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Abstract

In this paper, we propose a new approach for modeling and fitting high-dimensional res-

ponse regression models in the setting of complex spatio-temporal dynamics. This study

is motivated by investigating one of the major atmospheric phenomena which drives the

rainfall regime in Western Africa : West African Monsoon. We are particularly interested

in studying the influence of sea surface temperatures in the Gulf of Guinea on precipitation

in Saharan and sub-Saharan.
Keywords: spatio-temporal modeling, filtering, multivariate penalized regression

1. Introduction

West African monsoon is the major atmospheric phenomenon which drives the rain-

fall regime in Western Africa. It is characterized by a strong spatio-temporal variability

whose causes have not yet been determined in an unequivocal manner. However, there is

a considerable body of evidence suggesting that spatio-temporal changes in sea surface

temperatures in the Gulf of Guinea and changes in the Saharan and sub-Saharan albedo

are major factors. One of the interest of physicists is to perform sensitivity analysis on

West African monsoon (see Messager et al. (2004)). The main tool for simulating preci-

pitation is a regional atmospheric model (MAR) whose performances were evaluated by
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comparisons with precipitation data. Global sensitivity analysis of a model output consists

in quantifying the respective importance of input factors over their entire range of values.

Contrarily to deterministic approaches based on gradients, global analyses can be perfor-

med on nonlinear systems. Many techniques have been developed in this field (see Saltelli

et al. (2000) for a review). Performing a global sensitivity analysis implies running the

model a large number of times. However it can not be realized by running the MAR, as

we work on large discretization grids in space and time, thus dealing with huge dimen-

sions. A way for overcoming this issue is to fit a stochastic model which approximates the

MAR by taking into consideration the spatio-temporal dynamic of the underlying physi-

cal phenomenon and with the ability to be run in a reasonable time. Statistical methods

can be used to describe the behavior of a set of observations by focusing attention on the

observations themselves rather than on the physical processes that produced them. One

of those statistical methods is regression and in this paper we focus on the regression of

precipitation on sea surface temperatures. As the numerical storage and processing of our

model outputs (precipitation), as far as the statistical description of the data is concerned,

require considerable computational resources, it will be run in a grid-computing environ-

ment (see Caron et al. (2006)). This grid deployment takes into account the scheduling of

a huge number of computational requests and links with data-management between these

requests, all of these as automatically as possible. It requires new developments which are

not at the moment completely achieved. It explains why we fit our model with real data in

this study : Reynolds climatological data on eighteen years (1983 to 2000) for sea surface

temperatures and data collected by the french IRD (Institut de Recherche pour le Déve-

loppement) during a period of eight years (1983 to 1990) for precipitation. The regression

is achieved on the common period of observation (from 1983 to 1990). The poor quality

of data over longer periods explain our restrictive choice (see Messager et al. (2004)). It
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is clear that the study will be enhanced as soon as the grid deployment will be achieved,

allowing a regression to be fitted on a longer period of eighteen years.

Functional data often arise from measurements on fine time grids, and many examples

including environmental data can be found. In the following work, we consider on each

sampled spatial point x (resp. y), as sample unit the year and the observed period is

chosen from March to November, which corresponds to the active period of the monsoon

phenomenon for our application. It is assumed that we have for each year an independent

realization of the stochastic process Xx (resp. Y y) that represents sea surface temperature

(resp. precipitation) along the reference period (March to November). This assumption of

independence is certainly too strong to be realistic, as these data are collected sequentially

over time and thus certainly present correlation among them. Prediction of such functio-

nal time series has motivated the development of appropriate functional models, the most

popular being the autoregressive model of Bosq (2000) and its various extensions parti-

cularly useful for prediction, see e.g. Besse (2000), Damon and Guillas (2002), Antoniadis

and Sapatinas (2003) and Aguilera et al. (2008). However, how specifying a model is not

clear for many functional time series. The Weighted Functional Principal Component Ap-

proach (WFPCA) developed in Aguilera et al. (1999) is very interesting as it does not

require any prespecified structure for the data. Applying a weighted scheme for estimating

the sample mean and the covariance operator would probably be nonefficient in our case

without further and stronger assumptions as we only have 8 observed segments (years). In

the following, we have chosen FPCA as a dimensionality reduction technique based on the

assumption that our observed segments are independent segments of the same continuous

stochastic process (see Section 3). This choice was guided by recent results in Hörmann

and Kokoszka (2010) which prove the robustness of this tool to weak dependence. More

precisely Hörmann and Kokoszka investigate the performance of FPCA under what they
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call m-approximation, which is a moment based notion of dependence for functional time

series, not unreasonable on our data, even if the few number of years of observation does

not allow us to validate this assumption. Finally, note that the four months gap (between

two consecutive observation periods) makes this hypothesis even more plausible.

The present work introduces a new methodology for performing sensibility analysis of a

heavy numerical model when handling spatio-temporal inputs and outputs. The metamodel

construction process is based on several steps, including dimension reduction and regression.

More precisely, the three major steps are the following : First, functional PCA of both the

predictor (sea surface temperatures in the Gulf of Guinea) and the response (precipitations

in Saharan and sub-Saharan) continuous-time processes is performed on the common period

of observation for each location on the spatial grid. The Karhunen-Loève decomposition

is then truncated because major part of variance is explained by only a few terms. This

first step allows the reduction of the infinite dimension of temporal data to few coefficients.

Secondly, a functional clustering algorithm is performed on the selected eigenfunctions to

reduce the spatial dispersion of the Karhunen-Loève eigenfunctions (one decomposition

per point). Few areas are identified where the decomposition (set of first eigenfunctions)

can be considered constant for all the points of the area without losing accuracy. Thirdly,

the relationship between inputs and outputs is modeled on the coefficients of the above

decomposition through a double penalized regression approach. This methodology allows

controlling the total number of predictors entering the model, and consequently facilitates

the detection of important predictors. Finally, the precipitation curves obtained by our

Þltering modeling are compared to observations themselves.

The paper is organized as follows. In Section 2 we give a brief description of the data. Our

new approach for modeling both sea surface temperatures and precipitation is described

in Section 3. Section 4 is devoted to the regression analysis. To conclude we mention in

4



Section 5 some of the many interesting perspectives of our study.

2. Data description

This section is devoted to the description of our data sets, chosen in accordance with

physicists. The data used for sea surface temperatures (SST) are the so-called Reynolds

climatological data, generated by an optimal interpolation technique (Reynolds and Smith

(1994)) which uses satellite and in-situ data. We obtain a value for SST at each of the 516

points of a spatial grid G located in the Gulf of Guinea. West African Monsson is an almost

periodic phenomenon, active from May to September. We work with a time discretization :

we have weekly data from March to November (to cover the active period of the physical

phenomenon). For these data we have eighteen years of observations, from 1983 to 2000.

Precipitation data have been recorded by the Institut de Recherche pour le Dévelop-

pement (IRD) on a spatial grid G ′ of size 382 located in Western Africa with the greatest

density of stations located between 5◦ N and 15◦ N (see Messager (2005)). We have daily

data whose mean is computed on 10 consecutive days from March to November, but only

from 1983 to 1990. After removing points on G ′ for which data were incomplete we work

with 368 points.

Below we present a map focusing on the region of interest around the Gulf of Guinea

(see left panel of Figure 1). We also show on the right panel of the same figure the 18

time-dependent curves of sea surface temperatures and the 8 time-dependent curves of

precipitation at some fixed spatial point.

[ Figure 1 about here. ]

Both inputs (SST) and outputs (precipitation) depend on space and time. Spatial and

time discretizations result in very high-dimensional data which are difficult to analyze with
5



classical multivariate analysis. Functional data analysis (FDA) goes one big step further

and seems the appropriate statistical tool to be used for analyzing our data for which

time dynamics and spatial dynamics are a major component. Moreover an overarching

theme in FDA is the necessity to achieve some form of dimension reduction of the infinite-

dimensional data to finite and tractable dimensions and explains our choice to model inputs

and outputs through spatio-temporal functional processes. For an introduction to the field

of FDA, the two monographs by Ramsay and Silverman (2002, 2005) provide an accessible

overview on foundations and applications, as well as a plethora of motivating examples.

3. Modeling inputs and outputs

The modeling for both inputs and outputs is described in this section. Our regression

methodology to study the relationship between precipitation and the SST will be based

on such modeling. Our method is a new filtering approach based on Karuhnen-Loève de-

compositions and functional clustering. It allows reducing the dimensions involved in the

data.

3.1. Functional modeling

Let T be a finite and closed interval of R. We usually refer to T as time. The spatial

regions of interest R and R′ are both subsets of R2. In our applicative context, T is the

annual time period from March to November. The time period is the same for both SST

and precipitation, even if time discretization differs. We model inputs (resp. outputs) on

the spatial grid G (resp. G ′) described in Section 2. The phenomenon under study is a

periodic phenomenon, with an active period from May to September, observed on N years

(N is equal to 18 for SST and to 8 for precipitation). Let x be any point on the grid G.

Following Yao et al. (2005b), we consider that the ith observed time-dependent trajectory

at point x corresponds to a sampled longitudinal curve viewed as realizations of random
6



trajectories (Xx
i ), i = 1, . . . , , N , where Xx

i is assumed to belong to some Hilbert functio-

nal space H ⊂ L2(T ). These Xx
i ’s are viewed as independent realizations of a stochastic

process Xx with unknown smooth mean function EXx(t) = µXx(t), and covariance func-

tion Cov (Xx(s), Xx(t)) = GXx(s, t). The assumption of independence is discussed in the

introduction (see Section 1).

It is well known that under very mild conditions, there exists an orthogonal expansion

of GXx (in the L2 sense) in terms of eigenfunctions em(x, ·) with associated eigenvalues

ρm(x) (arranged in nonincreasing order), that is,

GXx(s, t) =
∑

m≥1

ρm(x)em(x, s)em(x, t), s, t ∈ T .

The random function Xx(t) where t denotes time and x location, may be decomposed into

an orthogonal expansion

Xx(t) = µXx(t) +
∞∑

m=1

αm(x)em(x, t), t ∈ T .

The above representation of a random function is known as the Karhunen-Loève expansion,

although in the meteorological literature it is known as the Empirical Orthogonal Function

(EOF) expansion. It can be shown that the truncated decomposition with Nx terms (that

is keeping at location x the first Nx principal components)

Xtrunc,x(t) = µXx(t) +
Nx∑

m=1

αm(x)em(x, t), t ∈ T . (1)

minimises the mean integrated squared error E
{∫

T [Xx(t) − Xtrunc,x(t)]2dt
}
. The spectral

representation is optimal in the sense that this error is minimum compared to Nx terms of

any orthogonal system (see, e.g. Cohen and Jones (1977)). In our case we take Nx as the

truncation needed at point x to explain more than 80 % of the variance.

In our analysis, for each spatial grid point in the Gulf of Guinea and each year of

observation, sea surface temperature is measured during the active period on a temporal
7



grid. A Karhunen-Loève decomposition is then performed at each location on the spatial

grid (see e.g. Yao et al. (2005b)). In order to achieve an optimal (in the least-squares sense)

representation of the observed process, the appropriate number of terms Nx depends on

the location on the spatial grid. To simplify the analysis we will consider in the following

that Nx is bounded above by a number M independent of x. As one can see from Figure

2 such an assumption with M = 2 (i.e. with a cumulative percentage of variance explained

that is larger than 70%) seems perfectly valid for our data on sea surface temperatures.

[ Figure 2 about here. ]

In our application, the number and shape of the eigenfunctions patterns over time are

not known and the lack of stationarity over space makes them dependent on the spatial lo-

cation. The estimation of these eigenfunctions at different spatial locations generates great

amounts of high-dimensional data. It seems therefore reasonable to assume some kind of

local stationarity by assuming that at least the resulting eigenfunctions are spatially pie-

cewise constant. Clustering algorithms become then crucial in reducing the dimensionality

of such data. The choice of the clustering approach is described in Section 3.3. For the

moment let us just assume that we know that there exist L1 points x0,1, . . . , x0,L1 (with

L1 ∈ N∗) on the spatial grid G partitioning G = ∪L1
l=1Gl into L1 subregions Gl that appear

as a “natural” system of spatial coordinates that reflects the underlying internal and lo-

cal stationary structures of the data. Given such a partition, for any x on G, there exist

l ∈ {1, . . . , L1} and a specific point x0,l in Gl such that we can approximate Xx(t) by

X̃x(t) = µXx(t) +
M∑

m=1

α̃m(x)em(x0,l, t), t ∈ T , (2)

with α̃m(x) =
∫
T X̃x(t)em(x0,l, t)dt, for m = 1, . . . , M .

The modeling for precipitation follows the same lines, leading to L2 fixed grid points

y0,1, . . . , y0,L2 (with L2 ∈ N∗) on the spatial grid G′ partitioning G′ = ∪L2
l=1G′

l into L2
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subregions G′
l . Then, given such a partition, for any y on G ′ there exist l ∈ {1, . . . , L2} and

a specific point y0,l in G′
l such that we can approximate Y y(t) by

Ỹ y(t) = µY y(t) +
K∑

k=1

β̃k(y)fk(y0,l, t), t ∈ T , (3)

with β̃k(y) =
∫
T Ỹ y(t)fk(y0,l, t)dt for k = 1, . . . , K. The truncation number K is also

assumed not to depend on y ∈ G′ and will be chosen equal to 2 for our test case (see Figure

3).

[ Figure 3 about here. ]

In the following, if nSST (resp. nP ) denotes the number of points on G (resp. G ′), we

define the nSST -dimensional (resp. the nP -dimensional) vectors

αm = (α̃m(x1), . . . , α̃m(xnSST ))t , m = 1, . . . , M

and

βk =
(

β̃k(y1), . . . , β̃k(ynP )
)t

, k = 1, . . . , K.

Note that in our application nSST = 516 and nP = 368.

3.2. Estimation procedure

We now describe our estimation procedure, following the main lines in Yao et al. (2005a).

The methodology described below and used for our analysis has been implemented in

Matlab and is freely available in the PACE (principal analysis by conditional expectation)

package, downloadable from the internet (see Yao et al. (2010)).

We only deal here with SST since the procedure is the same for precipitation. Let x be

any point on the spatial grid G. Assume x ∈ Gl for some l ∈ {1, . . . , L1}. In a first step,

we estimate the mean function µXx(·) based on the data from all individual curves. Mean
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and eigenfunctions are assumed to be smooth and we therefore use local linear smoothers

(Fan and Gijbels, (1996)) for function and surface estimation, fitting local lines in one

dimension and local planes in two dimensions by weighted least squares. The bandwidth b

necessary for local smoothing is chosen by minimizing the cross-validation score given by

CV (b) =
∑N

i=1

∑T
j=1{Xx

i (tj) − µ̂(−i)(tj; b)}2/N , where t1, . . . , tT is the time discretization

of T , N is the number of observed curves at x and µ̂(−i)(tj ; b) is the estimation of µXx(tj)

obtained without using the ith curve. To estimate the cross-covariance surface GX(s, t),

s, t ∈ T we have used two-dimensional scatterplot smoothing. The raw cross-covariances

GX,i(tj, tk) = (Xx
i (tj) − µ̂Xx(tj)) (Xx

i (tk) − µ̂Xx(tk)) are considered as input for the two-

dimensional smoothing step. More precisely, the local linear surface smoother for the cross-

covariance surface GX(s, t) is obtained as in Yao et al. (2005a)by minimizing :

N∑

i=1

∑

1≤j,k≤T

K2

(
tj − s

h1
,
tk − t

h2

)
{GX,i(tj, tk) − f(β, (s, t), (tj, tk))}2

with respect to β = (β0, β1,1, β1,2), leading to ĜX(s, t) = β̂0(s, t), where f(β, (s, t), (tj, tk)) =

β0+β1,1(s−tj)+β1,2(t−tk), K2 is a given two-dimensional kernel, and where the bandwidths

h1 and h2 are chosen again by cross-validation.

The estimates of eigenfunctions and eigenvalues correspond to the solutions êm(x0,l, ·)

and ρ̂m of the following integral equations :
∫

T
ĜX(s, t)êm(x0,l, s)ds = ρ̂mêm(x0,l, t),

where the êm(x0,l, ·) are subject to
∫
T êm(x0,l, t)2dt = 1 and

∫
T êk(x0,l, t)êm(x0,l, t)dt = 0 for

m &= k ≤ M . The eigenfunctions are estimated by discretizing the smoothed covariance, as

described e.g. in Rice and Silverman (1991) or Capra and Müller (1997).

Finally, to complete the estimation procedure for SST, we have to estimate α̃i
m(x), for
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i = 1, . . . , N and m = 1, . . . , M . We use the following projection estimates :
T∑

j=2

Xx
i (tj)êm(x0,l, tj)(tj − tj−1),

which are just numerical integration versions of α̃i
m(x) =

∫
T Xx

i (t)êm(x0,l, t)dt, for m =

1, . . . , M . The estimation for each individual curve is needed in Section 4 for the selection

procedure of the regression.

3.3. Functional clustering results

As mentioned previously, clustering algorithms are crucial in reducing the dimensiona-

lity of our data. The number and shape of the eigenfunctions patterns over time are not

known. An ideal clustering method would provide a statistically significant set of clusters

(and therefore of spatial regions) and curves derived from the data themselves without re-

lying on a pre-specified number of clusters or set of known functional forms. Further, such

a method should take into account the between time-point correlation inherent in time

series data. Some popular methods such as k-means clustering (see Hartigan and Wong

(1978)), self-organizing maps (SOM) (see Kohonen (1997)) or hierarchical clustering (see

Eisen et al. (1998)) do not satisfy this pre-requisite. One promising approach is to use

a general multivariate Gaussian model to account for the correlation structure ; however,

such a model ignores the time order of the eigenfunctions. The time factor is important

in interpreting the clustering results of time series data. A curve-based clustering method

called FCM was introduced in James and Sugar (2003) to cluster sparsely sampled time

course genomic data. Similar approaches were proposed in Luan and Li (2003) to analyze

time course gene expression data. In these methods, the mean gene expression profiles are

modeled as linear combinations of spline bases. However, with different choices of bases or

of the number of knots, one could get an array of quite different estimates of the underlying

curves. Effective methods or guidance on how to select the basis or the number of knots
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are still lacking, which hinders the effective use of these methods in real applications. Here,

we have used a data-driven clustering method, called smoothing spline clustering (SSC),

that overcomes the aforementioned obstacles using a mixed-effect smoothing spline model

and a rejection-controlled EM algorithm (see Ma et al. (2006)). A distinguishing feature

of SSC is that it accurately estimates individual eigenvalue profiles and the mean eigen-

function profile within clusters simultaneously, making it extremely powerful for clustering

time series data. Let us now present the way we fixed the number of clusters for our test

case.

Sea surface temperatures :

We first performed the SSC approach on the 516 estimated first eigenfunctions t → ê1(x, ·)

obtained by the Karuhnen-Loève decomposition at each point x of the spatial grid G.

To determine a convenient number K of clusters several data- driven strategies can be

defined. For this study we use an information theoretic point of view provided by Sugar

and James (2003), based on the transformed distortion curve (K, dK), where dK denotes

the minimum achievable distortion associated with fitting K centers to the data. Sugar

and James’ criterion applied to our data leads to K = 3. Given the lack of observations,

interpretation of the map with three clusters appeared difficult for physicists. We thus

prefer hereafter a choice of two clusters, which seems to be more robust. Projection on

the map for two clusters is drawn on the left panel (a) of Figure 5. A relevant factor for

discrimination validated by physicists is the distance to the coast.

The objective of Figure 4 is to see the overall trend of the first eigenfunctions over time,

uncovering spatial-specific variation patterns. More specifically, we collect for each cluster

the estimated curves t → ê1(x, ·), x ∈ G. It shows that the temperature differences from

one year to another are maximum around June-July for the first group, and July-August

for the second one.
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[ Figure 4 about here. ]

Let us now consider what happens for the second eigenfunctions t → e2(x, ·), x ∈ G.

Classifying the estimated curves t → ê2(x, ·) on each of the two clusters obtained by

applying the SSC procedure on the 18 curves t → ê1(x, ·) showed that the clustering

structure seems also adapted for discriminating the second eigenfunctions. It thus validates

Decomposition (2) with M = 2 announced in Subsection 3.1. It remains to choose the

representative points x0,1 and x0,2 for each cluster. We considered the centroid for each

cluster. These two points were not necessarily on the grid G, thus for each cluster we chose

the point on the grid which is the closest to the centroid.

Precipitation :

The procedure adopted for analyzing precipitation is similar. Sugar and James’ criterion

leads to three clusters reduced to K = 2 clusters for sake of robustness. Projection on the

map for two clusters is drawn on the right panel (b) of Figure 5. From physicists point of

view, a plausible relevant factor for discrimination is the topography.

[ Figure 5 about here. ]

Considering two spatial clusters, in Figure 6 we collect for each cluster the estimated

curves t → f̂1(y, t), y ∈ G′. It shows a significant dipersion late August early September,

when the phenomenon of rain vanishes.

[ Figure 6 about here. ]

Investigating what happens on the second eigenfunctions t → f2(y, ·), y ∈ G′, we can

conclude that no further clustering structure appears in the estimated curves which sup-

ports the fact that using the two clusters (denoted by G ′
l , l = 1, 2) obtained by SSC on
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the first eigenfunctions for discriminating the clusters makes sense. It thus validates again

Decomposition (3) with K = 2 announced in Subsection 3.1. The difference is that, contra-

rily to what happens for SST, we do not define t → f2(y0,l, t) as the second eigenfunction

obtained at point y0,l but as the mean curve t → f2(t) of all curves t → f2(y, t), y ∈ G′.

Thus it does not depend on space. It remains to choose the representative points y0,1 and

y0,2 for each cluster. We considered the centroid for each cluster. These two points are not

necessarily on the grid G′, thus for each cluster we chose the point on the grid that is the

closest to the corresponding centroid.

Hence for both precipitation and sea surface temperatures, we obtain a decomposition

where the basis functions are functions depending on time only and whose coefficients

are spatially indexed and time independent. The relative mean squared error (MSErel)

for the reconstruction of sea surface temperatures and precipitation is estimated by leave-

one-out cross-validation (see eq. (4) below for the definition of MSErel). The panels in

Figure 7 below display this relative mean squared error for SST reconstruction (left) and

precipitation (right) on the appropriate map.

Leave-one-out cross-validation relative mean squared error estimation for SST at each

point x ∈ G is defined by

MSErel,SST (x) =
1

22

T∑

j=1

1
18

∑18
k=1

(
X̃(−k),x(tj) − Xx

k (tj)
)2

1
18

∑18
k=1 (Xx

k (tj))
2 , (4)

where X̃(−k),x(tj) is the estimation of Xx(tj) obtained without using the kth curve Xx
k (·).

The procedure for the estimation of the relative mean squared error for precipitation is

similar.

[ Figure 7 about here. ]
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4. Multivariate regression model, a double penalized approach

This section concerns the regression approach we have adopted for modeling the rela-

tion between inputs and outputs (see Subsection 4.1). We also discuss in this Section the

selection procedure of the tuning parameters for our application (see Subsection 4.2).

4.1. Regression procedure

As mentioned in the introduction, we intend to use a novel method recently developed

by Peng et al. (2010) in integrated genomic studies which we describe below for the sake of

completeness. The method uses an $1-norm penalty on a least squares procedure to control

the overall sparsity of the coefficient matrix in a multivariate linear regression model. In

addition, it also imposes a group sparse penalty, which in essence is the same as the group

lasso penalty proposed by Bakin (1999), Antoniadis and Fan (2001) and Obozinski et al.

(2008). This penalty puts a constraint on the $2 norm of regression coefficients for each

predictor, which thus controls the total number of predictors entering the model, and

consequently facilitates the detection of important predictors.

More precisely, consider a multivariate regression problem with q response variables

Y1, . . . , Yq and p prediction variables X1, . . . , Xp :

Yj =
p∑

i=1

XiBij + εj , j = 1, . . . , q, (5)

where the error terms ε1, . . . , εq have a joint distribution with mean 0 and covariance Σ. In

the above, we assume without any loss of generality that all the response and prediction

variables are standardized to have zero mean and thus there is no intercept term in equation

(5). Our primary goal is to identify non-zero entries in the p×q regression coefficient matrix

B = (Bij) based on n i.i.d. samples from the above model which is exactly the problem

addressed by Peng et al. (2010). Under normality assumptions, Bij can be interpreted as
15



proportional to the conditional correlation Cor(Yj, Xi|X−(i)), where X−(i) := {X ′
i : 1 ≤ i′ &=

i ≤ p}. In the following, we use Yj = (Y 1
j , Y 2

j , . . . , Y n
j )T and Xi = (X1

i , X2
i . . . , Xn

i )T to

denote respectively the sample of the jth response variable and that of the ith prediction

variable. We also use Y = (Y1 : · · · : Yq) to denote the n × q response matrix, and use

X = (X1 : · · · : Xp) for the n×p prediction matrix. We shall focus on the cases where both

q and p are larger than the sample size n. For example, in the applied study of West African

Monsoon discussed later, we regress
(
α1, α2

)
on

(
β1, β2

)
. Hence, for this application, the

sample size is 8, while the number of spatial components are respectively p = 2×nSST and

q = 2× nP . In the application nSST = 516 and nP = 368. When q > n, whatever the value

of p is, the ordinary least square (OLS) solution is not unique, and regularization becomes

indispensable. The choice of suitable regularization depends heavily on the type of data

structure we envision. Recently, $1-norm based sparsity constraints such as lasso (Tibshirani

(1996)) have been widely used under such high-dimension-low-sample-size settings. In our

application, we will impose an $1-norm penalty on the coefficient matrix B to control the

overall sparsity of the multivariate regression model but in addition, we put constraints

on the total number of predictors entering the model which is essentially the remMap idea.

This is achieved by treating the coefficients corresponding to the same predictor (one row

of B in model (5) as a group, and then penalizing their $2 norm. A predictor will not be

selected into the model if the corresponding $2-norm is shrunken to 0. Thus this penalty

facilitates the identification of master predictors which affect (relatively) many response

variables. Specifically, for model (5), we wiil use the following criterion

$(λ,µ)(Y, B) =
1

2
‖Y − XB‖2

F + λ
p∑

j=1

‖Cj · Bj‖1 + µ
p∑

j=1

‖Cj · Bj‖2, (6)

where C is a p × q 0-1 matrix indicating the coefficients of B on which penalization is

imposed. In the above equation Cj and Bj are the jth rows of C and B respectively, while
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‖ ·‖ F denotes the Frobenius norm of matrices, ‖ · ‖1 and ‖ ·‖ 2 are respectively the $1 and

$2 norms of vectors and “·” stands for the Hadamard product (entry-wise multiplication).

The selection matrix C is pre-specified based on prior knowledge : if we know in advance

that predictor Xi affects response Yj , then the corresponding regression coefficient Bij will

not be penalized and we set Cij = 0. When there is no such prior information, C can be

simply set to a constant matrix Cij = 1. Finally, an estimate of the coefficient matrix B is

B̂λ,µ := argminB$(λ,µ)(Y, B).

In the above criterion function, the $1 penalty induces the overall sparsity of the co-

efficient matrix B. The $2 penalty on the row vectors Cj · Bj induces row sparsity of the

product matrix C·B. As a result, some rows are shrunken to be entirely zero. Consequently,

predictors which affect relatively more response variables are more likely to be selected into

the model. We will refer to the proposed estimator B̂λ,µ as the remMap (REgularized Mul-

tivariate regression for identifying MAster Predictors) estimator in connexion with the

remMap theory and R-package developed by Peng et al. (2010) for regularized multiva-

riate Regression for identifying master predictors in integrative genomics studies of breast

cancer.

4.2. Implementation and results

In this subsection, we describe the different steps for the implementation of the rem-

MAP procedure on our application. A first step is to fit both parameters λ and µ. These

parameters are adjusted by v-fold cross-validation. The prediction error obtained by 4-fold

cross-validation is drawn on Figure 8 below. We note that there does not exist a unique

minimum. For λ = 1 and µ = 4, the error seems to reach a value close to the minimum.

[ Figure 8 about here. ]
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On Figure 9 we note that the regression coefficients matrix B, estimated using λ = 1 and

µ = 4 for the penalties, is sparse. This is a consequence of using the remMAP methodology.

[ Figure 9 about here. ]

It seems quite interesting to display on a map the spatial points on the grid G corres-

ponding to the nonzero rows of the matrix B (left) and the spatial points on G ′ influenced

by the nonzero rows of B (right) (see Figure 10 below). As one may see, the two regions

seem complementary and cover quite well the region of interest for precipitation.

[ Figure 10 about here. ]

Using the results of the regression and given the retained regression coefficients we the

proceed to the reconstruction of Precipitation on the grid G ′. Define first

(
β1,reg, β2,reg

)T
=

(
α1, α2

)
B̂ .

Then for l = 1, 2, for y ∈ G′
l , let

Y y,reg(t) = µ̂Y y(t) + β1,reg f̂1(y0,l, t) + β1,reg f̂2(t) .

The relative mean squared error (RMSE) estimated by leave-one-out cross-validation

(see (7) below) is displayed on the map (see Figure 11). Notice however some points of

high RMSE which are close to the coast. We have also plot the annual and weekly boxplots

for the relative MSE (see Figure 12). The relative error is between 0.3 and 0.4 which is

not so bad if we consider we did not have many observations to conduct the study. As

one can see on the right panel of the figure this error is not constant over time, with bad

reconstructions for some weeks.
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MSEPrecip,reg(y) =
1

22

22∑

j=1

1
8

∑8
k=1

(
Y (−k),y,reg(tj) −

̂̃
Y y

k (tj)

)2

1
8

∑8
k=1

(
̂̃
Y y

k (tj)

)2 , (7)

with ̂̃
Y y

k (tj) = µ̂Y y(tj) +
̂̃
βk

1 (y)f̂1(y0,l, tj) +
̂̃
βk

2 (y)f̂2(tj).

[ Figure 11 about here. ]

[ Figure 12 about here. ]

Finally, on Figure 13 below we plotted for some fixed points in G ′ the curve recons-

tructed by regression (continuous line) for precipitation, the one obtained by the filtering

modeling of Section 3 (circles) and the observations themselves (dots). As one can see the

regression prediction curve somehow smooths the observations in quite a natural way and

the methodology seems promising for pursuing via this model a sensitivity analysis, but

this is beyond the scope of the present work.

[ Figure 13 about here. ]

5. Conclusion and perspectives

Motivated in investigating the West African Monsoon, we present a new approach for

modeling and fitting high-dimensional response regression models in the setting of complex

spatio-temporal dynamics. We were particularly interested in developing an appropriate

regression based methodology for studying the influence of sea surface temperatures in the

Gulf of Guinea on precipitation in Saharan and sub-Saharan. However, one central issue in

the analysis of such data consists in taking into account the spatio-temporal dependence
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of the observations. For most of the applications that we are aware of the spatio-temporal

dynamics are usually modeled as time function-valued (spatially stationary) processes al-

lowing the development of efficient prediction procedures based on appropriate principal

component like decompositions and regression. In practice, however, many observed spatial

functional time series cannot be modeled accurately as stationary. To handle spatial varia-

tion in a natural way we have segmented the space into regions of similar spatial behavior

using in the process an efficient clustering technique that clusters the times series into

groups that may be considered as stationary so that in each group more or less standard

regression prediction procedures can be applied. Furthermore to avoid regression models

that are far too complex for prediction, and inspired by similar approaches used in modern

genomic data analysis we have used an appropriate regularization method that has proven

to be quite efficient for the data we have analyzed. However, a major lack in this study

is that it was implemented with only 8 years of observations. To overcome this issue, the

authors have in mind to perturb initial maps of SST and then to run the regional atmos-

pheric model MAR on these new inputs. Such a simulation study involves the development

of MAR on a computer-grid environment to be achieved. Recall that fitting an appropriate

metamodel is a necessary preliminary step to sensitivity analysis in our context where the

code requires considerable computational resources. This simulation study will be perfor-

med, as far as the sensitivity analysis, in a future work. The main goal achieved in the

present work is to present an original and innovative methodology to reduce the dimension

as a first step towards sensitivity analysis.

Acknowledgments

The authors are grateful to two referees and to an Associate Editor for their helpful

comments and suggestions. They also thank Peter Guttorp, Editor-in-Chief for the journal

20



Environmetrics, as far as Wenceslao Gonzalez-Manteiga for the initiative of this special

issue.

This work has been partially supported by French National Research Agency (ANR)

through COSINUS program (project COSTA-BRAVA n◦ ANR-09-COSI-015) and the IAP

Research Network P6/03 of the Belgian State (Belgian Science Policy).

References

[1] Aguilera, A., Ocana, F., and Valderrama, M. (1999). Forecasting time series by func-

tional PCA. Discussion of several weighted approaches. Computational Statistics, 14(3),

443.

[2] Aguilera, A., Escabias, M., and Valderrama, M. (2008). Forecasting binary longitudinal

data by a functional PC-ARIMA model. Computational Statistics & Data Analysis,

52(6), 3187–3197.

[3] Antoniadis, A. and Fan, J. (2001). Regularization of wavelets approximations (with

discussion). J. Amer. Statist. Assoc., 96(455), 939–963.

[4] Antoniadis, A. and Sapatinas, T. (2003). Wavelet methods for continuous-time pre-

diction using Hilbert-valued autoregressive processes. Journal of Multivariate Analysis,

87(1), 133–158.

[5] Bakin, S. (1999). Adaptive regression and model selection in data mining probems.

Ph.D. thesis, Australian National University, Cambera, Australia.

[6] Besse, P. C. (2000). Autoregressive forecasting of some functional climatic variations.

Scandinavian Journal of Statistics , 27(4), 673–687.

21



[7] Bosq, D. (2000). Linear processes in function spaces, volume 149 of Lecture Notes in

Statistics. Springer-Verlag, New York. Theory and applications.

[8] Capra, W. B. and Müller, H. G. (1997). An accelerated-time model for response curves.

Journal of the American Statistical Association, (92), 72–83.

[9] Caron, E., Chouhan, P. K., and Dail, H. (2006). Godiet : A deployment tool for dis-

tributed middleware on grid’5000. In EXPGRID workshop. Experimental Grid Testbeds

for the Assessment of Large-Scale Distributed Apllications and Tools., Paris. France.

HPDC-15, IEEE.

[10] Cohen, A. M. and Jones, D. E. (1977). A technique for the solution of eigenvalue

problems. J. Inst. Math. Appl., 20(1), 1–7.

[11] Damon, J. and Guillas, S. (2002). The inclusion of exogenous variables in functional

autoregressive ozone forecasting. Environmetrics , 13(7), 759–774.

[12] Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998). Cluster analysis

and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA, 95, 14863–

14868.

[13] Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Application. Chap-

man and Hall, London.

[14] Hartigan, J. A. and Wong, M. A. (1978). A k-means clustering algorithm. App.

Statist., 28, 100–108.

[15] Hörmann, S. and Kokoszka, P. (2010). Weakly dependent functional data. The Annals

of Statistics, 38(3), 1845–1884.

22



[16] James, G. and Sugar, C. (2003). Clustering for sparsely sampled functional data.

Journal of the American Statistical Association, 98, 397–408.

[17] Kohonen, T. (1997). Self-Organizing Maps. Springer, New York.

[18] Luan, Y. and Li, H. (2003). Clustering of time-course gene expression data using a

mixed-effects model with b-spline. Bioinformatics, 19, 474–482.

[19] Ma, P., Castillo-Davis, C. I., Zhong, W., and Liu, J. S. (2006). A data-driven clustering

method for time course gene expression data. Nucleic Acids Research, 34(4), 1261–1269.

[20] Messager, C. (2005). Couplage des composantes continentale et atmosphérique du cycle

de l’eau aux échelles régionale et climatique. Application à l’Afrique de l’Ouest. Ph.D.

thesis, University Joseph Fourier, Grenoble, France.

[21] Messager, C., Gallée, H., and Brasseur, O. (2004). Precipitation sensitivity to regional

sst in a regional climate simulation during the west african monsoon for two dry years.

Climate Dynamics, 22, 249–266.

[22] Obozinski, G., Wainwright, M. J., and Jordan, M. I. (2008). Union support recovery

in high-dimensional multivariate regression. Technical Report (to appear in Annals of

Statistics) 761, Dept. of Statistics. University of California at Berkeley.

[23] Peng, J., Zhu, J., Bergamaschi, A., Han, W., Noh, D.-Y., Pollack, J. R., and Wang,

P. (2010). Regularized multivariate regression for identifying master predictors with

application to integrative genomics study of breast cancer. Annals of Applied Statistics,

4(1), 53–77.

[24] Ramsay, J. O. and Silverman, B. W. (2002). Applied Functional Data Analysis :

Methods and Case Studies. Springer-Verlag.
23



[25] Ramsay, J. O. and Silverman, B. W. (2005). Functional data analysis. Springer-Verlag,

second edition edition.

[26] Reynolds, R. W. and Smith, M. T. (1994). Improved global sea surface temperature

analysis using optimal interpolation. Journal of Climate, 7, 929–948.

[27] Rice, J. A. and Silverman, B. W. (1991). Estimating the mean and covariance structure

nonparametrically when the data are curves. J. Roy. Statist. Soc. Ser. B , 53(1), 233–243.

[28] Saltelli, A., Chan, K. P. S., and Scott, E. M. (2000). Sensitivity Analysis. John Wiley

& Sons, New York.

[29] Sugar, C. A. and James, G. M. (2003). Finding the number of clusters in a dataset :

an information-theoretic approach. Journal of the American Statistical Association,

98(463), 750–763.

[30] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist.

Soc. Ser. B , 58, 267–288.

[31] Yao, F., Müller, H.-G., and Wang, J.-L. (2005a). Functional data analysis for sparse

longitudinal data. J. Amer. Statist. Assoc., 100(470), 577–590.

[32] Yao, F., Müller, H.-G., and Wang, J.-L. (2005b). Functional linear regression analysis

for longitudinal data. Ann. Statist., 33(6), 2873–2903.

[33] Yao, F., Liu, B., Müller, H.-G., and Wang, J.-L. (2010). PACE 2.7 . University of

California at Davis, http ://anson.ucdavis.edu/-mueller/data/programs.html.

24



Figures

Table des figures

1 Left : Zone of interest for the study of West-African monsoon ; Right : Time-

dependent curves for SST (left) resp. Precip (right) for each of the 18 (resp.

8) years of observations for some fixed spatial point x ∈ G (resp. x′ ∈ G′). 27

2 Percent cumulative variance for the SST on the map explained by recons-

tructing the SST using (a) one term (b) two terms (c) three terms and (d)

four terms in the corresponding truncated Karhunen-Loève expansion . . . 28

3 Percent cumulative variance for precipitation on the map explained by re-

constructing the precipitation process using (a) one term (b) two terms (c)

three terms and (d) four terms in the corresponding truncated Karhunen-

Loève expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Estimated curves for the first eigenfunction by cluster . . . . . . . . . . . . 30

5 Projection of (a) SST, (b) precipitation, on the map for two clusters . . . . 31

6 Precipitation data : estimated curves by cluster for the first eigenfunction. 32

7 (Relative Mean Squared Error for the reconstruction of SST (left) and of

Precipitation (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8 Cross validation for the choice of λ and µ (with two different germs) . . . . 33

9 Regression coefficients matrix B estimated with λ = 1 and µ = 4 . . . . . . 34

10 Spatial location for the average responses indicated by the retained coeffi-

cients for both predictors (points 1 and 2 on the map). . . . . . . . . . . . 35

11 Relative MSE for the reconstructed precipitation by regression on the map. 36

12 Boxplots of the relative MSE per year ( left) and per week (right). . . . . . 37

25



13 For 4 spatial points selected in the domain G ′ a display of the reconstructed

precipitation curve (red), the reconstruction curve with truncated Karhunen-

Loève decomposition (circles) and the observed precipitation (dots). . . . 38

26



0 5 15 25 35

20
25

30
35

Time

SS
T

5 10 15 20

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

0.0
30

0.0
35

Time

Pre
cip

Figure 1: Left : Zone of interest for the study of West-African monsoon ; Right : Time-dependent curves

for SST (left) resp. Precip (right) for each of the 18 (resp. 8) years of observations for some fixed spatial

point x ∈ G (resp. x′ ∈ G′).
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Figure 2: Percent cumulative variance for the SST on the map explained by reconstructing the SST using

(a) one term (b) two terms (c) three terms and (d) four terms in the corresponding truncated Karhunen-

Loève expansion
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Figure 3: Percent cumulative variance for precipitation on the map explained by reconstructing the preci-

pitation process using (a) one term (b) two terms (c) three terms and (d) four terms in the corresponding

truncated Karhunen-Loève expansion.
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Figure 4: Estimated curves for the first eigenfunction by cluster
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Figure 7: (Relative Mean Squared Error for the reconstruction of SST (left) and of Precipitation (right)
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Figure 8: Cross validation for the choice of λ and µ (with two different germs)

33



0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0

alpha (SST)

be
ta

 (P
re

ci
pi

ta
tio

ns
)

Figure 9: Regression coefficients matrix B estimated with λ = 1 and µ = 4
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Figure 10: Spatial location for the average responses indicated by the retained coefficients for both pre-

dictors (points 1 and 2 on the map).
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Figure 11: Relative MSE for the reconstructed precipitation by regression on the map.
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Figure 12: Boxplots of the relative MSE per year ( left) and per week (right).
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Figure 13: For 4 spatial points selected in the domain G′ a display of the reconstructed precipitation curve

(red), the reconstruction curve with truncated Karhunen-Loève decomposition (circles) and the observed

precipitation (dots).
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