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The infinite divisibility of the Laplace distribution and its applicability as a statistical model were the motivation for the study of some properties of the spacings of a Kotz-Kozubowski-Podgórski generalized Laplace model. This model is an extension of the classical symmetric Laplace model for the case of asymmetric tails. In this note we shall show that the spacings are generalized exponential mixtures or gamma mixtures and, hence, preserve the infinite divisibility of the parent model.

Introduction

The simplicity and transparency of the classical Laplace distributions are appealing properties to be taken into consideration when choosing a statistical model. Other useful properties of the Laplace distributions are infinite divisibility and stability with respect to geometric summation, namely sums where the number of terms in the summation has a geometric distribution with mean 1/p, p ∈ (0, 1). In the latter context Laplace distributions arise as the only possible limit laws for geometric sums of symmetric i.i.d. random variables with finite variance. If the assumption of symmetry is omitted, the possible limit laws for geometric sums constitute the class of distributions introduced by [START_REF] Hinkley | Estimation of the Pareto law from underreported data[END_REF] and termed asymmetric Laplace distributions by [START_REF] Kozubowski | Asymmetric Laplace distributions[END_REF]. The basic properties of the classical Laplace distributions, such as those mentioned above, are naturally extended to this new class of distributions.

The concept of infinite divisibility plays a major role in probability theory, in connection with the general central limit problems [START_REF] Loéve | Probability Theory[END_REF]). Many distributions used in Statistics have been shown to be infinitely divisible [START_REF] Steutel | Infinite divisibility in theory and practice[END_REF]). A characteristic function ψ is said to be infinitely divisible if, for every positive integer n, ψ is the n th power of some characteristic function φ n , i.e., ψ = φ n n . However, it is not always an easy task to identify an infinite divisible characteristic function by definition. A necessary and sufficient condition for a characteristic function ψ to be infinitely divisible is that its logarithm be representable in the form

ln ψ(t) = ait + IR e itx -1 - itx 1 + x 2 1 + x 2 x 2 dG(x) ,
where a is a real number and G is a bounded, nondecreasing, right-continuous function on IR with G(x) → 0 as x → -∞ (the integrand at x = 0 is -t 2 /2 which is defined by continuity). The representation above, which is unique, is known as the Lévy-Khinchine (L-K) representation. Some works have been published stating sufficient conditions for infinite divisibility. For example, [START_REF] Steutel | Note on the infinite divisibility of exponential mixtures[END_REF] established infinite divisibility for some generalized exponential mixtures, i.e., exponential mixtures with some negative mixing coefficients. [START_REF] Steutel | A class of infinitely divisible mixtures[END_REF] also proved that mixtures of certain type of characteristic functions which can be expressed in a similar form as the exponential characteristic function are infinitely divisible. In this paper he establishes the infinite divisibility of Laplace mixtures. Other results due to [START_REF] Steutel | Note on completely monotone densities[END_REF] are the infinite divisibility of completely monotone densities and of arbitrary mixtures of completely monotone densities. [START_REF] Bondesson | A general result on infinite divisibility[END_REF] provided some general results. For a thorough survey on infinite divisibility of univariate distributions see the monograph of [START_REF] Steutel | Infinite Divisibility of Probability Distributions on the Real Line[END_REF].

In this note we shall be particularly interested in the spacings of a generalized Kotz-Kozubowski-Podgórski Laplace model, an extension of the symmetric Laplace model where the tails are asymmetric. Spacings possess statistical application, namely they are used in estimation of parameters of unknown continuous distributions. The statistical procedure based on spacings is related to the maximum likelihood method and is called the maximum product of spacings method. It was proposed by [START_REF] Cheng | Estimating parameters in continuous univariate distributions with a shifted origin[END_REF] and independently by [START_REF] Ranneby | The maximum spacing method. An estimation method related to the likelihood method[END_REF]. In section 3 we shall obtain the spacings distributions, which can be used for inferences purposes, and deduce their infinite divisibility. These results are general in the sense that they include the results obtained by [START_REF] Brilhante | On the infinite divisibility of the spacings of exponential mixtures[END_REF] for the classical (symmetric) Laplace model.

The Kotz-Kozubowski-Podgórski generalized Laplace distribution

Some attempts have been made to introduce an asymmetry in the classical symmetric Laplace distributions over the last years. The definition that we shall use here was introduced as mentioned above some 25 years ago by [START_REF] Hinkley | Estimation of the Pareto law from underreported data[END_REF] and termed asymmetric Laplace distributions by [START_REF] Kozubowski | Asymmetric Laplace distributions[END_REF]. It includes as a special case the symmetric Laplace distributions (cf. [START_REF] Kotz | The Laplace Distribution and Generalizations[END_REF]).

Definition. A random variable X is said to have an asymmetric Laplace distribution if there exist parameters θ ∈ IR, µ ∈ IR and σ ≥ 0 such that the characteristic function of X has the form

ψ(t) = E(e itX ) = e iθt 1 + 1 2 σ 2 t 2 -iµt . (2.1)
Special cases of (2.1) are:

(i) the degenerate distribution at θ for µ = σ = 0;

(ii) the exponential distribution with mean θ + µ and variance µ 2 for σ = 0 and µ = 0 (concentrated on ]θ, ∞] for µ > 0 and on ] -∞, θ[ for µ < 0);

(iii) the classical symmetric Laplace distribution with mean θ and variance σ 2 for µ = 0 and σ > 0 given by the probability density function

f (x; θ, σ) = 1 √ 2σ e - √ 2 |x-θ|/σ , -∞ < x < ∞ .
For σ > 0, we can consider a reparametrization of the model (2.1) by introducing an "additional" parameter κ > 0, related to µ and σ, such that

ψ(t) = e itθ 1 + 1 2 σ 2 t 2 -iµt = e itθ 1 1 -i σ √ 2κ t 1 1 + i σκ √ 2 t , ( 2.2) 
where κ = √ 2σ/(µ + 2σ 2 + µ 2 ) and

µ = σ(1/κ -κ)/ √ 2.
A random variable with the characteristic function (2.2) has the probability density function (p.d.f.)

f (x; θ, κ, σ) = √ 2 σ κ 1+κ 2 e √ 2(x-θ)/σκ , x ≤ θ √ 2 σ κ 1+κ 2 e - √ 2κ(x-θ)/σ , x > θ (2.3)
and the distribution function (d.f.)

F (x; θ, κ, σ) = κ 2 1+κ 2 e √ 2(x-θ)/σκ , x ≤ θ 1 -1 1+κ 2 e - √ 2κ(x-θ)/σ , x > θ . (2.4)
It is straightforward to establish the infinite divisibility of a random variable X with characteristic function (2.2). This random variable allows the decomposition

X d = θ + X 1 -X 2 ,
where X 1 and X 2 are independent exponential random variables with the means σ/( √ 2κ) and σκ/ √ 2, respectively. Since from (2.2)

ψ 1/n (t) = e itθ/n 1 1 -i σ √ 2κ t 1/n 1 1 + i σκ √ 2 t 1/n
, ψ 1/n is indeed the characteristic function of a random variable Y admitting the representation

Y d = θ n + Y 1 -Y 2 ,
where Y 1 and Y 2 are independent gamma random variables both with shape parameter 1/n and scale parameters σ/( √ 2κ) and σκ/ √ 2, respectively. The last assertion enables us to conclude that the Laplace distributions, symmetric or asymmetric, are infinitely divisible, property that is shared with its spacings (see below). (Note that the exponential model (σ = 0) and the degenerate model (µ = σ = 0) are evidently infinitely divisible.)

3 Spacings for a Kotz-Kozubowski-Podgórski generalized Laplace parent distribution Let (X 1 , . . . , X n ) be a random sample from a population with the p.d.f. (2.3) and the d.f. (2.4). Since from (2.4) the probabilities associated to the half-lines ]θ, +∞[ and ] -∞, θ] are p κ = 1/(1 + κ 2 ) and q κ = κ 2 /(1 + κ 2 ), respectively, (2.3) and (2.4) can be rewritten as follows:

f (x; θ, κ, σ) = q κ √ 2 σκ e √ 2(x-θ)/σκ , x ≤ θ p κ √ 2κ σ e - √ 2κ(x-θ)/σ , x > θ and F (x; θ, κ, σ) = q κ e √ 2(x-θ)/σκ , x ≤ θ 1 -p κ e - √ 2κ(x-θ)/σ , x > θ .
(Observe that p κ ≥ q κ if 0 < κ ≤ 1.) Let (X 1:n , . . . , X n:n ) be the corresponding vector of ascending order statistics and let the spacings (first-order gaps) be defined as:

S j,n = X j+1:n -X j:n , j = 1, . . . , n -1.
Since θ and σ are a location and scale parameters, respectively, in this case, we shall consider, without loss of generality, θ = 0 and σ = 1. The joint p.d.f. of (X j:n , X j+1:n ) is given by

f j,j+1:n (x, y) =          2n!p κ q j κ (j-1)!(n-j-1)! e √ 2jx/κ e √ 2y/κ 1 -q κ e √ 2y/κ n-j-1 , x < y ≤ 0 2n!p n-j κ q j κ (j-1)!(n-j-1)! e √ 2jx/κ e - √ 2κ(n-j)y , x ≤ 0 < y 2n!p n-j κ q κ (j-1)!(n-j-1)! e - √ 2κx e - √ 2κ(n-j)y 1 -p κ e - √ 2κx j-1
, 0 < x < y , hence the p.d.f. of the spacing S j,n is 

f S j,n (s) = -s -∞ f j,j+1:n (x, x + s)dx+ + 0 -s f j,j+1:n (x, x + s)dx + ∞ 0 f j,j+1:n (x, x + s)dx , s > 0 . Since (1) -s -∞ f j,j+1:n (x, x + s)dx = (n -j) n j B q κ (j + 1, n -j) √ 2j k e - √ 2js/κ , where B p (a, b) = p 0 t a-1 (1 -t) b-1 dt, a, b > 0, 0 < p < 1,
∞ 0 f j,j+1:n (x, x + s)dx = j n j B p κ (n -j + 1, j) √ 2κ(n -j)e - √ 2κ(n-j)s , (3) 
we have: Introducing a random variable Y ∼ Binomial (n, q κ ), it follows from the well known relation between the incomplete beta function and the binomial expansion that

(i) If j = nq κ , f S j,n (s) = I p κ (n -j + 1, j) - jp κ nq κ -j n j q j κ p n-j κ √ 2κ(n-j)e - √ 2κ(n-j)s + + I q κ (j + 1, n -j) + (n -j)q κ nq κ -j n j q j κ p n-j κ √ 2j
f S j,n (s) = P (Y ≤ j -1) - jp κ nq κ -j P (Y = j) √ 2κ(n -j)e - √ 2κ(n-j)s + + P (Y ≥ j + 1) + (n -j)q κ nq κ -j P (Y = j) √ 2j κ e - √ 2js/κ , s > 0 . (3.1)
Denoting the quantities in brackets in (3.1) by

p = P (Y ≤ j -1) - jp κ nq κ -j P (Y = j)
and q = P (Y ≥ j + 1) + (n -j)q κ nq κ -j P (Y = j) , we observe, for example, for κ = 1/2 (q κ = 1/5), n = 10 and j = 3 that

f S 3,10 (s) = 39682048 √ 2 9765625 e -7 √ 2s/2 - 9432618 √ 2 9765625 e -6 √
2s , s > 0 (p 1.161 and q -0.161). In this case we have the density function of a generalized exponential mixture, not a classical exponential mixture as (3.1) might indicate at first.

All the cases studied, considering many values for n, κ and j, suggest that when j < nq κ then p < 0 and q > 0, while for j > nq κ we have p > 0 and q < 0. However, we haven't been able to prove this as a fact or find an example where it fails.

(ii) In the case j = nq κ , we obtain which is recognized as the density function of a gamma mixture.

In the case that (3.1) is the density function of a two component generalized exponential mixture, its infinite divisibility is easily established (cf. [START_REF] Steutel | Note on the infinite divisibility of exponential mixtures[END_REF]). We recall that classical exponential mixtures, i.e., with positive mixing proportions, are infinitely divisible. On the other hand, noticing that the scale parameters in (3.2) are equal, the infinite divisibility of S nq κ ,n follows from the fact that it is a power mixture of gamma distributions, where the support of the power mixing distribution is {1, 2}, a subset of (0, 2] (cf. [START_REF] Steutel | Infinite Divisibility of Probability Distributions on the Real Line[END_REF]).

  κ , with I p (a, b) = B p (a, b)/B(a, b) (incomplete beta function ratio).

f

  S j,n (s) = f Snq κ ,n (s) = [1 -P (Y = nq κ )] √ 2nκp κ e -√ 2nκp κ s + + P (Y = nq κ )( √ 2nκp κ ) 2 s e -√ 2nκp κ s , s > 0 , (3.2)