design of LDPC decoder. 

However, this type of architecture suffers from memory 

mapping problem: concurrent read and write accesses to data 

have to be performed at each time instance without any conflict. 

In this paper, we present an original approach based on the 

tanner graph modeling and a modified bipartite edge coloring 

algorithm to design parallel LDPC interleaver architecture. 
 

1. INTRODUCTION 
 

Near Shannon limit error correcting capabilities of Low Density 

Parity Check (LDPC) codes [1] has gained a lot of attention in 

information theory community. Due to very high decoding 

throughput and communication performance, LDPC codes are 

increasingly included in the standards such as DVB-S2 and DVB-

T2 [3], WiFi (IEEE 802.11n) [4] or WiMAX (IEEE 802.16e) [5].  

LDPC codes are linear block codes and are represented either by 

parity check matrix H or by Tanner graph [2], which is a bipartite 

graph. In its tanner graph representation two types of vertices, 

variable nodes (VNs) and check nodes (CNs), construct the two 

vertex sets of bipartite graph (cf. Figure 1). VNs represent the 

codewords (i.e. data to be processed) and CNs corresponds to the 

parity-check sums (i.e. operations to be done on the data). A VN is 

connected to a CN by an edge if and only if it is checked by that 

check node. 
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a. Tanner graph of an LDPC b.  Decoder architecture 

Figure 1 LDPC code and architecture 

The decoding process is carried out by an iterative message-

passing algorithm called “Belief Propagation Algorithm”. In this 

algorithm, VN and CN iteratively exchange their soft-information to 

qualify the likelihood of the variable in accordance with the 

associated parity-check equation [1].  

Currently, three main families of decoder architecture for LDPC 

codes have been proposed in the literature: 

• Serial decoder 

• Partially-Parallel decoder 

• Fully-Parallel decoders 

Serial decoders suffer from low throughput and fully-parallel 

decoders from prohibitive area. Thus only partially-parallel 

architectures are considered in practical hardware design of LDPC 

decoders. In partially-parallel architecture several processing 

elements PEs are used and set of variable nodes and set of check 

nodes are allotted to each PE. High throughput requirement can be 

achieved using a proper number of PEs, while the interconnection 

network cost tends to be less critical as compared to fully-parallel 

implementation. Typical architecture for partially-parallel decoder 

is shown in Figure 1 in which P PEs are connected with B memory 

banks where P = B.  

The computation at variable node and check node is quite simple. 

When designing parallel hardware architecture, the implementation 

issues mainly arise due to the communication structure between VNs 

and CNs. The communication structure becomes more and more 

challenging with the increase in the number of nodes, the number 

of node degrees, the number of iterations and the parallelism. 

Hence, parallel implementation suffers from memory accesses 

collision problem in which more than one PE concurrently accesses the 

same memory bank to read or write data.  

In this paper, we present a memory mapping methodology based on 

bipartite graph which is able to provide all the PEs conflict free parallel 

access to the memory banks. This algorithm provides conflict free 

memory mapping for all types of decoding methods, code types, 

codeword lengths and code rates. 

The remainder of the paper is organized as follows. Section 2 presents a 

state of the art related to parallel LDPC decoder design. Section 3 

introduces the mapping problem. Section 4 describes some definitions 

related to bipartite graph needed to understand the proposed approach. 

Section 5 details the mapping algorithm we propose. Finally, section 6 

explains the algorithm through a pedagogical example.  
 

2. RELATED WORKS 
 

Currently three classes of approaches to design partially-parallel LDPC 

decoder architecture exist to tackle the collision problem: 

• Design LDPC codes to avoid collision problem [6], [7], 

• Use extra memory elements and control logic in the 

interconnection network in order to remove conflicts [8], [9], [10],  

• Find a memory mapping to provide conflict free access to all the 

memory banks at any time instance [11], [15], [16]. 

In the first category of decoder implementation, structured or 

architecture oriented LDPC codes are designed in order to avoid 

conflicts in accessing data from memory banks. These codes remove 

the memory access conflicts and simplify the interconnection network 

through the use of a barrel shifter [6] or a network [7]. However, 

constraints in the development of structured LDPC codes may cause 

degradation in code performance. 

In the second class of decoder implementation, memory access conflicts 

are removed either through the addition of extra memory elements or 

complex interconnection network or both. In [8], configuration 

memories are used along with 2D-mesh network for LDPC codes of 

different block size and code rates. In [9], concurrent accesses to the 

same memory banks are avoided through the use of heterogeneous 

network. However, this network becomes complex with increasing 

degree of parallelization and suffers from reduction in the achievable 

throughput. In [10], Binary de Bruijn network is employed for 

providing flexible on-chip network for LDPC decoder. Concurrent 

accesses to the same memory bank are avoided through dedicated 

routing algorithm which deflects one of the conflicted packets at the 

router. The flexibility in these complex interconnection networks is paid 

through additional hardware, increased decoding latency and power 

consumption. 

In the last class, methodologies for solving collision problem are 

proposed to map the data in different memory banks for conflict free 

concurrent read/write accesses. In [11], the authors propose to use a 

mapping algorithm to remove memory conflicts in flexible LDPC 

decoders. However, the proposed approach is based on a simulated-

annealing algorithm, so the user cannot predict when the algorithm will 

end. Moreover, it fails to optimize either the storage elements or the 

interconnection network. Finally, different heuristics [15], [16] have 

been proposed to solve the mapping problem in turbo and LDPC 

decoding. However, they consider in-place memory access in which 

data have to be read from and write to the same memory location.  

Finally, conflict graph can be used. In this model, a node represents a 

data and two nodes are connected if and only if the associated data are 

accessed at the same time. Node coloring approach can then be used to 

solve the mapping problem: each color corresponds to one memory 

bank. Unfortunately only one color can be assigned to one node i.e. a 

data can be stored in only one memory bank. This constraint may 

require more memory banks than needed (see [17] for more details). 

Similarly, number of algorithms have been proposed for coloring the 

edges of a bipartite graph by constructing partitions ([13] and [14] for 



example). Unfortunately, like node coloring approaches they can 

not be used to solve the mapping problem because each data is 

supposed to be stored in one memory bank only i.e. only one color 

can be assigned to one edge. 
 

 

3. PROBLEM FORMULATION 
 

To explain the problem, we consider a set of K data elements {d0, 
d1,…, dK-1} and a set of P processing elements {PE0, PE1,…, PEP-1} 

which iteratively process these K data elements in N time instances 

{t0, t1,…, tN-1}. 

In order to store these K data elements and to achieve parallel 

iterative processing of data for high throughput a set of B memory 

banks {b0, b1,…, bB-1}, where B = P, is used. All the memory 

banks have the same size M which is equal to M = K/P.  

Mapping problem  

Store K data elements in B memory banks in such a manner that P 

processing elements can access B memory banks in parallel at each 

time instance for first reading and then writing B data elements 

without any conflict. 

To highlight this problem, we introduce a data access matrix in 

which we have P rows, related to the processing elements, and N 

columns, related to the time instances. Data elements in each row 

are processed by the processing element connected with this row. 

Similarly data elements in each column need to be accessed in 

parallel by P processing elements for partially parallel decoding 

architecture. Figure 2 represent the data access matrix in which we 

have K = 6, P = B = 3, M = 2 and N = 6. Each data is processed 

by 3 times which shows the iterative nature of the data access. 

However, data accesses are interleaved in time and there is no 

regularity in processing the data elements; e.g., data 3 is 

successively processed in time instances t1 and t2 whereas the first 

access to the data element 4 occurs at time instance t3.  

t6t5t4t3t2t1

452463PE3

136152PE2

245631PE1

t6t5t4t3t2t1

452463PE3

136152PE2

245631PE1

Parallelism

Time  
Figure 2: Data Access Matrix 

Memory Mapping Constraints 

To successfully map the data (i.e. to allow conflict free parallel 

memory access) in (1) a given number of memory banks and (2) to 

tackle the iterative nature of data access in error correction coding, 

the mapping matrix must fulfill the two following constraints: 

1- At each time instance, all the memory banks have to be used 

one and only one time.  

2- The bank of the last write access to a data must be the same 

as the bank of its first read access. 

Formal modeling of mapping problem 

To tackle the mapping problem, we introduce the concept of 

multiple read and multiple write access in the formal modeling of 

mapping problem in which we can not only access the data with in-

place strategy (if it is possible) but we can also read a data element 

from one memory bank and then write it in a different one in order 

to map the data in minimum required memory banks. This 

approach is based on the edge coloring of the bipartite graph and 

presented in section 5.  

4. DEFINITIONS 

 
 

A graph G = (V,E) is a collection of node, set V, and edge, set E. If 

v,w ∈ V then an edge (v,w) ∈  E is incident to v and to w, and 

vertices v and w are said adjacent. A subgraph of G is a graph 

whose vertices and edges are in G.  

To delete edge (v,w) from G means to form the subgraph G – (v,w), 
consisting of all vertices of G and all edges of G except (v,w).  
A graph G = (S1 ∪ S2, E) is bipartite, if S1 and S2 divide the 

vertices set so that each edge is incident to a vertex in S1 and a 

vertex in S2 i.e. S1 ∩ S2 = ∅.  

The degree of vertex v is the number of edges incident to v. A graph is 

regular if all vertices have the same degree. A graph is semi regular, if 
either all the vertices in S1 or all the vertices in S2 have the same degree.   

A path P is a sequence of edges (v1, v2), (v2, v3),..., (vn-1, vn). The ends of 

P are vertices v1 and vn. If v1 ≠ vn, P is open; otherwise P is closed. A 

graph is connected if there is a path between any two distinct vertices.  

We define a partition in semi regular bipartite graph as a subgraph 

including all time vertices. 

Lemma 1: When the degree dt of the time vertex in a semi regular graph is 

even then we have dt/2 partitions in which each time vertex’s degree dt’ is 2. 

Lemma 2: When the degree dt of the time vertex in a semi regular graph 

is odd then we have  2td  partitions in which each time vertex’s 

degree dt’ is 2 and one subgraph in which dt’ is 1. 

We finally define a proper partition in semi regular bipartite graph as a 

partition that respects either Lemma 1 or Lemma 2. 

An edge coloring of G is an assignment of a color to each edge in G. An 

edge chromatic number, χ`(G), is the fewest number of colors 

necessary to color each edge of a graph so that no two edges incident to 

the same vertex have the same color.  

In [12], König proved that if the maximum vertex degree of a bipartite 

graph is d then, χ`(G) = d. 

5. PROPOSED APPROACH  
The proposed algorithm is divided into three steps. In the first step we 

construct a bipartite graph based on data access matrix. In the second 

step, we divide our graph into different proper partitions. In the third 

step, the edges of each partition are colored.  

Step I: A bipartite graph G = (T∪ L, E) is constructed based on data 

access matrix (e.g. figure 3) in which vertex set T represents all the time 

instances and vertex set L represents all the data elements used in the 

computation. An edge (t, l) is incident to the data element vertex l and 

to the time instance vertex t if l needs to be processed at t (i.e. data l 
will be read and next written at time t). Moreover, different data 

accesses are represented based on the relative position i of edges at the 

data vertex i.e. first edge at l represents the first read and write accesses 

and so on. However, the read access that follows the ith write access is 

the (i+1)modulo(degree(l))th edge at the data node l. An edge that 

represents the jth read access will be next referred in this paper as a 

direct edge and the edge corresponding to the associated write access as 

the induced edge. This placement property will be used during steps II 

and III. One interesting property of LDPC decoding is that the number 
of accesses to data or processing elements at any time instance is 
always equal which implies that corresponding bipartite graph is 
always semi regular. This implies that all the time nodes in the bipartite 

graph have the same degree dt.  
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a. Bipartite graph for Figure 2  b.  l representation 

Figure 3: Bipartite representation 

Step II: In this step, bipartite graph G is divided into proper partitions. 

In order to simplify the coloring algorithm next used in step III, one 

constraint named partitioning constraint is introduced: no more than 2 

read or write accesses have to be done at each time instance in a proper 

partition. Following this constraint always allows to construct proper 

partitions. Each proper partition is constructed using the partitioning 

algorithm which is shown in Figure 4.a. In this algorithm, two processes 

working side by side apply at each time and data vertex: Process of 
traversal and Process of elimination. Process of traversal randomly 

selects one edge available at the current data or time node and records 

its induced edge. Process of elimination removes all the edges from the 

current partition which contradict the partitioning constraint. Hence if 

dt’ number of selected direct edges (i.e. read accesses) appear in a time 

node then the remaining (i.e. non-selected) available edges at that time 



instance are eliminated. Also, if dt’ number of recorded induced 

edges (i.e. write accesses) appear in a time node then the direct 

edges associated to the remaining (i.e. non-recorded) induced 

edges of that time node are eliminated.  

Hence, the algorithm starts constructing a path pcur by choosing 

any data vertex lcur and then by applying process of traversal which 

selects randomly an edge (lcur, tcur) to reach at the time vertex tcur. 

Process of elimination is then applied to remove all the edges 

which contradict the partitioning constraint. At tcur, the process of 

traversal is again applied to choose another edge (tcur, lnext) to reach 

at the data vertex lnext. Again the process of elimination is applied 

to remove all the edges which contradict the partitioning 

constraint. At that time  pcur = {(lcur, tcur), (tcur, lnext)}. The 

algorithm continues until pcur is completed, i.e. the process of 

traversal does not find any valid edge to be included in pcur. The 

path is added in the current subgraph sgcur. The algorithm tests if 

the sgcur is a partition (i.e. all the time node has been traversed). 

Once a partition has been extracted the algorithm stops. Otherwise, 

the algorithm starts constructing another path pnext by using the 

remaining edges of G (that have not been removed by the process 

of elimination). Once sgcur becomes a partition, the algorithm starts 

constructing another partition on the remaining graph G = G-sgcur. 
Step II is explained through a pedagogical example in the next 

section. 

Step III:  Thanks to the construction of proper partitions respecting 

the partitioning constraint, our coloring algorithm, which flow 

chart is shown in Figure 4.b, colors each partition with at most two 

colors. For this it uses a strategy to color each edge in each 

partition so that there is no conflict in the read and write access at 

each time node.  

For each uncolored partition sgcur, the algorithm starts by removing 

the read conflict accesses by assigning different color to each edge 

(li, tcur) of tcur. After that, following the placement property (see 

step I description) the algorithm searches in G for each edge (li, 
tcur) of tcur for the induced edge (tpred, li). Since only two write 

accesses are possible at each time node (by partitioning constraint), 

the algorithm searches in G for the direct edge (lm, tk) of the 

induced edge (tpred, lm) that  belongs to sgcur. The algorithm then 

colors (lm, tk) differently from (li, tcur) and continues until it reaches 

the starting node whose both direct edges are already colored. 

While the partition is not completely colored the algorithm selects 

another time node tcur and repeats. It should be noticed that simply 

giving different colors to both the direct edges at each time node in 

each partition without taking into account the write access memory 

conflicts makes the algorithm recursive.  

At each node: Traverse the path & 

remove the edges which do not 

follow the constraints.

Path is completed

Partition is completed

Graph is traversed

Yes

Yes

Yes

Algorithm is completed.

No

Remove the partition.

No

No

 

Each partition is colored with 2 colors. 

Alternately remove the read and write 

access conflict for each edge.

Partition is completed

Graph is traversed

Yes

Yes

Algorithm is completed.

No

No

 
a. Partitioning Algorithm b. Coloring Algorithm 

Figure 4: Partitioning and Coloring Algorithms 
 

6. PRACTICAL IMPLEMENTATION 
 

Let us present an example based on the data access matrix in 

Figure 2. The first step is the construction of bipartite graph which 

is already depicted in Figure 3. This semi regular bipartite graph 

has each time vertex with degree dt is 3. Following Lemma 2, we 

will have after applying step II, 1 partition in which each time 

vertex’s degree dt’ is 2 and one subgraph in which dt’ is 1. To 

better understand the modeling approach we propose, we use in his 

paper a mapping matrix. In this matrix, two columns are added in 

each time instance column of the data access matrix introduced in 

section 3. The first column shows the memory banks which are used for 

read access and second column shows the memory banks which are 

used for write access at this time instance. The mapping matrix of 

Figure 2 is shown in Figure 5. 
 

 R W  R W  R W  R W  R W  R W 

1   3   6   5   4   2   

2   5   1   6   3   1   

3   6   4   2   5   4   

t1 t2 t3 t4 t5 t6 

Figure 5: Mapping matrix for data access matrix of Figure 2 

The algorithm starts constructing the path p1 by using the first available 

edge of data 1 which is (1, t1), leading to p1 = {(1, t1)}. The selected 

edge (1, t1) and its corresponding recorded induced edge (1, t6) appears 

respectively as bold and dotted line in Figure 6.a. Using the placement 
property the write access of the edge (1, t1) indeed appears on the edge 

(1, t6). The process of elimination is applied and no edge is removed. 

The process of traversal continues and adds the edge (t1, 3) into the path 
p1 = {(1, t1), (t1, 3)}.  According to the partitioning constraint only two 

read accesses are possible at each time node. Since two read accesses 

are completed at t1 therefore the process of elimination deletes all the 

remaining edges at t1: (t1, 2) in that case. Deleted edges are simply 

removed from the graph in Figure 6.b. Edge (3, t5) is then selected and 

added in the path. Since this edge is both a recorded induced edge and a 

direct selected edge, it thus appears in bold and dotted line in Figure 

6.c.  

The process continues until we traverse the path p1 = {(1, t1), (t1, 3), (3, 
t5), (t5, 5), (5, t4)} and reach at the time node t4. At this point, recorded 

induced edges at t2 increase to two and the process of elimination 

deletes all the direct edges associated to the remaining (i.e. non-

recorded) induced edges at t2. All this process is shown in Figure 6.d.  
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Figure 6: Path construction through Partitioning Algorithm 

The traversal continues until the path extends to p1 = {(1, t1), (t1, 3), (3, 
t5), (t5, 5), (5, t4), (t4, 6), (6, t2), (t2, 3)} as shown in Figure 7.a. No more 

edge can be added in the current path. We thus obtain a subgraph sg1 = 
p1. However, the current subgraph sg1 is not a partition because the time 

nodes t3 and t6 are not included in p1. Using the process of traversal, the 

path p2 is obtained:  p2 = {(1, t3), (t3, 4), (4, t6), (t6, 1)} (see Figure 7.b). 

The partition sg1 is the union of all the traversed paths, sg1 = p1 + p2 

(see Figure 7.c) 

Unfortunately, the graph is not completely traversed so the algorithm 

removes sg1 to obtain the graph G’ = G - sg1 and applies again the 

processes on the remaining graph to obtain the following paths,   

p’1 = {(2 , t1)},  p’2 = {(2 , t4)},  p’3 = {(2 , t6)},  p’4 = {(4 , t5)}, p’5 = 

{(5 , t2)}, p’6 = {(6 , t3)}. Similarly partition sg2 is the sum of all the 

traversed paths as given below,  sg2 =  p’1 + p’2 + p’3 + p’4 + p’5 + p’6 

(see Figure 7.d). 

After the construction of sg2, the algorithm finds that the graph is 

completely traversed and is terminated. 
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Figure 7: Path construction through Partitioning Algorithm 

After the generation of the partitions, each partition is colored 

depending on the degree dt’ of its time node. For example, the sg1 

is colored with, dt’ = 2, colors and the sg2 is colored with, dt’ = 1, 

color. To color the partition sg1, we apply the already presented 

coloring algorithm. We start by coloring the edges connected with 

t1 with different colors b0 and b1 to avoid a conflict access. Edge 

(t1, 1) = b0 and edge (t1, 3) = b1 as shown in Figure 8.a. In this 

figure, bold grey straight line represents color b0 and thin bold grey 

dotted line represents color b1. The corresponding mapping matrix 

is shown in Figure 8.b.  

After that we search in G for the induced edges of these previously 

colored edges. Induced edge of (t1, 1) is (1, t6) so we search for the 

other direct edges that belong to sg1 and which have an induced 

edge at t6 in G. Edge (t3, 4) must be colored with different color of 

(t1, 1) in order to remove the write access conflict at t6. So we color 

(t3, 4) = b1 (see Figure 8.c). The write access of (t1, 2) occurs also 

at t6. However (t1, 2) does not belong to sg1, it is not colored at that 

time. The corresponding mapping matrix is shown in Figure 8.d.  
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a. First step of sg1 coloring  b. Mapping matrix: first step of sg1 coloring  
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Figure 8: Conflict free edge coloring of sg1 

This process continues until the partition is completely colored. 

The complete coloring of sg1 is shown in Figure 9.a. The 

corresponding mapping matrix is presented in Figure 9.b. 
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a.  Coloring of sg1 b. Complete coloring of sg1 

Figure 9: Conflict free edge coloring of sg1 

The coloring of sg2 is easier: all the edges are colored with one single 

color b2. The complete coloring of G is shown in Figure 10.a. The 

corresponding mapping matrix is presented in Figure 10.b. 
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a. Coloring of G b. Mapping matrix 
Figure 10: Conflict free edge coloring of G and corresponding mapping 
 

7. CONCLUSION 
 

In this paper, we have presented a conflict free mapping approach for 

designing any parallel iterative decoding and for any type of LDPC 

code. The approach introduces the concept of multiple read/write access 

and uses a modified bipartite edge coloring algorithm. In future works, 

additional constraints will be added in the algorithm to support the 

conflict free mapping for specific interconnection networks such as 

barrel shifter, butterfly or binary De Bruijn. This effort will enhance the 

design of flexible network of reduced size, higher throughput and lower 

hardware cost. 
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