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Jacobo de Uña-Álvarez, Luis F. Meira-Machado

PII: S0167-7152(08)00147-8
DOI: 10.1016/j.spl.2008.02.031
Reference: STAPRO 4997

To appear in: Statistics and Probability Letters

Received date: 30 August 2006
Revised date: 12 November 2007
Accepted date: 14 February 2008
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A SIMPLE ESTIMATOR OF THE BIVARIATE DISTRIBUTIONFUNCTION FOR CENSORED GAP TIMESJacobo de Uña-Álvarez1,∗ and Luis F. Meira-Machado2July 2006, revised in November 20071Department of Statistics and OR, University of Vigo2Department of Mathematics for Science and Technology, University of Minho∗Corresponding author. Full postal address: Departamento de Estad́ıstica eInvestigación Operativa, Facultad de CC. Económicas y Empresariales, Univer-sidad de Vigo, Campus Universitario Lagoas-Marcosende, 36310 Vigo, Spain.Phone: (+34) 986812492. Fax: (+34) 986812401. E-mail: jacobo@uvigo.esAbstractLet (T1, T2) be gap times corresponding to two consecutive events, which areobserved subject to random right-censoring. In this paper a simple estimatorof the bivariate distribution function of (T1, T2) is proposed. We investigatethe conditions under which the introduced estimator is consistent.Applications to the estimation of the marginal distributions of the gap timesand to correlation analysis are included. We explore the behaviour of theproposed methods through simulations.Key Words and Phrases: bivariate censoring, Kaplan-Meier,nonparametric estimation, recurrent events
1 IntroductionLet (T1, T2) be a pair of gap times of successive events, which are observed sub-ject to random right-censoring. Let C be the right-censoring variable, assumedto be independent of (T1, T2), and let Y = T1 + T2 be the total time. Dueto censoring, rather than (T1, T2) we observe (T̃1, T̃2,∆1,∆2), where T̃1 =T1 ∧ C, ∆1 = I(T1 ≤ C) and T̃2 = T2 ∧ C2, ∆2 = I(T2 ≤ C2), whereC2 = (C − T1) I (T1 ≤ C) is the censoring variable for the second gap time.Note that ∆2 = 1 implies ∆1 = 1. Hence, ∆2 = ∆1∆2 = I (Y ≤ C) isthe censoring indicator pertaining to the total time. Let (T̃1i, T̃2i,∆1i,∆2i),1 ≤ i ≤ n, be iid data with the same distribution as (T̃1, T̃2,∆1,∆2). Dueto the independence assumption, the marginal distribution of the first gaptime T1 may be consistently estimated by the Kaplan-Meier estimator basedon the (T̃1i,∆1i)’s. Similarly, the distribution of the total time may be consis-tently estimated by the Kaplan-Meier estimator based on the (T̃1i + T̃2i,∆2i)’s.1
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However, since T2 and C2 will be in general dependent, the estimation of themarginal distribution of the second gap time is not such a simple issue. By thesame reason, it is not clear in principle how the bivariate distribution functionF12(x, y) = P (T1 ≤ x, T2 ≤ y) can be efficiently estimated. This issue wasinvestigated, among others, by Wang and Wells (1998), Lin et al. (1999), Wangand Chang (1999), Peña et al. (2001), van der Laan et al. (2002), Schaubel andCai (2004) or van Keilegom (2004).In this paper we propose a simple estimator for the bivariate distributionfunction of the gap times, F12(x, y). The idea behind the estimator (and thereason for its simplicity) is using the Kaplan-Meier estimator pertaining to thedistribution of the total time (the Y ) to weight the bivariate data. We willshow that this procedure is consistent whenever x+ y is smaller than the upperbound of the support of the censoring time. The proposed estimator is a properdistribution function; this is interesting, since previous proposals (as those in-vestigated by Wang and Wells (1998) and Lin et al. (1999)) do not guarantee anonnegative weighting of the data. Of course, given an estimator F̂12(x, y) forF12(x, y), one immediately gets an estimator of the marginal distribution of thesecond gap time by taking F̂12(∞, y).The paper is organized as follows. In Section 2 we introduce the estimatorfor the joint distribution function of (T1, T2) and we establish its consistency.We will see that the proposed estimator is somehow connected (but it is notequal) to that in Lin et al. (1999). Some related problems as estimation ofthe marginal distribution of T2 and correlation analysis will be discussed. InSection 3 we investigate the performance of the proposed methods in a simulatedscenario. Main conclusions and some final remarks are reported in Section 4.
2 The estimator: consistencyLet Ỹi = T̃1i+T̃2i be the ith recorded total time, and letWi be the Kaplan-Meierweight attached to Ỹi when estimating the marginal distribution of Y from the(Ỹi,∆2i)’s. That is,Wi = ∆2in−Ri + 1 i−1∏j=1[1− ∆2jn−Rj + 1] where Ri = Rank(Ỹi),and where the ranks of the censored Ỹi’s are higher than those for uncensoredvalues in the case of ties. In the uncensored case we have Wi = n−1 for each i.Introduce F̂12(x, y) = n∑i=1WiI(T̃1i ≤ x, T̃2i ≤ y). (1)2
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Below we show that this estimator is consistent whenever x+ y is smaller thanthe upper bound of the support of the censoring time. From (1) we can obtainan estimator for the marginal distribution of the second gap time, F2(y) =P (T2 ≤ y), namely F̂2(y) = F̂12(∞, y) = n∑i=1WiI(T̃2i ≤ y). (2)Note that F̂2 is not the Kaplan-Meier estimator based on the (T̃2i,∆2i)’s.Thisis because the weights Wi are based on the Ỹi-ranks rather than on the T̃2i-ranks. Indeed, since T2 and C2 are expected to be dependent, the ordinaryKaplan-Meier estimator of F2 will be in general inconsistent.Define Ỹ = Y ∧C. Let F , G and H denote the distribution functions of Y ,C and Ỹ , respectively. Let τF be the upper bound of the support of F , andsimilarly define τG and τH . Since Y and C are assumed to be independent, wehave τH = τF ∧ τG. Let A be the (possibly empty) set of atoms of Ỹ . We havethe following result.Theorem 1 If F and G have no jumps in common, we have with probability 1and in the meanlimn→∞ F̂12(x, y) = P (T1 ≤ x, T2 ≤ y, T1 + T2 < τH) +I(τH ∈ A)P (T1 ≤ x, T2 ≤ y, T1 + T2 = τH),andlimn→∞ F̂2(y) = P (T2 ≤ y, T1 + T2 < τH) + I(τH ∈ A)P (T2 ≤ y, T1 + T2 = τH)Proof. First note that, under the censoring scheme described in Section1, the variable T2 is censored whenever T1 is. Hence, Wi is zero whenever thepertaining T̃1i is a right-censored value of T1i. This enables us to writeF̂12(x, y) = n∑i=1WiI(T1i ≤ x, T̃2i ≤ y) = n∑i=1Wiϕx,y(T1i, Ỹi)where ϕx,y(u, v) = I(u ≤ x, v − u ≤ y). Since (T1, T2) and C are independent,conditions (i) and (ii) in Stute (1993) hold. Apply his Theorem to conclude.�Note that if any of the following conditions hold:(a) τH ∈ A, or3
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(b) P (T1 ≤ x, T2 ≤ y, T1 + T2 = τH) = 0((b) is valid in particular if Y is continuous), we have from Theorem 1 thatlimn→∞ F̂12(x, y) = P (T1 ≤ x, T2 ≤ y, T1 + T2 ≤ τH) .Then, three essentially different situations are possible. (A) If τF < τG (orif τF = τG = ∞), then we get that (1) is consistent for any (x, y). (B) IfτG < τF , then τH < τF and consistency is only ensured for x + y < τH (orfor x + y ≤ τH provided that (a) or (b) above hold). This is not surprising,since in this case relevant information on F is missing on the whole interval(τG, τF ]. The bivariate estimators proposed in Wang and Wells (1998) and Linet al. (1999) suffer from the same problem, in addition to the issue of not beingproper distribution functions. Finally, (C) if τF = τG < ∞, then consistencyfollows if (a) or (b) are fulfilled.Similar comments hold for (2). However, note that in this latter case, to getconsistency of F̂2(y) in situation (B) one should require P (T1 ≤ τH − y) = 1,a condition that will fail for y at the right tail of F2. Specifically, if τ1 standsfor the upper bound of the support of T1, we have F̂2(y) → F2(y) w.p. 1 fory ≤ τH − τ1 (assumed that any of the conditions (a) or (b) above hold).The idea of weighting the bivariate data (T̃1i, T̃2i) through the Wi’s canbe used to introduce consistent estimation of the correlation between the gaptimes. Certainly, define the empirical covarianceσ̂12 = n∑i=1Wi (T̃1i − µ̂1)(T̃2i − µ̂2)where µ̂1 = n∑i=1WiT̃1i and µ̂2 = n∑i=1WiT̃2i.The marginal variances of T1 and T2 (assumed to exist) are consistently esti-mated throughσ̂21 = n∑i=1Wi (T̃1i − µ̂1)2 and σ̂22 = n∑i=1Wi (T̃2i − µ̂2)2 .Introduce the correlation coefficientρ̂12 = σ̂12√σ̂21σ̂22 .In the uncensored case, ρ̂12 reduces to the Pearson correlation coefficient. Letρ12 be the true correlation between both gap times. Then we have the followingresult. 4
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Theorem 2 Assume for simplicity τF < τG. If F and G have no jumps incommon, we have with probability 1limn→∞ ρ̂12 = ρ12.Proof. This result is a consequence of the Theorem in Stute (1993) whenapplied to the special ϕ-functions ϕ1(u, v) = u, ϕ2(u, v) = v− u, ϕ3(u, v) = u2,ϕ4(u, v) = (v − u)2, and ϕ5(u, v) = u (v − u). Condition τF < τG ensures thatthe empirical quantities involved in the definition of ρ̂12 converge to their ”right”respective limits.�The estimator (1) is somehow related (although not equal) to that proposedin Lin et al. (1999). These authors suggested the estimatorF̃12(x, y) = H̃(x, 0)− H̃(x, y) (3)where H̃(x, y) = 1n n∑i=1 I(T̃1i ≤ x, T̃2i > y)∆2i1− Ĝ((T̃1i + y)−)and where Ĝ stands for the Kaplan-Meier estimator (of the censoring dis-tribution) based on the (Ỹi, 1−∆2i)’s. On its turn, (1) is also written asF̂12(x, y) = Ĥ(x, 0)− Ĥ(x, y) whereĤ(x, y) = 1n n∑i=1 I(T̃1i ≤ x, T̃2i > y)∆2i1− Ĝ((T̃1i + T̃2i)−) .Of course, under T̃2i > y we have Ĝ((T̃1i + T̃2i)−) ≥ Ĝ((T̃1i + y)−) and henceĤ(x, y) ≥ H̃(x, y). Both Ĥ(x, y) and H̃(x, y) are estimators for H(x, y) =P (T1 ≤ x, T2 > y). In the next Section we report a simulation study whichindicates that F̂12(x, y) may behave more efficiently than F̃12(x, y) (the relativeefficiency of Lin et al. (1999)’s estimator may be as poor as 64%)
3 Simulation studyIn this Section we investigate the performance of the proposed estimation meth-ods through simulations. The simulated scenario is the same as that describedin Lin et al. (1999), see their Section 3. To be precise, the gap times (T1, T2)were generated according to the bivariate distributionF12(x, y) = F1(x)F2(y) [1 + θ {1− F1(x)} {1− F2(y)}]where the marginal distribution functions F1 and F2 are exponential with rateparameter 1. The parameter θ was set to 0 for simulating independent gap5
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times, and also to 1, corresponding to 0.25 correlation between T1 and T2.An independent uniform censoring time C was generated, according to modelsU [0, 4] and U [0, 3]. The first model resulted in 25% of censoring on the firstgap time, and in 46% of censoring on the second gap time. The second modelincreased these censoring levels to 32% and about 60%, respectively. Samplesizes n = 50 and n = 100 were considered. In each simulation, 10,000 sampleswere generated.We computed the mean and standard deviation along the simulated samplesfor the estimator F̂12(x, y) introduced in (1), for x and y values 0.2231, 0.5108,0.9163, and 1.6094, corresponding to marginal survival probabilities of 0.8, 0.6,0.4 and 0.2. The true values of F12(x, y) in all the cases are reported in Table1. [Put Table 1 about here]Table 2 reports the mean values of F̂12(x, y) along the simulated samples, inboth the independent (θ = 0) and dependent (θ = 1) cases, for each censoringlevel and for each sample size. It is seen that the bias of the bivariate distributionestimator achieved reasonable levels. Similarly, Table 3 reports the standarddeviation of this estimate. In this case it is clearly seen that the varianceincreases at the right tail of the bivariate distribution, where the censoringeffects are stronger. We also observe that an increasing sample size results insmaller variance. Besides, by increasing the censoring percentage, the standarddeviation achieves larger values. All these facts were expected.[Put Tables 2 and 3 about here]Due to the existing connection between the proposed estimator and thatconsidered in Lin et al. (1999), see (3), we also computed the bias and thestandard deviation of the latter estimate along the simulated samples. Thebias turned out to be of the same order as that of (1), and hence results arenot displayed here. Then, the efficiency of F̃12(x, y) relative to F̂12(x, y) wasmeasured through the squared quotient of standard deviations. The resultsfor n = 50 are displayed in Table 4 (results for n = 100 were quite similarso they are omitted). We see that F̂12(x, y) was always more efficient thanF̃12(x, y) except for a few cases corresponding to small x and large y. In thesecases, the bivariate distribution is relatively close to the marginal distributionof the first gap time, and the estimator of Lin et al. (1999) seems to be moreconvenient (for small x). This effect is stronger when increasing the censoringlevel. In most of the support of F12(x, y) the proposed estimator behaved betterthan F̃12(x, y) (more clearly seen for an increasing censoring level); indeed, therelative efficiency of F̃12(x, y) decreased when moving the pair (x, y) to theright tail of the distribution. For example, for x = 1.6094 and C ∼ U [0, 3], therelative efficiency of Lin et al. (1999)’s estimator was never above 70%.[Put Table 4 about here]6
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4 Conclusions and final remarksIn this paper a new, simple nonparametric estimator of the bivariate distributionof gap times was introduced. Conditions under which the proposed estimator isconsistent were investigated. Consistency results for the marginal distributionpertaining to the second gap time have been derived. Since the second gap timeis dependently censored, the proposed estimator can be regarded as a naturalsubstitute for the ordinary Kaplan-Meier estimator, which will not work ingeneral. Application of the proposed estimation method to correlation analysishas also been discussed.Unlike other existing methods, the introduced estimator is a proper bivariatedistribution, in the sense that it attaches positive mass to each pair of recordedgap times. Besides, simulations showed that the new estimator is virtually unbi-ased and that it may achieve efficiency levels clearly above those correspondingto previous proposals. However, more (theoretical) investigation is needed inorder to get general conclusions to this regard.One can easily derived further asymptotic results for F̂12(x, y) and relatedquantities from the existing theory for multivariate Kaplan-Meier integrals.Central limit theorems and mathematical derivation of the asymptotic vari-ance follow from the available representations of these integrals as sums of iidrandom variables (plus negligible remainders), see Stute (1996a) and referencestherein. Formal description of these results would require a much more ex-tended manuscript and this is certainly out of the scope of the present note.On the other hand, an issue of much practical importance is that of the estima-tion of the standard error of (1). For this purpose, Stute (1996b) investigatedthe (modified) jackknife, establishing its consistency for a general Kaplan-Meierintegral. Similar ideas could be applied here.The proposed method can be easily extended to cope with a vector of k gaptimes, (T1, ..., Tk). In such a case, the weights Wi in (1) must be defined asthose of the Kaplan-Meier estimator of the marginal distribution of the totaltime Y = T1+ ...+Tk. This procedure will be consistent whenever the censoringtime is independent of (T1, ..., Tk), at least for those values (x1, ..., xk) satisfyingx1+...+xk < τG (the upper bound of the support of the censoring distribution).The proof is similar to that in Theorem 1.Acknowledgement. Thanks to a referee for careful reading of the paper.The work by Jacobo de Uña-Álvarez was supported by Grant MTM2005-01274(FEDER funding included) of the Spanish Ministerio de Educación y Ciencia,and also by the Grants PGIDIT06PXIC300117PN and PGIDIT07PXIB300191PRof the Xunta de Galicia. Luis F. Meira-Machado acknowledges finantial supportby Grant MTM2005-00818 (FEDER funding included) of the Spanish Ministeriode Educación y Ciencia. 7
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θ = 0 θ = 1x \ y 0.2231 0.5108 0.9163 1.6094 0.2231 0.5108 0.9163 1.60940.2231 .0400 .0800 .1200 .1600 .0656 .1184 .1584 .18560.5108 .0800 .1600 .2400 .3200 .1184 .2176 .2976 .35840.9163 .1200 .2400 .3600 .4800 .1584 .2976 .4176 .51841.6094 .1600 .3200 .4800 .6400 .1856 .3584 .5184 .6656Table 1. True values of the bivariate distribution of the gap times under thesimulated model.
θ = 0 θ = 1x \ y .2231 .5108 .9163 1.6094 .2231 .5108 .9163 1.60940.2231 .0398 .0802 .1201 .1604 .0660 .1181 .1576 .18560.5108 .0798 .1607 .2392 .3197 .1185 .2176 .2973 .35770.9163 .1193 .2396 .3605 .4795 .1582 .2980 .4172 .51841.6094 .1612 .3184 .4807 .6384 .1852 .3595 .5171 .6656n = 50, C ∼ U [0, 4]0.2231 .0399 .0798 .1199 .1604 .0654 .1187 .1584 .18570.5108 .0798 .1594 .2399 .3206 .1188 .2179 .2980 .35800.9163 .1202 .2395 .3605 .4800 .1583 .2980 .4180 .51811.6094 .1605 .3206 .4804 .6406 .1854 .3580 .5180 .6645n = 100, C ∼ U [0, 4]0.2231 .0404 .0798 .1193 .1593 .0657 .1189 .1588 .18570.5108 .0806 .1602 .2390 .3196 .1181 .2162 .2968 .35760.9163 .1197 .2397 .3594 .4794 .1575 .2978 .4163 .51811.6094 .1597 .3196 .4808 .6280 .1859 .3579 .5173 .6503n = 50, C ∼ U [0, 3]0.2231 .0398 .0801 .1209 .1604 .0652 .1176 .1580 .18530.5108 .0801 .1600 .2404 .3203 .1184 .2170 .2978 .35770.9163 .1203 .2396 .3598 .4798 .1587 .2985 .4179 .51761.6094 .1599 .3197 .4804 .6345 .1858 .3587 .5176 .6581n = 100, C ∼ U [0, 3]Table 2. Mean value of F̂12(x, y) along 10,000 simulated samples

9
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θ = 0 θ = 1x \ y .2231 .5108 .9163 1.6094 .2231 .5108 .9163 1.60940.2231 .0286 .0407 .0499 .0580 .0359 .0478 .0554 .06010.5108 .0406 .0557 .0665 .0769 .0474 .0619 .0707 .07660.9163 .0491 .0668 .0776 .0864 .0546 .0709 .0784 .08591.6094 .0588 .0771 .0870 .0914 .0607 .0776 .0863 .0884n = 50, C ∼ U [0, 4]0.2231 .0202 .0287 .0347 .0413 .0252 .0337 .0390 .04270.5108 .0282 .0389 .0474 .0544 .0336 .0442 .0503 .05490.9163 .0346 .0468 .0553 .0610 .0391 .0497 .0554 .06121.6094 .0413 .0536 .0609 .0640 .0426 .0552 .0605 .0644n = 100, C ∼ U [0, 4]0.2231 .0292 .0412 .0502 .0614 .0364 .0487 .0565 .06320.5108 .0413 .0557 .0692 .0825 .0485 .0644 .0726 .08340.9163 .0503 .0695 .0825 .0972 .0568 .0734 .0840 .09491.6094 .0614 .0827 .0968 .1053 .0641 .0822 .0942 .1033n = 50, C ∼ U [0, 3]0.2231 .0204 .0287 .0355 .0435 .0254 .0340 .0400 .04440.5108 .0287 .0399 .0490 .0584 .0344 .0454 .0520 .05960.9163 .0361 .0495 .0580 .0679 .0397 .0518 .0598 .06681.6094 .0434 .0579 .0680 .0786 .0439 .0582 .0669 .0773n = 100, C ∼ U [0, 3]Table 3. Standard deviation of F̂12(x, y) along 10,000 simulated samplesθ = 0 θ = 1x \ y .2231 .5108 .9163 1.6094 .2231 .5108 .9163 1.60940.2231 .8457 .8675 .9425 1.014 .9214 .9555 1.004 1.1000.5108 .8286 .8560 .9076 1.000 .8776 .9097 .9669 1.0600.9163 .7941 .8216 .8699 .9403 .8449 .8634 .8879 .98391.6094 .7543 .7590 .7816 .7875 .7762 .7957 .8114 .7769C ∼ U [0, 4]0.2231 .7925 .8457 .8838 .9683 .8892 .9411 1.018 1.1210.5108 .7656 .7866 .8604 .9397 .8343 .9023 .9497 1.0290.9163 .7317 .7604 .8041 .8237 .7827 .8272 .8558 .84571.6094 .6811 .6600 .6685 .6363 .6966 .6650 .6287 .6595C ∼ U [0, 3]Table 4. Efficiency of F̃12(x, y) relative to F̂12(x, y) along the 10,000 simulatedsamples, case n = 50.10


