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Tail dependence of skewed grouped

t-distributions

Konrad Banachewicz and Aad van der Vaart

Dept. Mathematics, Vrije Universiteit Amsterdam, De Boelelaan 1081a

1081 HV Amsterdam, The Netherlands

Abstract

We derive the upper tail dependence coefficient (TDC) for a random vector following
a grouped skewed t-distribution. We also analyze the impact of parameter changes
on the TDC.

Key words: Multivariate distribution, tail dependence

1 Introduction

The upper tail dependence coefficient of a random vector (X1, X2) with mar-
ginal distribution functions F1 and F2 is defined as the limit (if it exists)

λ: = lim
u↑1

P
(

F1(X1) ≥ u|F2(X2) ≥ u
)

.

We are interested in this quantity for (X1, X2) possessing a skewed, grouped

t-distribution, which can be defined structurally by the equations

X1 =
γ

G−1
µ (U)/µ

+
Z1

√

G−1
µ (U)/µ

, X2 =
δ

G−1
ν (U)/ν

+
Z2

√

G−1
ν (U)/ν

, (1)

for numbers γ, δ, µ > 0, ν > 0, a bivariate normal vector (Z1, Z2) with mean
0, variances 1 and correlation ρ, a uniform random variable U independent
of (Z1, Z2), and for Gµ the cumulative distribution function of a chi-square
distribution with µ degrees of freedom.

Email addresses: konradb@few.vu.nl (Konrad Banachewicz), aad@cs.vu.nl
(and Aad van der Vaart).
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Multivariate distributions of this type have been found useful in financial risk
analysis, where increasing globalization of financial markets and relaxation of
regulations have lead to increased dependency between financial assets. Quan-
tification of such dependencies is important in risk management, in particular
of dependencies between upper extremal values. As argued in e.g. ? and ?, the
linear (Pearson) correlation coefficient, which is still commonly used together
with a Gaussian copula, is inadequate in many practical situations. The upper
tail dependence coefficient provides an alternative, and is particularly sensi-
tive to dependencies among extremes. It is zero for Gaussian distributions, but
traverses a full range of values for the family of multivariate t-distributions.
Because this family is based on a small set of parameters, it can be easily fitted
to (financial) data, where it often gives a reasonable fit. The Gaussian copula
is contained in the t-family as the extreme case with degrees of freedom equal
to infinity. Reviews of other dependency measures are given by ?, ? and ?.

The ordinary multivariate t-distribution is defined as the distribution of the
vector

√
WZ for Z a multivariate normal vector and 1/W an independent

chisquare variable. For increased flexibility this family has been extended in
two ways. The grouped t-distribution, put forward in ?, allows for nonidentical
marginal distributions by replacing the scalar product by a coordinate-wise
product

√
WZ of vectors

√
W and Z, where the vector 1/W has chisquare

marginals of different degrees of freedom that are perfectly dependent (in
the sense of a trivial copula). Second the skewed t-copula, introduced in ?,
allows for asymmetric marginal distributions by considering the distribution
of the vector αW +

√
WZ. These definitions are valid in any dimension, but

since the tail dependence coefficient is a bivariate measure, in our situation it
suffices to consider bivariate vectors. Then definition (1) encompasses both the
grouped copula and the skewed t-copula as special cases, to which it reduces
by choosing δ = γ = 0 or µ = ν, respectively. Further discussion of so-called
meta-t-distributions can be found in ?.

Tail dependence in the ordinary t-distribution was considered by ?, among
others. In this paper we extend these results to the full family of grouped,
skewed t-distributions. Tail dependence in the symmetric grouped t-distribu-
tions depends in a complicated manner on the three parameters (µ, ν, ρ), as
shown in Theorem 2.1 and illustrated in Figures A.3 and A.4. Tail dependence
in the skewed distributions is strongly dependent on the signs of the skewness
parameters. For positive γ and δ the upper tails of the variables X1 and
X2 are determined by the skewing variables, and tail dependence is complete
(λ = 1). For negative skewing parameters the symmetric parts of the variables
are responsible for the upper tails (which we show to be exponential) and the
tail dependence is 0. A nontrivial tail dependence parameter is obtained when
one marginal is positively skewed and the other symmetric.

That skewing leads to trivial values of the tail dependence coefficient seems
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disappointing from a modelling perspective. Skewing was introduced to im-
prove the fit of the t-distribution, but turns out to change the dependence in
the tails completely.

2 Main result

The main result of the paper is the following theorem characterizing the ex-
treme properties of the grouped skewed-t distribution. Because the upper tail
coefficient is symmetric in X1 and X2, to compute it in the case that µ 6= ν
we may assume without loss of generality that µ > ν.

Let Φ be the standard normal cumulative distribution function and let gν be
the density of the chisquare distribution with ν degrees of freedom. Set

lµ,ν =

(

2µ/2Γ ((µ + 1)/2)

2ν/2Γ ((ν + 1)/2)

)1/µ

, kµ,ν =

(

2µ/2Γ ((µ + 1)/2)

2
√

π

)1/µ

. (2)

Theorem 2.1 The upper tail coefficient of the vector (X1, X2) defined in (1)
is given by:

(1) If µ > ν and γ = δ = 0, then

λ = 1 −
∫ ∞

0
Φ

(

lµ,νt
ν/(2µ) − ρ

√
t√

1 − ρ2

)

gν+1(t) dt.

(2) If µ = ν and γ = δ = 0, then it is the same expression, but multiplied by
2.

(3) If γ > 0 and δ > 0, then λ = 1.
(4) If γ < 0 and δ < 0, then λ = 0.
(5) If γ < 0 and δ > 0, then λ = 0.
(6) If γ = 0 and δ < 0, then λ = 0.
(7) If γ = 0 and δ > 0, then

λ =
∫ 1

0

(

1 − Φ
(

kµ,νu
1/µ
)

du.

Figures A.3 and A.4 show the numerical value of the tail dependence coefficient
in cases (1) and (2). Each plot gives the value of λ, computed by numerical
integration, as a function of two of the three parameters µ, ν, ρ with the third
parameter fixed at the value as indicated. Scatterplots illustrating the cases
(3)-(5) are shown in Figures A.1 to A.2.
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3 Proofs

We use the notation f(x) � g(x) for x → a if f(x)/g(x) → 1 as x → a, and
f(x) ∼ g(x) for x → a if f(x)/g(x) tends to a finite positive limit as x → a.

Recall that F1 and F2 are the marginal distribution functions of X1 and X2,
and Gν is the distribution function of the chisquare distribution with ν degrees
of freedom. Let f1, f2 and gν be the corresponding density functions. It will
be convenient to use the abbreviations

f(x) = F−1
1 ◦ F2(x), g(x) =

√

G−1
µ ◦ Gν(x2), S2 = G−1

ν (U).

The representation (1) can be written as

X1 =
γ

g(S)2/µ
+

Z1

g(S)/
√

µ
, X2 =

δ

S2/ν
+

Z2

S/
√

ν
. (3)

The upper tail dependence coefficient can be reexpressed as

λ : = lim
x→∞

P
(

X1 ≥ F−1
1 ◦ F2(x)|X2 ≥ x

)

= lim
x→∞

P
(

X1 ≥ f(x), X2 ≥ x
)

P(X2 ≥ x)

= lim
x→∞

∫∞
f(x)

∫∞
x pX1,X2(s, t) dt ds

P(X2 ≥ x)
(4)

= lim
x→∞

− ∫∞f(x) pX1,X2(s, x) ds − ∫∞
x pX1,X2

(

f(x), t) dt f ′(x)

−pX2(x)

= lim
x→∞

[

P
(

X1 ≥ f(x)|X2 = x
)

+
f1(x)

f2(x)
P
(

X2 ≥ x|X1 = f(x)
)

f ′(x)

]

.

Here we have used de l’Hôpital’s rule to derive the third equality, and pX1,X2

is the density of the vector (X1, X2).

For easy reference we recall the behaviour of the tails of the chisquare and t-
distributions. The marginal distribution of S2 is χ2

ν = Γ(ν
2
, 1

2
). It follows that,

as x ↓ 0,

Gν(x) =
∫ x

0
dνe

−t/2tν/2−1 dt � xν/2dν
2

ν
, dν = (1

2
)ν/2 1

Γ(ν
2
)
. (5)

Using Lemma 3.1 (below) we can invert this into the statement, for u ↓ 0,

G−1
ν (u) �

(

u

2dν/ν

)2/ν

= 2u2/νΓ
(

ν

2
+ 1

)2/ν

. (6)
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Taken together this yields, for x ↓ 0,

g(x) � dµ,ν xν/µ, dµ,ν =
√

2
Γ(µ/2 + 1)1/µ

Γ(ν/2 + 1)1/µ

(

1
2

)ν/(2µ)
. (7)

The density fν of the t-distribution with ν degrees of freedom is given by

fν(x) = cν

(

1 +
x2

ν

)−(ν+1)/2

, cν =
Γ
(

(ν + 1)/2
)

Γ(ν/2)
√

πν
.

It follows that the corresponding distribution function Fν satisfies, as x → ∞,

1 − Fν(x)�
∫ ∞

x
cν

(

s2

ν

)−(ν+1)/2

ds = cνν
(ν−1)/2x−ν . (8)

Using Lemma 3.1 we can invert this to see that, for u ↑ 1,

F−1
ν (u) � c1/ν

ν ν(ν−1)/(2ν)(1 − u)−1/ν .

Lemma 3.1 Let F be a cumulative distribution function of a distribution on
(0,∞) and F−1 its quantile function.

(1) If 1 − F (x) � cx−k as x → ∞, then F−1(1 − u) � (c/u)1/k as u ↓ 0.
(2) If F (x) � cxk as x ↓ 0 for some k > 0, then F−1(u) � (u/c)1/k as u ↓ 0.
(3) If 1 − F (x) � cxke−γx as x → ∞ for some γ > 0, then F−1(1 − u) �

−(log u)/γ as u ↓ 0.

Proof If the assumption of (1) holds, then, for any r > 0,

lim
u↓0

1 − F
(

r(c/u)1/k
)

u
=

1

rk
.

Monotonicity shows that if r < 1, then r(c/u)1/k ≤ F−1(1 − u) eventually,
whereas if r > 1, then r(c/u)1/k ≥ F−1(1 − u) eventually. This proves (1).
Assertion (2) follows similarly. Under assumption (3),

lim
u↓0

1 − F
(

−r(log u)/γ
)

u

is ∞ for r < 1 and 0 for r > 1, and assertion (3) follows. �

3.1 The symmetric case (1) and (2)

Assume that γ = δ = 0. The result is different in the cases that µ = ν or
µ > ν. If µ = ν, then the marginal densities coincide, f ′(x) = 1, and the two

5
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terms in the sum in the last line of (4) are identical. We shall show that in
the case that µ > ν the second term in this sum gives zero contribution to the
limit. It is then clear that the tail independence coefficient in the case that
µ = ν is twice the expression we obtain in the case µ > ν.

The marginal distributions F1 and F2 are t-distributions with µ and ν degrees
of freedom, respectively. It follows that the strictly increasing function f =
F−1

1 ◦ F2 satisfies, as x → ∞,

f(x) � cµ,νx
ν/µ, cµ,ν =

(

cµ

cν

)1/µ µ(µ−1)/(2µ)

ν(ν−1)/(2µ)
. (9)

The derivative of f is equal to f ′ = f2/(f1 ◦ f), and hence, as x → ∞,

f1(x)

f2(x)
f ′(x) =

f1(x)

f1 ◦ f(x)
∼ x(µ+1)(ν/µ−1).

We conclude that this factor tends to zero for µ > ν. Because the probability
P
(

X2 ≥ x|X1 = f(x)
)

is bounded, the second term on the right in (4) is
negligible in this case.

The conditional density of S2 given X2 satisfies, by Bayes’ rule,

pS2|X2=x2
(t) ∝ pX2|S2=t(x2)p

S2

(t) ∝
√

t

ν
e−

1
2

x2

2
t/ν e−t/2tν/2−1

∝ e−
1
2
(x2

2
/ν+1)t t(ν+1)/2−1 .

It follows that given X2 the variable S2 possesses a Γ
(

ν +1)/2, (X2
2/ν +1)/2

)

-

distribution, whence the variable (X2
2/ν + 1)S2 is chisquare distributed with

ν + 1 degrees of freedom and is independent of X2.

In view of the bivariate normal distribution of (Z1, Z2), the conditional dis-
tribution of Z1 given Z2 = z2 is normal with mean ρz2 and variance 1 − ρ2.
We can write this structurally as the distribution of ρz2 +

√
1 − ρ2W for a

standard normal variable W , independent of Z2 and S.

With gν the density of the chisquare distribution with ν degrees of freedom,

6
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P(X1 ≥ x1|X2 = x2)

=
∫

P
(

X1 ≥ x1|X2 = x2, (X
2
2/ν + 1)S2 = t

)

p(X2

2
/ν+1)S2|X2=x2(t) dt

=
∫

P

(

Z1
√

µ

g(S)
≥ x1 | Z2 =

√

t

x2
2/ν + 1

x2√
ν
,

(

x2
2

ν
+ 1

)

S2 = t

)

gν+1(t) dt

=
∫

P







ρ
√

t/(x2
2 + ν) x2 +

√
1 − ρ2W

g
(√

tν/(x2
2 + ν)

)

√
µ ≥ x1





 gν+1(t) dt.

In the last two steps we have first rewritten the conditioning event in terms
of Z2 and S2 and next used the conditional distribution of Z1 found in the
preceding paragraph. We can now reexpress the right side of (4) as

lim
x→∞

∫

P

(

√

1 − ρ2W ≥ f(x)√
µ

g

(

√

tν

x2 + ν

)

− ρ
√

tx√
x2 + ν

)

gν+1(t) dt.

By the dominated convergence theorem, we can exchange the order of limit
and integral, and by continuity of the Gaussian distribution function, we see
that it suffices to compute

lim
x→∞

[

f(x)√
µ

g

(
√

tν

x2 + ν

)

− ρ
√

tx√
x2 + ν

]

.

The second term obviously tends to ρ
√

t. For the first term we use (7) and
(9). The final result is that, for µ > ν,

λ = 1 −
∫ ∞

0
Φ

(

cµ,νdµ,νν
ν/2µµ−1/2tν/(2µ) − ρ

√
t√

1 − ρ2

)

gν+1(t) dt. (10)

This can be reduced to the expression given in the theorem. For µ = ν this
should be multiplied by 2.

3.2 The positively skewed case (3)

Assume that γ > 0 and δ > 0. We shall show that the upper tails of the
variables X1 and X2 are in this case dominated by the “skewing” variables
γ/g(S)2 and δ/S2. Because these possess a deterministic increasing relation-
ship, the result is an upper tail coefficient equal to 1. For simplicity of notation
we replace the constants µ and ν in the algebraic definitions (3) of X1 and
X2 by 1 (meanwhile keeping these constants in the definitions of S and g the
same).

7
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To make this precise it suffices to show that

lim
x→∞

P
(

δ/S2 + Z2/S ≥ x
)

P
(

δ/S2 ≥ x
) = 1, (11)

and, for f = F−1
1 ◦ F2, as x → ∞,

lim
x→∞

P
(

γ/g(S)2 + Z1/g(S) ≥ f(x), δ/S2 + Z2/S ≥ x
)

P
(

γ/g(S)2 ≥ f(x), δ/S2 ≥ x
) = 1, (12)

and, for f̄ = F̄−1
1 ◦ F̄2, with F̄1 and F̄2 the marginal distribution functions of

X̄1 = γ/g(S)2 and X̄2 = δ/S2,

lim
x→∞

P
(

γ/g(S)2 ≥ f(x), δ/S2 ≥ x
)

P
(

γ/g(S)2 ≥ f̄(x), δ/S2 ≥ x
) = 1. (13)

The first two displays show that the central t-variables in the probabilities
given in the denominator and numerator in the second line of (4) can be deleted
without changing the limit. The third display shows that in the resulting
quotient the function f , which is based on the true marginals F1 and F2, can be
replaced by the corresponding function f̄ defined from the marginals of X̄1 and
X̄2. Because X̄1 = γ/g(S)2 can be written as a monotone, continuous function

of X̄2 = δ/S2, the corresponding copula, the distribution of
(

F̄1(X̄1), F̄2(X̄2)
)

,

is equal to the distribution of (U, U) for a uniform variable U . Hence given
(11), (12) and (13) it follows without further calculations that the upper tail
dependence coefficient is 1.

For any function r: R+ → R
+,

P
(

δ

S2
+

Z2

S
≥ x

)

≤P
(

δ

S2
≥ x − r(x)

)

+ P
(

Z2

S
≥ r(x)

)

� dν
2

ν

(

δ

x − r(x)

)ν/2

+ O

(

1

r(x)ν

)

,

in view of (5) and (8), if x−r(x) → ∞ and r(x) → ∞. We choose r(x) = x3/4,
so that r(x)/x → 0 and r2(x)/x → ∞ as x → ∞. The second term on the
right is negligible relative to the first, and the first is equivalent to the upper
tail of the variable δ/S2. It follows that the limit in (11) is smaller than 1.
To prove that it is bigger than 1 we argue similarly that, for any function
t: R+ → R

+ and y such that t(y) > y > 0,

8
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P
(

δ

S2
+

Z2

S
≥ y − t(y)

)

≥P
(

δ

S2
≥ y, Z2 ≥ −

√

δ

y
t(y)

)

≥P
(

δ

S2
≥ y

)(

1 − e−
1
2
(δ/y)t2(y)

)

,

by the independence of S and Z2 and a bound on the left tail of the normal
distribution. We can choose t(y) = y3/4 and y − t(y) = x (for x > 1), so that
y � x for x → ∞ to conclude the proof of (11).

We have now also proved that 1 − F2(x) is equivalent to dν(2/ν)(δ/x)ν/2 as
x → ∞, whence by symmetry 1− F1(x) is equivalent to the same expression,
but with (µ, γ) instead of (ν, δ). Then we find that f = F−1

1 ◦ F2 satisfies, as
x → ∞,

f(x) �
1
2
γ

(1
2
δ)ν/µ

(

Γ(ν/2 + 1)

Γ(µ/2 + 1)

)2/µ

xν/µ. (14)

For r: R+ → R
+ as before and s = f 3/4: R+ → R

+, so that s(x)/f(x) → 0 and
s(x)2/f(x) → ∞, the numerator of (12) is bounded above by

P

(

γ

g(S)2
≥ f(x) − s(x),

δ

S2
≥ x − r(x)

)

+ P

(

Z1

g(S)
≥ s(x)

)

+ P
(

Z2

S
≥ r(x)

)

≤ P

(

S ≤ g−1
(

√

γ

f(x) − s(x)

)

∧
√

δ

x − r(x)

)

+ O
(

1

s(x)µ

)

+ O
(

1

r(x)ν

)

.

The behaviour of the function g is given in (7), from which it follows that

g−1(u) ∼ uµ/ν as u ↓ 0. Consequently the functions x 7→ g−1 ◦
√

(γ/f)(x) and

x 7→
√

δ/x have the same order as x → ∞. We conclude that the first term

on the right is of the order x−ν/2 and the last two terms on the far right are
negligible relative to the first, as x → ∞. This shows that the limit in (12)
is bounded above by 1. To conclude the proof of (12) we bound, for given
functions t and u,

P
(

γ

g(S)2
+

Z1

g(S)
≥ f(y) − u(y),

δ

S2
+

Z2

S
≥ y − t(y)

)

≥ P
(

γ

g(S)2
≥ f(y),

δ

S2
≥ y

)

P
(

Z1 ≥ −
√

γ

f(y)
u(y), Z2 ≥ −

√

δ

y
t(y)

)

.

The second probability on the right can be seen to converge to 1 as y → ∞
if u2 and t2 are chosen to increase faster to infinity than f and the identity.
We can achieve this with functions such that f(y)−u(y) = f(x), y− t(y) = x
and f(y) � f(x) and y � x. This completes the proof of (12).

9
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Finally, to prove (13) we write both probabilities as left tail probabilities for
S and use (5). Thus it suffices to show that f̄(x) � f(x), as x → ∞. This is
implicit in the proof of (14).

For later reference we state the exact order of the tails of the marginal distri-
bution of a positively skewed t-variable. Interestingly, its order is the root of
the order of the tail of the symmetric t-distribution with the same number of
degrees of freedom. The following lemma follows from from (11) and (5).

Lemma 3.2 For δ > 0 and ν > 0, as x → ∞,

P
(

δ

S2/ν
+

Z2

S/
√

ν
≥ x

)

� (δν/2)ν/2

Γ(ν/2 + 1)

(

1

x

)ν/2

.

3.3 The negatively skewed case (4)

Consider the case that γ < 0 and δ < 0. Negative skewing decreases the
right tails. The (proof of the) following lemma shows that the tails at x arise
predominantly from values of the Gaussian variables Zi near 4|δ|√x combined
with values of S of the order 1/

√
x.

Lemma 3.3 For δ < 0 and ν > 0, as x → ∞,

P

(

δ

S2/ν
+

Z2

S/
√

ν
≥ x

)

� ν(−δν/2)ν/2−1

4Γ(ν/2)

(

1

x

)ν/2+1

e2xδ.

Proof. The event δ/S2 + Z2/S ≥ x is empty if D: = Z2
2 + 4xδ < 0 and can

otherwise be rewritten as Z2 −
√

D ≤ 2xS ≤ Z2 +
√

D. Because D ≤ Z2
2 this

interval for 2xS is contained in (0,∞) and necessarily Z2 > 0. Writing Gν for
the distribution function of S2, we find that

P

(

δ

S2
+

Z2

S
≥ x

)

=

= E1Z2

2
≥4x|δ|,Z2≥0



Gν





(

Z2 +
√

D

2x

)2


− Gν





(

Z2 −
√

D

2x

)2








� eνE1Z2

2
≥4x|δ|,Z2≥0

[(

Z2 +
√

D

2x

)ν

−
(

Z2 −
√

D

2x

)ν]

, (15)

for eν = (2/ν)dν . The last step is explained by (5) and can be argued rigorously
as follows. We note first that, for 0 < a < b,

∣

∣

∣

∣

Gν(b) − Gν(a)

eν(bν/2 − aν/2)
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ b
a (ν/2)tν/2−1(e−t/2 − 1)

(bν/2 − aν/2)
dt

∣

∣

∣

∣

≤ max
a<t<b

|e−t/2 − 1| . b.

10
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For r(x) → ∞ the usual bounds on the normal tail give P(Z2 ≥ r(x)) ≤
e−r(x)2/2 and EZν

2 1Z2≥r(x) . r(x)ν−1e−r(x)2/2. For r(x) = x3/4 and x → ∞ both

terms are smaller than e−xk

for some k > 1 and hence of smaller order than
the order of the upper tail claimed in the lemma. The random variable in the
expectation on the right of (15) is bounded by a multiple of |Z2|ν, because
D ≤ Z2

2 . Therefore, if we restrict the expectations in the middle and right
side of (15) to the event Z2 ≤ r(x) this makes a difference of O(exp(−xk)),
which is of smaller order than the order claimed in the lemma. It therefore
suffices to prove the equivalence (15) for the two expectations restricted to the
event Z2 ≤ r(x). On this event we have b: = (Z2 +

√
D)2/(2x)2 ≤ r(x)2/x2,

and hence the difference between the two expectations in (15) restricted to
the event Z2 ≤ r(x) is bounded above by

eνE1Z2

2
≥4x|δ|,Z2≥0

(

r(x)

x

)2
[

(

Z2 +
√

D

2x

)ν

−
(

Z2 −
√

D

2x

)ν
]

.

Because r(x)/x → 0 this is negligible relative to the right side of (15). Thus
(15) has been justified.

The right side of (15) can be expressed as an integral relative to the χ2
1-density

of Z2
2 , as

eν

2(2x)ν

∫ ∞

4x|δ|

[(√
s +

√
s + 4xδ

)ν −
(√

s −
√

s + 4xδ
)ν] (1

2
)1/2

Γ(1/2)
s−1/2e−s/2 ds

=
eν

(2x)ν

(1
2
)3/2e−y/2

Γ(1/2)

∫ ∞

0

[(√
s + y +

√
s
)ν −

(√
s + y −

√
s
)ν] e−s/2

√
s + y

ds,

where y = 4x|δ| → ∞. Because (a + b)ν − (a − b)ν � 2νaν−1b for a → ∞ and
fixed b, the last display is asymptotically equivalent to

eν

(2x)ν

(1
2
)3/2e−y/2

Γ(1/2)

∫ ∞

0

[

2ν
(√

s + y
)ν−1√

s
] 1√

s + y
e−s/2 ds

=
eν

(2x)ν

(1
2
)3/2e−y/2

Γ(1/2)
(
√

y)ν−22ν
∫ ∞

0

(

√

s

y
+ 1

)ν−2 √
se−s/2 ds.

The integral tends to Γ(3/2)23/2, as y → ∞. The lemma follows upon replacing
δ and x by δ

√
ν and x/

√
ν and simplifying this expression. �

For the proof of (4) of the main theorem we again simplify notation by taking
µ = ν = 1 in the algebraic definitions of X1 and X2. It follows from the
preceding lemma that the marginal distribution functions in the negatively
skewed case satisfy 1 − F1(x) � c1e

2γxx−k1 and 1 − F2(x) � c2e
2δxx−k2 , for

some constants c1, c2, k1, k2, for x → ∞. Inverting the first relationship yields

11
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F−1

1 (1 − u) � (2γ)−1 log u, for u → 0, and hence, for x → ∞,

f(x) � δ

γ
x.

The conditional distribution of Z1 given (S, Z2) is normal with mean ρZ2 and
variance 1 − ρ2. Because the event γ/g(S)2 + Z1/g(S) ≥ C(δ/γ)x is empty if
Z2

1 + 4Cxδ < 0, we have for |ρ| < 1 and any C > 0,

P

(

γ

g(S)2
+

Z1

g(S)
≥ Cδx

γ
,

δ

S2
+

Z2

S
≥ x

)

≤ P

(

Z2
1 + 4Cxδ > 0,

δ

S2
+

Z2

S
≥ x

)

= 2E1 δ

S2
+

Z2

S
≥x



1 − Φ





√

4C|δ|x − ρZ2√
1 − ρ2







 .

Choose constants c and C such that ρ2 < c2 < C < 1, so that c2/ρ2 > 1
and Cδx/γ < f(x) for large x. The left side of the preceding display can be
bounded above by

2P
(

ρZ2 > c
√

4|δ|x
)

+ 2E1 δ

S2
+

Z2

S
≥x



1 − Φ





(
√

C − c)
√

4|δ|x
√

1 − ρ2







 .

The first term is of order o(e2δxc2/ρ2

) and the second term is
(

1−F2(x))
[

o(1)
]

.

Thus both terms are of smaller order than 1 − F2(x), as x → ∞. Together
with (4) this proves Theorem 2.1 in the case that γ < 0 and δ < 0.

3.4 The combined positively and negatively skewed case (5)

Consider the case that γ < 0 and δ > 0. For any function r: R+ → R
+,

P
(

γ

g(S)2
+

Z1

g(S)
≥ f(x),

δ

S2
+

Z2

S
≥ x

)

≤ P
(

Z1 ≥ f(x)g(S) +
−γ

g(S)
,

δ

S2
≥ x − r(x)

)

+ P
(

Z2

S
≥ r(x)

)

≤ E1δ/S2≥x−r(x)

(

1 − Φ
(

f(x)g(S) +
−γ

g(S)

))

+ P
(

Z2

S
≥ r(x)

)

.

The second term on the right is O(r(x)−ν) if r(x) → ∞, by (8). The function

s 7→ f(x)s − γ/s is bounded below by 2
√

−γf(x) on (0,∞). Therefore the
argument in the normal distribution function in the first term tends to infinity
uniformly in g(S). It follows that the preceding display is

E1δ/S2≥x−r(x)o(1) + O
(

r(x)−ν
)

.

12
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Here for r(x)/x → 0, the expectation in the first term is equivalent to 1−F2(x),
as x → ∞, by (11), which is of bigger order than the second term if r2(x)/x →
∞ by Lemma 3.2. A reference to (4) completes the proof.

3.5 The combined symmetric and negatively skewed case (6)

In the case that γ = 0 and δ < 0 the variable X1 is tµ-distributed and hence
possesses a polynomial upper tail, while the upper tail of X2 is exponentially
small, by Lemma 3.3. It follows that, as x → ∞,

f(x) ∼ e2x|δ|/µx(ν/2+1)/µ.

If S ≤ 1/x, then δ/S2 + Z2/S > x implies that Z2 > xS − δ/S > |δ|x. Hence

P
(

Z1

g(S)
> f(x), S ≤ 1

x
,

δ

S2
+

Z2

S
> x

)

≤ P
(

Z2 > |δ|x
)

is subGaussian and hence of smaller order than the tail of X2. It follows that

P
(

Z1

g(S)
> f(x),

δ

S2
+

Z2

S
> x

)

≤ P
(

Z1 > f(x)g(S), S > 1/x
)

+ o
(

1 − F2(x)
)

≤ P
(

Z1 > f(x)g(1/x)
)

+ o
(

1 − F2(x)
)

.

Because f(x)g(1/x) is exponentially large as x → ∞, the first term is sub-

Gumbel and also o
(

1 − F2(x)
)

. Thus the limit in the second line of (4) is
0.

3.6 The combined symmetric and positively skewed case (7)

Consider the case that γ = 0 and δ > 0. The tails of X2 are in this case
determined by the skewing variable. For the marginal distribution this follows
from (11). An argument similar to the one given in Section 3.2 also gives

lim
x→∞

P
(

Z1/g(S) ≥ f(x), δ/S2 + Z2/S ≥ x
)

P
(

Z1/g(S) ≥ f(x), δ/S2 ≥ x
) = 1. (16)

In view of (4) the tail index can therefore be computed for the variables
X1 =

√
µZ1/g(S) and X ′

2 = δν/S2. The function f can be seen to satisfy, as
x → ∞,

f(x) � c1/µ
µ µ(µ−1)/(2µ)

(

Γ(ν/2 + 1)2ν/2

(νδ)ν/2

)1/µ

xν/(2µ).

13
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With gν the density of S2 we have

P
(

X1 > f(x), X ′
2 > x

)

=
∫ δν

0

(

1 − Φ
(f(x)g

(√

u/x
)

√
µ

)

gν

(

u

x

)

du

x
.

Here, as x → ∞,

gν(u/x)/x

Gν(δν/x)
� (u/x)ν/2−1e−u/(2x)dν/x

(δν/x)ν/2dν2/ν
→ νuν/2−1

2(δν)ν/2
,

where the convergence is pointwise in u and the functions on the left are
uniformly bounded in u ≤ δν. Furthermore,

f(x)g
(
√

u/x
)

→
Γ
(

(µ + 1)/2
)1/µ√

µ21/2−1/µ

π1/(2µ)(νδ)ν/(2µ)
uν/(2µ),

also pointwise in u, as x → ∞. An application of the dominated conver-
gence theorem and subsequent algebraic simplication shows that the quotient
P
(

X1 > f(x), X ′
2 > x

)

/Gν(δν/x) tends to the expression given in (7) of the
theorem.

14
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Fig. A.1. Scatter plots of random samples from symmetric, grouped t-distribution
(δ = γ = 0). Top to bottom: Gaussian (µ = ν = ∞), regular t (ν = µ = 4) and
grouped t (ν = 4, µ = 12) copula with correlation ρ = 0.5
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Fig. A.2. Scatter plots of random samples from grouped skewed t-distribution
(µ = 4, ν = 12, ρ = 0.5) with different combinations of skewing parameters. Top to
bottom: {γ > 0, δ > 0} and {γ < 0, δ > 0}
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Fig. A.3. Tail dependence coefficient λ as a function of µ and ν with fixed correlation
ρ = 0.5 and δ = γ = 0.
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Fig. A.4. Tail dependence coefficient λ as a function of µ and ρ with fixed degrees of
freedom on the first coordinate µ = 6 and δ = γ = 0. The ridge is the discontinuity
at µ = ν.
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