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Abstract

Concept of combined extraction of topological and directional relations information developed
by J. Malki et al. [1] by employing the Allen’s temporal relations in 1D spatial domain was im-
proved by Matsakis and Nikitenko [2]. This latter algorithm has high computational complexity
due to its limitations of object approximation and segment fuzzification.

In this paper, fuzzy Allen relations are used to define the fuzzy topological and directional
relations information between different objects. Some extended results of N. Salamat and E.
Zahzah [3] are discussed. Polygonal object approximation allows us to use fuzzy operators and
this approach reduces computational complexity of the method for computing the combined
topological and directional relations. To validate the method, some experiments are tested giving
satisfactory and promising results. Affine transformation are depicted, these properties will be
helpful for using the method in other areas of image analysis such as object retrieval.

Keywords: Fuzzy Allen relations, Topological and directional relations information,
Computational complexity, Fuzzy operators.

1. Introduction

One of the fundamental tenet of modern sciences is that a phenomenon cannot be claimed
to be well understood, until it is characterized in quantitative manners. Advent of digital com-
puters have determined an expansion in the use of quantitative methods where as vagueness and
imprecise knowledge information give rise to fuzzy methods. Spatial relations belong to these
categories approach. Spatial relations are used for content based image retrieval (CBIR), Pattern
recognition, database management, artificial intelligence (Al), cognitive science, perceptual psy-
chology, robotics, linguistics expressions, medical imaging, image and video analysis[4, 5, 6, 7,
8]. Reasoning on spatial objects needs support from representation of topological, directional,
ordinal, distance relations, object size and shape.

Topological relations are derived from geometric description, while an uncertain relation is a
relation which exists with a certain probability. The well-known models for finding topological
relations between spatial regions are 9-intersections [9] and Region Connected Calculus (RCC)
model [10, 11]. These theories are extended to deal with fuzzy objects[12, 13, 14], in both the-
ories, objects are modeled as fuzzy sets in R?. In 9-intersections method 44 useful topological
relations were developed between simple fuzzy regions. This method also extended to 16 inter-
sections and a set of 152 useful configurations between simple fuzzy regions in R? is realized[15]
Preprint submitted to Pattern Recognition December 22, 2010



while in RCC number of fuzzy relations are 46. All of these relations represent the fuzziness at
object’s level. Fuzziness may be present in relation’s semantic while different other approaches
are adopted for representing the positional information as distance and orientation.

The methods which represents such information and fuzziness in relation’s semantic are dis-
cussed in [16, 17, 18, 19, 20]. Most of these methods work only for a particularly disjoint
topological relation. The method stop working as soon as objects meet or in some cases overlap.
In the methods based on force histograms [20], 2D areal objects are represented by union of 1D
segments.

The 9-intersections model for topological relations and the RCC theory have a rich support
for the topological relations [21, 10] and provide information about a topological relation without
providing information that where a topological relation exists in the space? Consider for instance
that two objects overlap, both of theories provide information about the topological relation
overlap, but they don’t give any information about where in space the two objects overlap. As
object A overlaps object B from north or north_west or west, or other topological relation, object
A disjoint from object B and lies in south of object B. To know the relative position of object
A according to object B, we have to apply another method type, because qualitative methods
provide information regarding the extended objects and they don’t care about the topological
relation.

Allen[22] introduced 13 interval relations in temporal domain. These relations are commonly
used to represent the knowledge in artificial intelligence. Different approaches for fuzzification
of Allen temporal relations are proposed such as in [23]. These temporal Allen relations are
applied into the spatial domain due to homeomorphism between the temporal domain and 1D
spatial domain. Allen relations represent the topological relations in IR. These relations are used
to answer the question that where in space a certain topological relation holds?

Allen relations are applied in a 2D space by decomposition of a two-dimensional object into
1D parallel segments. This decomposition process is repeated in all directions and method is
applied to get combined topological and directional relations data. Combined topological and
directional relations was first introduced by J. Malki et al.[1] by using the 1D Allen relations.
Allen relations divide the whole space into thirteen fuzzy partition and each partition corresponds
to a fuzzy Allen relation. This method was further improved by Matsakis and Nikitenko[2].

This latter method is costly regarding time constraint. The aim of this paper is to reduce
time consuming for the computation of combined fuzzy Allen relations information developed
in[2]. Time is reduced in two ways, reducing and simplifying the number of computations and
suggest an alternative way for the treatment of longitudinal section. As time constraint depends
upon number of segments to be treated, to reduce the number of segments a polygonal object
approximation is used. Algorithm for fuzzification of longitudinal section is replaced by fuzzy
connectors. This approach decreases its time complexity from O(nM VM) to O(nN log(N), where
n represents number of directions, N number of vertices of polygons and M number of pixels to
be processed

This paper is arranged as follows, next section describes some preliminary definitions, section
2 describes the terminology used, Allen relations in 1D space, fuzzification of Allen relations
and finally the definition of a histogram of fuzzy Allen relations, section 3 describes the fuzzy
logic connectors, treatment of a segment and longitudinal section and histogram computation
with new approach, in section 4 experiments are described, time complexity for both methods
are compared in section 5, in section 6 effects of different affine transformations are discussed,
section 7 concludes the paper.



Preliminary definitions

In this section we recall some basic definitions which are frequently used throughout the
reminder of the paper.

Fuzzy set A fuzzy set A in a set X is a set of pairs (X, ps(x))such that
A = {(x, pa(@)lx € X)}

Fuzzy membership function A membership function y in a set X is a function ¢ : X — [0, 1].
Different fuzzy membership functions are proposed according to the requirements of the
applications. For instance, Trapezoidal membership function is defined as

0—Xx

1(x; @, B, 8) = max(min(-—2,1, %) 0) )
B-a -y

it is written as f(q,y,6)(x) where x, @, 8,v,0 e RAa < <y < 6.

Force histogram The force histogram attaches a weight to the argument object A that this lies
after B in direction 6, it is defined as

+00
FU0) = [ FOAW. B @
The definition of Force histogram FA5(), directly depends upon the definition of real

valued functions ¢, f and F used for the treatment of points, segments and longitudinal
sections respectively[20]. These functions are defined as

b)) = yi ify>0
"7 10 otherwise
Xl+)’7J+ZJ 2
f(XI,Y?J,ZJ) = f f o(u — w)dw)du 3
X+, 0
F0,A00), B = > FxainYyjr20))
i=l.n,j=1.m

Where n, m represents the number of segments of object A and object B respectively and
variables (X, y, z) are explained in figure 1.

2. Histograms of fuzzy Allen relations

2.1. Oriented lines, segments and longitudinal sections

Let A and B be two objects. (v,6) € R, where v is any real number and 0 € [—m, ]. Ag(v) is
an oriented line at orientation angle 6. A N Ay(v) is the intersection of object A and oriented line
Ag(v). It is denoted by Ay(v), called segment of object A. If there exist more than one segment
then it is called longitudinal section as in case of figure 1 where A N Ay(v) has two segments,
length of its projection points on x-axis is x. Similarly for object B where B N Ay(v) = By(v)
is segment and z is length of its projection points. y is the difference between the minimum of
projection points of A N Ag(v) and maximum of projection points of B N Ag(v).
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Figure 1: Oriented line, segment and longitudinal section[2]

2.2. Allen relations in space

Allen[22] introduced 13 mutually exclusive and exhaustive interval relations. These rela-
tions are arranged as A = {<,m,o0,s, f,d,eq,d,, f;, si, 0;,m;, >}, where {<,m,o0,s, f,d,} resp
d;, f;, si, 0i,m;, >}) are the relations before, meet, overlap, start, finish, during (resp the in-
verse relations of the cited ones). The relation eq is the equality spatial relation. All the Allen
relations in space are conceptually illustrated in figure 2. These relations have a rich support for
the topological and directional relations.

di ( contains )

Si (started by)

fi ( finished by,

> (after)

S (starts)

d (duriing)

Figure 2: Black segments represent the reference objects and grey segments represent the argu-
ment objects

2.3. Fuzzification of Allen relations

Different approaches are used for fuzzification of Allen temporal relations, some of them use
the fuzzification based on the human defined variables and fuzzification is described only for use
in temporal domain, for the qualitative aspects of temporal knowledge and qualitative temporal
reasoning processes. There is a homeomorphism between the Allen’s temporal relations and 1D
topological relations in spatial domain. Due to this homeomorphism, Allen relations are also
used for extracting the combined topological and directional relations information[1, 2]. Fuzzy
Allen relations are used to represent the fuzzy topological relations where vagueness or fuzzi-
ness is represented at the relation’s level. Fuzzification of Allen relations doesn’t depend upon
particular choice of fuzzy membership function. Trapezoidal membership function (equation(1))
is used due to flexibility in shape. Let r(/,J) be an Allen relation between segments / and J
where I € A(argument object) J € B (reference object), r’ is the distance between r(/, J) and it’s
conceptional neighborhood. We consider a fuzzy membership function u : ¥ — [0 1]. The



fuzzy Allen relations defined by Matsakis and Nikitenko[2] are

S<U,J) = f=co, o0, ~b-3a/2, ~b-a)(¥)

S UL T) = 1, a2, w0, 00)(¥)
S, ) = p—p-3a/2, -b-a, -b-a, -b-a/2)(Y)

Jnill, J) = p(=a/2.0.0.a12)(Y)

Joll, J) = p-p—a,~b-aj2.~b-a/2,~5)(¥)

Joill, J) = p—a-aj2,~aj2.0)(y)

Srd, J) = min(U-p+a)/2.-a.~a.+00)V)s H(-3a/2.~a.-a,-aj2)(V)s K(=o0,~c0.2/2.2) (X))

S, J) = min(U_p—q/2,—b,—b,~b+aj2(Y)s H(=co,—c0,~b,~(b+ay/2) (V) H(z,22,+00,+00) (X))
Js(, J) = min(U-p—a/2,-b,-b,~b+a/2(¥)s h(=c0,—00,b,~(b+a)/2) (V) H(=c0,~00,2/2,5) (X))
Jsill, J) = min(U—p+ay/2.-a,-a,+00) Vs K(=3a/2.~a,-a,-a/2)(V)s K222, +00,+00) (X))
Ja(l, J) = min(up—pra2,-3a/2,-a)Y)s M(=00,~00,2/2,5)(X))

Jaill, J) = min(Up —pras2,-3a/2,-a)(¥)» K(z,22,+00,+00) (X))

“4)

where a = min(x,z), b = max(x,z), x is the length of segment(/) of argument object A, z is
the length of segment(J) of reference objectB and (X,y,z) are computed as given in section2.1.
Most of relations are defined by a single membership function and some of them by minimum
of multiple membership functions like d(during), d;(during_by), f (finish), f; (finished_by).
Two relations are directly neighbors if the fuzzy Allen relations are shared between them. If
0 < r,J) < 1then 0 < rp(l,J) < 1 such that ri(I,J) + rn(I,J) = 1 and ri(1,J), rn(1,J)
are neighbors expressed in the neighborhood graph (figure2). This shows that sum of all the
Allen relations is always one, from this equal(f-(I,J) relation is defined.Histogram of fuzzy
Allen relations represent the total area of subregions of A and B that are facing each other in a
given direction 6 [2]. Formally, this definition is

F1P(6) = f Fy(8,Ag(v), Boy(v))dv %)
Fo0 Av), Biv) = 2 37 3 D kb - ), ) (©)

k=1 i=1 j=1

Where F’ fB () represents the histogram of a fuzzy Allen relation in direction § andF (6, Ag(v), By(v))
is the representation of histogram for a given v where w = Y, ™ Zyil[xfz';(ak — a1,
x=Y" ¥ and z = Z;fk:l z’]f.

In this case my and ny represent the total number of segments of argument object A and
reference object B and c¢ represents number algorithm loop for fuzzification of a longitudinal

section (algorithm is discussed in section 6).

2.4. Histogram of fuzzy Allen relations

Fuzzy Allen relation for each segment is a fuzzy set and fuzzy aggregation operators are
used to combine different values of fuzzy grades. In polygonal object approximation, fuzzy
Allen relations are calculated for a limited number of segments and within this region spatial
relations do not change so simply generalize the given relations. This technique minimizes the
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number of segments to be treated, decreasing the temporal complexity of algorithm. This changes
mathematical equation (equation (6)) histogram of fuzzy Allen relations. Formally,

F(6,Aq(v), By(v)) = r(Ii, Jx) )

In discrete space, the integral can be written as a finite sum, thus above equation (5) for
discrete space can be rewritten as

FP0) = (X +2) ) r(li, J) 8)
k=1

Where Z is the area of reference object and X is area of argument object in direction 6, n is
total number of segments treated and ([, J) is an Allen relation for segment pair (I, J;) and
F.(0,Ag(v), By(v)) represents a histogram of a fuzzy Allen relation.

2.4.1. Treatment of longitudinal section

During the decomposition process of an object into segments, there can be multiple segments
for a line Ay(v) depending on object shape and boundary which is called longitudinal section.
Different segments of a longitudinal section are at a certain distance and these distances might
affect final results. In this paper, we adopt the same method as in case of force histograms. Here,
we replace the sum operator in equation (3) by a fuzzy operator and use the logic connectors.
This means

Fr(6, Ag(v), By(v)) = O(fr (61,31, 2): (22,55, D) oo (X0 1. 2)

Where © is a fuzzy operator and r € A, A is denoted in section 2.2.

Example

We introduce an example to explain different steps of the method of combining topological
and directional relations information and better explains difference between method developed
by Matsakis and Nikitenko[2] and the method we proposed in this paper. Let us consider two
simple objects for the computation of histogram of fuzzy Allen relations. Let these simple polyg-
onal objects be A andB where A = {(5, 5), (15, 5), (20, 10), (20, 15), (10, 15)} and
B ={(5,15),(15,12),(20,20), (15, 25), (10, 25), (5, 20)} are the vertices of polygons. Computing

Figure 3: Showing the computation of relations by an example where each line passes through
the vertex of a polygon and inclination angle is fixed at 30 degree

the histograms of Allen relation for objects A and B by our method involves the following steps.

1. Compute the boundary of both objects, for object A, line segments joining the vertices of
polygon A, in a similar way for objectB.
6



2.

7.

Fix the angle, let it be 30 degree and draw lines passing through the vertices of polygons,
in our case, total number of vertices are 11 there will be 11 lines, each line passes through
a vertex of a polygon.

Compute the intersection of line with boundary of an object, each line has one or two
intersecting points with one object due to simple concave objects. In case of convex or
objects with holes there may be more then two intersecting points. Consider only those
lines which intersect both objects, for all the other lines relations are zero. As in figure
only Azp(v4), Azp(v5), Azp(v6), Azp(v7) lines intersect both objects, for other lines fuzzy
Allen relations are zero. These intersecting points are

Azp(v4) N A = {(6,6), (20, 14)}, Aso(v5) N A = {(6,7), (20, 15)},

Azp(v6) N A = {(9,13), (12, 15)}, Azo(v7) N A = {(10, 15)},

Azp(v4) N B = {(15,12)}, A3p(vS) N B = {(15, 12), (16, 13)},

Azp(v6) N B = {(9,13),(20,20)}, A30(v7) N B = {(8, 14), (19, 20)}

Take the projection (P) of these points on x-axis and calculate the values of (x, y, z). Here,
for line Azo(v4) these values are P(Azg(v4) N A) = {6,20} and P(A3o(v4) N B) = {15}, from
this we get (x, y, z2)=(14,-9, 0).

. Compute the fuzzy Allen relation for each segment by using equation (4). This system of

equations will provide us the following results for the aforementioned (X, y, z) ( segments
obtained by taking intersection of objects with line Azp(v4)).

folla, Ja) = 0, f<(s, Js) = O, fiu(ls, J4) = 0, fini(ls, Js) = 0,

SJola, J3) = 0foi(I4, J4) = 0, fr(1s, J4) = Of (14, J4) = 0,

Js(a, Ja) = Ofi(ls, Ja) = 0, fu(ls, Ja) = 0, fai(ls, Js) = 1,

and f-(I4, J4) = 0,

Repeat this process for lines A3zy(v5), Azp(v6)andAzo(v7) ( for other lines relations are al-
ready zero), sum all the relations and multiply the resultant relation by the sum of surface
areas of two objects between line Azy(v4) and line Azo(v7). This will provide the number
of pixels of both objects under a specific fuzzy Allen relation and for normalization, divide
each fuzzy Allen by the sum of all the Allen relations for 6 = 30 degree, this will give us
the percentage area of two objects under a fuzzy Allen relation.

Increase the angle by one degree and repeat the above steps(2-6).

We calculate the values (x, y, z) for Matsakis and Nikitenko [2]. In this method objects are
considered as regular closed sets. The difference between methods is the way to compute the
triplet (x, y, z) and object approximation.

1.

2.

Fix the angle 6 and draw the pencil of oriented lines Ay(v), in this case number of lines will
be much greater than 11 due to pencil of lines.

Compute the intersection of a oriented line with both objects A and B. Let us consider the
same line Asp(v4). Then

Aso(vd) N A ={(6,6),(7,7),(8,7),(9,8),(10,8),(10,9),(11,9),

(12,10),(13,10), (14, 11), (15, 11), (15, 12), (16, 12), (16, 13),

(17,13),(18,13), (18, 14), (19, 14), (20, 14)}.

Similarly for object B, Aso(v4) N B = {(15, 12)}. Take projections on x-axis and compute
the values of (x,y, z), here the values will be the same as in above case and produce the
same results. i.e., x = 14,y = -9,z = 0, x and z are the diameter of point sets on real
line and y is the difference between the minimum of argument point set and maximum of
reference point set. Remaining process of computation is identical to our method.
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3. Compute Allen relations for every line that intersect the objects. Pencil of lines is created
then same calculations are made for every line.

This example elaborates the difference between two methods, and how the new proposed
method reduces the time for computation, by simplifying and limiting the number of intersec-
tions in one line and an object. Secondly, it decreases the number of lines to be treated for one
direction.

3. Fuzzy logic connectors

In decision theory, there arise some situations where solution depends upon combination of
different information provided by different sources. In such a situation, fuzzy connectors are
used. In this section, different fuzzy aggregation operators (fuzzy logic connectors) are studied.
Aggregation refers of combining values into the one aggregated value so that the final solution
seems to be well addressed in a given fashion [24, 25]. It is a mapping 7 : [0,1]" — [0, 1],
which combines different fuzzy grades. In literature of fuzzy set theory there exist a variety of
operators such as fuzzy T-norms, T-conorms and so on,some commonly used operators are:

e Fuzzy OR: uor(x) = max(ua(x), up(x));

Fuzzy AND: panp(x) = min(ua(x), up(x));

Fuzzy Algebraic Product: pprop(x) = Hl.2: 1 (iy (X))

Fuzzy Algebraic Sum: ugypy(x) =1 - H? (1= wi(x));

e Fuzzy y operator: 1, (x) = [usym(x)]” * [szRgD(x)]l‘“y where y € [0, 1]

The OR operator is actually the union or max operator, while the AND is intersection or min
operator. The contribution for resultant of OR (AND) fuzzy operator is a single input value,
which is maximum (minimum). For other operators, both values contribute. The fuzzy algebraic
sum (product) operator makes the set result larger than or equal to maximum (resp less than or
equal to minimum ) the contributing values while Fuzzy y operator changes the result value from
minimum to maximum values depending on the choice of .

4. Affine properties

Affine properties are important in the pattern recognition especially object matching in a
scene analysis. These properties of histograms of fuzzy Allen relations are depicted below which
are independent from fuzzy membership functions.

e Object commutativity: Pair (A, B) be assessable r is any fuzzy Allen relations and for all
relations, except the relation during and during_by. F AB@) = FB4® + 7). And for
relation during and during_by we have F 3’3 ®)=F Z’A (®)

e Orthogonal symmetry: Let orthogonal symmetry denoted by sym about the oriented line
with slop a then histogram of fuzzy Allen relations:
nym(A)'Sym(B)(@) — F?’B(ZQ/ _ @)

e Central dilation: Let central dilation(scale) denoted by dil and A is dilation ratio then
il A).dil(B) (©) = 2FAE (@)
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e Stretch: Let stretch (stre) is orthogonal to x axis and k is stretch ratio, then histogram of
fuzzy Allen relations satisfies. F"“4-7“B(@) = kA8 (@)

e Translation: Let translation denoted by trans and (trans(A), trans(B)) is assessable then
following relation holds for histogram of fuzzy Allen relations. ~Fr“*W B @) =
F1%(©)

e Rotation: Let rotation ( rot) is a p-angle rotation and (rot(A), rot(B)) is assessable hence
Frot(A),mt(B)(®) — FA’B(® _p)

r r

5. Comparison with Matsakis and Nikitenko method and interpretation

In this section first we give the interpretation of results representation and then compare our
approach with Matsakis and Nikitenko method [2]. For the experiment purpose 360 directions
are considered. Instead of drawing pencil of lines in a direction, only those lines are considered
which passes through vertices of polygons. Fuzzy Allen relations are computed for each segment,
if there exit longitudinal section, then fuzzy aggregation operator is applied to obtain the resultant
fuzzy Allen relation of whole object.

Each relation is associated with the grey scale value like be fore with black and white repre-
sents after, each relation has a different boundary color for better visualization of relations while
opposite relations have the same boundary color. Opposite relations ( m(meet) and mi(meet_by)
relations have the yellow boundary color) have the same boundary color. Interpretation of the
grey level association to a relation and its boundary color is given in figure 4(a). Object A has the
light grey color and object B is represented by dark grey. The thirteen histograms representing
directional and topological relations are represented by layers and each vertical layer represents
the total area of objects in that direction.

< (before) 42

m (meets)
o (overlaps) i J \H

/i (finished by) I I

Area
=

(during)
si (started by)
[ (finishesy

oi (overlapped by) 4\
T (n'{et by) 0 T / “\_ Angle
> (after) " o 360

(a) Histograms repre- (b) Object pair (c) Histograms

sentation

Figure 4: 4(a), Histogram representation for fuzzy Allen relations, 4(b), object pair representa-
tion and 4(c) represents histogram of fuzzy Allen relations for object pair in 4(b).

These histograms can be normalized as A;(6) = Z‘/:f(/f-)(@) where A; V j = 1,..,13 is an

=14
Allen relation. This technique of normalization provide us the percentage area of both objects
under a specific fuzzy Allen relation. In this example (figures in table 1) first row represents the
object pair and its histograms which are not normalized, computed by our method and method
developed by Matsakis and Nikitenko method (for Matsakis and Nikitenko method we copied
the figure directly from [2]). The second row represents normalized histogram of fuzzy Allen
relations with the respective method. Both the histograms seems similar, a small difference in the
9




Obj. pairs

Our method

mi

M & N method

Table 1: Comparison of normalized and un-normalized histograms of fuzzy Allen relations with
the Matsakis and Nikitenko and our method(axis are same as in figure 4(b) and 4(c)).

Obj. pairs

shape of a histogram represents the small change in the total surface area of two objects under
the specific fuzzy Allen relations, which is less important.

Our method

M & N method

|
A
4
// mi N
/
{ >\
/J '\ .."'
rf' \'“ / \
4 " mi
| \
ff/ mi \\ / \
Table 2: Comparison of histograms for rectangular objects (axis are same as in figure4(b) and
4(c)).
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In this set of examples (figures in table 2), fuzzy Allen histograms are compared with the

computation method of Matsakis and Nikitenko [2]. Where the first column represents object
pairs at different distances, second column represents computation of histogram of fuzzy Allen
relation by our method and in third column histograms are represented computed by Matsakis
and Nikitenko method. These histograms of fuzzy Allen relations are distances dependant, As
the objects become closer, the new histogram of fuzzy Allen relations emerge.
In both methods, similar histograms exist, there is a small difference in histogram shapes. His-
togram shape represents the total area under the specific relation, as we consider object by the
polygonal object approximation, this result’s the small changes in object area. That is less im-
portant, more important objective is existence of a spatial relation.

Obj. pairs Our method M & N method

4

Table 3: Comparison of histograms of fuzzy Allen relations with the Matsakis and Nikitenko
method and our method for the polygonal objects (axis are same as in figure 4(b) and 4(c)).

In this example (figures are shown in table 3), polygonal objects are considered. First ob-
jects are at certain distances, only after and before relation exist. Histogram resembles with
the histogram computed by the Matsakis and Nikitenko method. Sharp and sudden changes in
the histogram shape computed by our method are due to the problems of taking intersections in
the 2D digital space. Empty intersection sometime results change in the object area (sharp ups
and downs in histogram shape in first row) and some time it causes the existence of new spatial
relation such as histogram in the after and before in third row.

For the example figures 5(a) to 5(c), concave object is considered. Figure 5(a) represents
object pair, histogram in figure 5(b) is computed by our and use fuzzy operator OR. Histogram

11



(a) (b) (©

Figure 5: Comparison of histograms of fuzzy Allen relations with the Matsakis and Nikitenko
method and our method for the concave objects. First row represents the object pair and his-
togram computed by our method and second row represents the histogram computed by Matsakis
and Nikitenko method. In our method, sharp change in histogram is due to the change in surface
area of objects due to the digitization process (axis are same as in figure 4(b) and 4(c)).

represented in figure 5(c) is computed the method developed by Matsakis and Nikitenko. In
certain direction object A is before as well as after, in the meanwhile there exist relation meet
and meet_by due to closeness of two segments. This example shows that two segments of an
object have the opposite fuzzy Allen relations (a case considered in figure 7(b))

-
#

'/\\\ m
i
[ A
|
| \ / \
| S {0 omi \
(®) (©

(O] ® (€9)

Figure 6: Concave & convex object pairs and their histogram of fuzzy Allen relations (axis are
same as in figure 4(b) and 4(c)).

In this set of examples (from figure 6(a) to figure 6(g)), argument object is a concave object.
As it changes its position, it’s topological and directional relation changes with respect to one
segment. While the other segment doesn’t change it’s topological or directional relation infor-
mation. As a result both segments have opposite Allen relation with the reference segment and

resulting histogram represents both relations at the same time.
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Examples given above show that histograms of fuzzy Allen relations are approximately the
same while they are computed either with the help of Matsakis and Nikitenko [2] method or
polygonal object approximation. Our approach has a certain amount of decrease in the computa-
tion time. Computation time with our approach drops from O(nM VM ) to O(nNlog(N)), where
N represents the total number of vertices of polygons. For the treatment of longitudinal section,
when there exist more than one segment, fuzzy Allen relations are computed between every pair
of segments of reference and argument objects, then at the next stage fuzzy OR operator is used
to integrate the available fuzzy Allen relations.

6. Time Complexity

Efficiency of an algorithm can be measured in terms of execution time. Method for finding
the combined topological and directional relations information is to couple the force histograms
with the fuzzy Allen relations. Time complexity for computing the combined topological and
directional relations information depends upon the following three factors.

1. Algorithm for treatment of longitudinal section
2. Object approximation
3. Equation used for computation of histograms (equation 6 and 7)

These different aspects of time complexity are discussed separately here below. We compare the
time complexity of both algorithms and at the end we note the there is a sufficient decrease in
the execution time of the modified algorithm.

Time complexity of Algorithm for treatment of longitudinal section: Method for computing
the combined topological and directional relations information directly depends upon the
force histograms. In this method force histograms are coupled with the fuzzy Allen rela-
tions, where algorithm developed by Matsakis and Nikitenko [2] (algorithm1)for fuzzifi-
cation of segments of a longitudinal section. This algorithm imposes restrictions on the
assumption of an object. Its time complexity is added to the time complexity of the force
histograms. For better elaboration, the algorithm used by Matsakis and Nikitenko [2] is
given below.

Algorithm 1 has the time complexity of order O(n®). Where n represents the number of
segments for a longitudinal section of a line. With the proposed method, this algorithm is
replaced by the fuzzy logic connectors, these logic connectors have less time complexity
as compared to this algorithm, these fuzzy logic connectors are only used for dealing with
the longitudinal section.

Time complexity due to object approximation: Inthe method of computing the combined topo-
logical and directional relations information, force histograms are coupled with the fuzzy
Allen relations. Time complexity of algorithm is directly related to the time complexity
of force histograms. Time complexity of force histograms for polygonal object approxi-
mation is O(nNlog(N) and for raster data it is O(nM VM) where N denotes the number of
vertices of two polygons and n for number of directions to be computed, M denotes the
number of pixels of the processed image (see [26]).

Time complexity of equation 6 and 7 Matsakis and Nikitenko used equation 6 for computing
the combined topological and directional relation information. This equation has time

13



Algorithm 1 Algorithm for the fuzzification of a longitudinal section /. The symbolH(I{ U I]c.)
denotes the convex hull of [T U I? Indexing is chosen in such a way that /;, I; are consecutive
in 1, c represents the number of iterations in while loop, its maximum value is n. The algorithm
increases the degree of @y associated with the open interval J, = H(I{ U 19) =7 VU I). Initially
a; = 0 and a denotes the a-cut of a fuzzy membership function.
c« 0;
a« 1;
while o > 0 do
..... There exits one set {I]}cy...,, of mutually disjoint segments (and only one ) such that:
al = Ujey. . For any i and any jin 1...n., with i # j the length of I{ is denoted by x{ and
the distance between /i and I} is denoted by ;.
for anyiinl..n.—1 do
for any jin l..n. do
B all - i)
for anykinl..n—1 do
if Jy C H(IY U I;) then
oy «— max(ay, )
end if
end for
end for
end for
@ — max{@ler,.n-1 N[0, ]
ce—c+1
end while

complexity O(n’) where n represents the total number of segments exist in a longitudinal
section. (m + n represents the total number of segments for a longitudinal section and
¢ represents the number of loops in algorithm 1, it maximum value equals to number of
disjoint segments). Proposed equation 7 has time complexity k where k represents the total
number of vertices of polygons. This shows that the equation 6 has higher time complexity
as compared to the time complexity of equation 7.

Algorithm for fuzzification of longitudinal section used by Matsakis and Nikitenko (Algorithm
1) put limits for the object approximation. Due to this algorithm, time complexity of method for
combined topological and directional relations information is O(nM VM), where n represents
the number of directions M number of pixels to be processed, in this paper we replace the algo-
rithm for fuzzification of segments of a longitudinal section (algorithm 1) with the fuzzy logic
connectors. This substitution of algorithm for fuzzification of longitudinal section made it pos-
sible to consider objects by its polygon approximation, hence for the method we proposed, time
complexity for computing the combined topological and directional relations information drops
from O(nM VM) to O(nN log(N)), where N represents the total number of vertices of polygons.
Obviously N << M and n is number of directions to be computed, it ranges from 32 to 360
directions.

14



7. Conclusion

Fuzzy Allen relations can be used to detect and analyze object position in space and these re-
lations have a rich support for defining the fuzzy topological relations. These relations represent
fuzziness in relation’s semantics, they can also answer the questions that where in space a certain
topological relation exists.

Polygonal approximation of objects and application of fuzzy logic connectors simplifies the
algorithm given by Matsakis and Nikitenko[2]. This approach decreases its time complexity,
it drops down from O(nM VM) to O(nNlog(N), where n represents number of directions, N
number of vertices of polygons and M number of pixels to be processed, due to using fuzzy
logic connectors in lieu of the fuzzification of segments of a longitudinal section developed by
Matsakis.

This approach of using fuzzy operator will open new fields of applications for fuzzy logic
connectors. This technique can further be developed for defining the dynamic spatial relations in
a quantitative way. In this paper, computations for all the directions are calculated for experimen-
tal purpose and verification of affine properties will be helpful for affine invariant description of
relative object positions in scene and image understanding applications by combined topological
and directional relations information. The aim of this paper is to validate formally the method
we propose, and for the future work we project to apply this method for real data obtained by
video sequences of real applications after extracting objects en their polygonal approximation
with help of all the image processing techniques.
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8. Annex-A

Now let’s consider that the following situations arise for the segments of a longitudinal sec-
tion when the objects are concave or objects have disconnected boundary.

(a) (b)

Figure 7: Different positions of segments in case of longitudinal sections (Argument object in
grey and black object represents reference object)

Figure 7(a) We discuss here the cases arising in figure 7(a) with all aggregation operators. For
the above cited examples, we use terms f(x1,y1, z) and f(x2, y2, z) to express histograms of
fuzzy Allen relations for first and second segments, here x; is the length of first segment of
the argument object and x; is the length of second segment, similarly y; is the difference
between the first segment of argument object and the reference object and y; is the differ-
ence between the second segment of argument object and the reference object, in this case
consider both y; > 5 and y, > % where a; = min(xy,z) and a = min(xy, ).

flxi,y,z) = (1.0 0 000000 O0O0O0O0)
f(x2,¥2,2) (1 00000O0O0OOO0OO0OO0)Y

It means f.(I;,J) = 1 and f2(I,J) = 1 and all the other values of histogram are zero. The
possible outcomes with the application of different fuzzy operators are
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FOR(G’ A@(V), BQ(V) = ma-x(f(xhyhz)’ f(-xz’ y2, Z))
=(1,0,0,0,0,0,0,0,0,0,0,0,0)

Fuanp(0,A¢(v), Be(v)

mi”(f(xl,yl, Z)7 f(xzv Y2, Z))
(1,0,0,0,0,0,0,0,0,0,0,0,0)’

Frrop(0,Ag(v), Bo(v) = f(x1,y1,2) X f(x2,¥2,2)
=(1,0,0,0,0,0,0,0,0,0,0,0,0)

Fsum(8,Ae(v), Be(v) = 1 = ((1 = f(x1,¥1,2) X (1 = f(x2,¥2,2)))

=(1,0,0,0,0,0,0,0,0,0,0,0,0)'

In this case, the two segments of argument object have the same Allen relations with the
reference segment. Both segments behave like the crisp Allen relation. In such a case, all

fuzzy operator provide us similar information.

Figure 7(b) The cases arising in figure 7(b) with all aggregation operators. In this case consider

3[11

y1 <—b- =t and y, > ”72 where a; = min(xy,z), by = max(xy,z) and a, = min(x,, z) then
f(x1,y1,2) and f(x»,¥,,z) are used to express the histograms of fuzzy Allen relations for

first and second segments.

fGLy,2)
f(x27y2’ Z)

(00O O0OO0OO0OO0OO0OO0OO0OO0OTQO0OO

The possible outcomes are

For(0,A¢(v), Be(v) = max(f(x1,y1,2), f(x2,¥2,2))
(1,0,0,0,0,0,0,0,0,0,0,0, 1)

Fanp(0,A9(v), Bo(v)) = min(f(x1,y1,2), f(x2,¥2,2))
= (0,0,0,0,0,0,0,0,0,0,0,0,0)

Fprop(8, Ag(v), By(v)) FOxL,y1,2) X f(x2,2,2)

(0,0,0,0,0,0,0,0,0,0,0,0,0)

Fsum(6,Aq(v), Bo(v))

= (1,0,0,0,0,0,0,0,0,0,0,0, 1)’
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The above cited examples explain that, in a particular situation, AND and PROD operators
cannot be used for the decision making process, when both segments of one longitudinal section
of argument object have the same Allen relation with the segment of reference object, all fuzzy
operators have the same results. In real situation different cases may arise and segments may
have opposite relation as in figure 7(b), then all the information may be lost. These results show
that fuzzy conjunction operators give results counter intuitive (both AND, PROD represents the
conjunction operators) and the disjunction operators better fits the human intuition and provides
here a better fusion of available fuzzy information. The third type of fuzzy operators such as
Fuzzy y operator can also be used to make possible contributions of two fuzzy values, but in
this case finding compensation values of y is a problem and for each case we have to adjust y.
When the objects are concave or the objects contain holes, then objects have several segments,
called longitudinal section. In such a case, fuzzy Allen relations are calculated for each segment
separately then fuzzy connectors are applied for combining information from both segments.
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