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Non-linear closed-form computational model of cable trusses

S. Kmet and Z. Kokorudova

Faculty of Civil Engineering, Technical University of Kosice, Vysokoskolska 4, 
042 00 Kosice, Slovak Republic

Abstract

In this paper the non-linear closed-form static computational model of the pre-stressed 

suspended biconvex and biconcave cable trusses with unmovable, movable, or elastic yielding 

supports subjected to vertical distributed load applied over the entire span and over a part 

(over the half) of the span is presented. The paper is an extension of the previously published 

work of authors [1]. Irvine’s linearized forms of the deflection and the cable equations are

modified because the effects of the non-linear truss behaviour needed to be incorporated in

them. The concrete forms of the system of two non-linear cubic cable equations due to the 

load type are derived and presented. From a solution of a non-linear vertical equilibrium 

equation for a loaded cable truss, the additional vertical deflection is determined. The 

computational analytical model serves to determine the response, i.e. horizontal components 

of cable forces and deflection of the geometrically non-linear biconvex or biconcave cable 

truss to the applied loading, considering effects of elastic deformations, temperature changes 

and elastic supports. The application of the derived nonlinear analytical model is illustrated by 

numerical examples. Resulting responses of the symmetric and asymmetric cable trusses with 

various geometries (shallow and deep profiles) obtained by the present non-linear closed-form 

solution are compared with those obtained by Irvine’s linear solution and those by the non-

linear finite element method. The conditions for the use of the linear and non-linear approach 

are briefly specified.  

Keywords: Cable truss; Non-linear closed-form solution; System of cubic cable equations; 
Linear and non-linear behavior

1. Introduction

Light weight pre-stressed cable trusses offer an economical and efficient alternative 

for many structural problems. Their use is widely accepted in projects that require coverage of 

large areas. A review of computational methods for tension structures can be found in [2]. 
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Most of the recent methods of non-linear analysis of cable trusses are based on the 

discretization of the equilibrium equations using the finite element method (FEM) and solving 

the resulting non-linear algebraic equations by numerical methods [3-8]. Kassimali and Parsi-

Feraidoonian [4] investigated the non-linear behaviour and the ultimate strength of pre-

stressed cable trusses including consideration of the effects of large displacements, slackening 

of members and inelastic material properties. Kanno et al. [9] derived a special method for 

friction and friction-less analysis of non-linear elastic cable structures based on second-order 

cone programming. Brew and Lewis [10] proposed an efficient numerical tool for a better 

integration of the design and analysis with the manufacture of tension membrane structures.

The common approach to these investigations is to study the cable structure as a 

geometrically non-linear system. There have been only a few published analytical studies on 

non-linear solutions. Due to the mathematical derivation difficulties that can arise in the non-

linear closed-form solution, numerical methods are by far the most popular. Nevertheless,

some linear analytical work has been attempted. 

Comprehensive analytical treatments on the cable trusses have been given by Schleyer 

[11], Møllmann [12,13] and by Irvine [14]. Their linearized approximate theories provide

consistent methods for finding the static response of a perfectly flexible and elastic, hinge-

suspended cable truss to applied loads. However, little attention is paid to the closed-form 

non-linear analysis of a cable truss suspended on elastic supports. Rakowski [15] proposed a 

special non-linear closed-form solution for cable trusses: a non-linear task replaced by the 

linear one. For this purpose the equivalent loading parameters were derived and used. Sultan 

et al. [16] presented the general pre-stressability conditions for tensegrity structures, which 

can be analytically solved.  

The approximate analytical methods on a linear static analysis of the cable trusses are 

presented in further works, e.g., Baron and Venkatesan [17], Urelius and Fowler [18], 

Moskalev [19], Kadlcak [20] and Buchholdt [21]. Their results lead to simple methods for 

preliminary dimensioning of various types of cable structures. An interesting discussion of the 

relative merits of the truss configurations used to support large span roofs can be found in 

Krishna et al. [22]. Kmet [23] proposed a linearized solution of pre-stressed cable trusses with 

rheological properties. Raoof and Davies [24] theoretically demonstrated that, in view of the 

rather small axial load perturbations under serviceability state conditions, use of the more 

appropriate no-slip stiffness (as opposed to the traditionally used full-slip value) leads to 

practically significant reductions in the estimated values of the vertical deflections of the 

cable truss.
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Irvine [14] investigates a static response of the cable trusses using the linearized 

engineering analytical theory of the suspended cable. He neglected all second-order terms that 

appear in the differential equations of equilibrium and in the cable equations. However, 

significant nonlinearities can occur in a response of the truss with different initial geometries 

and material properties of the carrying and stabilizing cables. That is why the authors focus on 

these problems, and elaborating on them they start with the work of Irvine [14], which has 

been further complemented. The present paper is an extension of the previously published 

work of authors [1]. Compared to a previous work [1], new load types such as a load applied 

over a part and over the half of the truss span have been added.  

In this paper a non-linear closed-form static computational model of a biconvex and 

biconcave suspended cable truss subjected to various types of static load is presented. 

Concrete forms of the system of two non-linear cubic cable equations and the deflection 

functions are derived. The application of the derived non-linear analytical model is illustrated 

by numerical examples. Resulting responses of the symmetric and asymmetric cable trusses 

with various geometries (shallow and deep profiles) obtained by the present non-linear 

closed-form solution are compared with those obtained by Irvine’s linear solution and those 

by the non-linear finite element method, when COSMOS/M software [25] is used. The 

conditions for use the linear and non-linear approach are briefly specified.  

2. Initial assumptions 

The profile geometries of the biconcave and biconvex cable trusses are shown in Fig.

1. The profiles of the bottom and top chords, respectively, are assumed to be parabolic and 

given by 

                                          � � bbbb b
l
x

l
xbdz ��

�
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 ��� 14

                                                                                                                                                  (1)

                                           � � tttt b
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�
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 ��� 14                                                   

where l is the span of the cable truss. In the case of biconcave truss, sag of the carrying cable 

is given as tt dbs �� and camber of the stabilizing cable is bb dbc �� . For the biconvex 
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truss, sag of the carrying cable is given as bb bds �� and camber of the stabilizing cable is 

tt bdc �� .

           The non-linear closed-form static analysis of the biconvex or biconcave cable trusses, 

initially symmetric about a vertical axis at mid-span, will proceed on the following 

assumptions: perfectly flexible cables, working only in tension and having zero stiffness in

compression and bending. The relatively small weight of the cables and the spacers will be 

ignored, so that the initial free-hanging geometry will be specified by the cable pretensions, 

the lengths of the spacers, and the span. It will be assumed that the slopes of the chords are, 

and remain small, so that the maximum difference between spacer length and distance of the 

chords at the supports should be less than one-quarter of the span. In practical applications 

this requirement will always be met. Only trusses with vertical spacers or ties will be 

considered. In the analysis the spacers and the ties will be replaced by a continuous 

diaphragm whose adjacent vertical elements may slide freely with respect to each other. Each 

vertical element of the diaphragm is considered inextensible. The small longitudinal 

movements of the chords associated with the vertical movements of the truss under load must 

be allowed to occur freely. The analysis will be hold for biconcave systems under uniformly 

distributed load symmetrical about mid-span if the chords are clamped together at mid-span. 

The derivations will be performed for the biconvex cable truss, all results obtained can be 

equally applied to the biconcave case. 

3. Vertical deflections for some characteristic loading types  

Suppose that under applied vertical loading q , the shear force at some cross section x

along the span is Q . Following Irvine [14], vertical equilibrium at a cross section of the 

biconvex cable truss further requires that (see Fig. 2)

� � � � � � � � Q
dx

wzdHH
dx

wzdHH t
tt

b
bb �

�
��

�
� 

 00                                                              (2)

where bH0 and tH0 are the horizontal components of the pretensions in the bottom and top 

chords, respectively, bH
 and tH
 are the additional horizontal components of cable tension 

owing to the applied load, bz and tz are the initial profiles of the chords given by Eqs. (1), 

and w is the additional vertical deflection. Consideration of the internal equilibrium of the 
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unloaded truss, given by the expression dxdzHdxdzH ttbb 00 � , allows Eq. (2) to be 

reduced to     

� � � � Q
dx
dzH

dx
dzH

dx
dwHH

dx
dwHH t

t
b

btbtb �
�
�
�
�� 00                                              (3)

The non-linear differential equation (3) may be integrated directly, and after the 

boundary conditions have been applied, the equation for the vertical deflection of a biconvex 

cable truss is obtained in the form 

� � � �
��

�
�
�

�
�
�

�
�
�
	



���

��

�
�
�

�
�
�

�
�
�
	



���

���
� 2

2

2

2

00
441

l
x

l
xbdH

l
x

l
xbdHM

HHHH
w tttbbb

ttbb







   (4)                        

Under a vertical uniformly distributed load q applied over the entire span of the truss (Fig. 

3a), the bending moment M in Eq. (4) is 

                                                      �
�
�

�
	

 ��

l
xxqlM 1

2
                                                                (5)

Under a uniformly distributed load q extending from ax � to bx � along the span of the 

truss (Fig. 3b), the bending moments are

                                             � � � �� �blab
l

qxab
l

qxM ����� 2
2

                                              (6)

for ax ,0� ,

                                 � � � �� �
222

22
2 qaqaxqxblab

l
qxab

l
qxM ��������                            (7)

for bax ,� , and

                              � � � �� � � �
222

22
2 qaqbabqxblab

l
qxab

l
qxM ���������                      (8)

for lbx ,� .

Under a uniformly distributed load q applied over the left half of the span from 0�x to

2lx � (Fig. 3c), the bending moments are

                                                      �
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for 2,0 lx � , and
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                                                           � �xlqlM ��
8

                                                             (10)

for llx ,2� .

4. System of cubic cable equations for some characteristic loading types 

To complete the solution, bH
 and tH
 must be evaluated. Use is made of the cable 

equations that incorporate Hooke’s law and temperature effects to provide closure conditions 

relating the changes in cable tensions to the changes in cable geometries when the bottom and 

top cables are displaced (in plane) from their original initial equilibrium profiles. The 

geometry of these displacements for a biconvex truss is shown in Fig. 4. If   bds and tds are 

the original lengths of the bottom and top element, respectively, and bsd and tsd are their 

new lengths, then 222
bb dzdxds �� ,    � � � �222 dwdzdudxsd bbb ���� ,     222

tt dzdxds ��    

and � � � �222 dwdzdudxsd ttt ���� where bu , tu and w are the longitudinal and vertical 

components of the displacements for the corresponding cables, respectively. If the profiles of 

the bottom and top cables are flat so that the ratio of their sag to span (and/or camber to span) 

is 1:8 or less (due to the application of the engineering theory of suspended cables with the 

parabolic profiles), fractional changes in their lengths, corrected to the second order, are

2
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�
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                                                                             (11)

Here the Hooke’s law requires that

dx
ds

AE
H

ds
dssd b

bb

b

b

bb 

�

�      

dx
ds

AE
H

ds
dssd t

tt

t

t

tt 

�

�                                                                                                              (12)

where bE and tE are the moduli of elasticity of the bottom and top chords, respectively, and 

bA and tA are the cross-sectional areas of the cable chords.
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If the effects of a uniform temperature difference of bbb TTT 0��
 and/or 

ttt TTT 0��
 (where 0T and T are the initial and design temperatures, respectively) are 

considered, terms bTb T
� �� and tTt T
� �� need to be added to the elemental equations, 

where � is the coefficient of expansion. On the basis of Eqs. (11) and (12), cable equations 

for the bottom and top elements can be written as
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                                                                 (13)

After respective multiplication of equations (13) by � �2dxdsb and � �2dxdst , one obtains
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If the effects of elastic cable deformations (assuming Hooke’s law, temperature change and 

the fractional change in length of the bottom and top cables) are corrected to the second order, 

cable equations for a biconvex cable truss follow in the integrated form as

� � � � � �
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0 2
10                                          (15)                        

where � �lub and � �0bu and/or � �lut and � �lut are the longitudinal movements of the bottom 

and top supports, respectively. The left side members ebL , etL , TbL and TtL of Eqs. (15) 

characterizing the lengths of the unloaded cables are given by                                                   
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where 2
,

22
, tbtb dzdxds �� , � �2,, 1 dxdzdxds tbtb �� , and the first two terms of the binomial 

series are considered. 

The additional horizontal components of cable tension bH
 and tH
 , caused by the 

applied distributed load q , are found from the system of two non-linear coupled cable 

equations given by Eqs. (15). Because dzdw is continuous along the span, the selected 

entries on the right side of Eqs. (15) can be evaluated by integration by parts and Eqs. (15) 

can be rewritten as                

� � ����
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0 0
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0 0
2

2

2

2

2
1�                                                         (17)                         

where parameters bB and tB characterize the boundary conditions at the supports of bottom 

and top cables, respectively, in the longitudinal direction. For unmovable supports 0�bB

and 0�tB , for movable supports in horizontal direction � � � �0bbb uluB �� and 

� � � �0ttt uluB �� if the horizontal support movements of � �0bu and � �lub and/or � �0tu and 

� �lut occur at each bottom and top end of the truss. For elastic supports in the horizontal 

direction � � � �lffB xbxbb �� 0 and � � � �lffB xtxtt �� 0 , where the horizontal support 

flexibilities of � �0xbf and � �lf xb and/or � �0xtf and � �lf xt respectively occur at each bottom 

and top end of the truss. 

Substituting the deflection equation (4) into Eqs. (17) and performing the necessary 

integration, the following coupled system of cubic cable equations for bH
 and tH
 is found 

as                                                                                                                                              

08765
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The coefficients bic and tic for 8...2,1�i in Eqs. (18) depend on the type of the applied load 

and are defined in the Appendix (Eqs. (A1) and (A2) for a vertical uniformly distributed load 

q applied over the entire span of the truss). The deflection equation (4) and the cubic cable 

equations (18) are sufficient to obtain a non-linear closed-form solution for the dependent 

variables w , bH
 and tH
 .                                                                                                                                 

In the case of a vertical uniformly distributed load q applied from ax � to bx �

along the span of the truss cable equations (15) can be written as
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where the deflections 1w , 2w and 3w , obtained from Eq. (4), correspond to the individual 

characteristic parts of the truss span: aw ,01 � , baw ,2 � and lbw ,3 � . Substituting the 

individual deflection Eq. (4) into Eqs. (19) and performing the necessary integration the 

identical coupled system of cubic cable equations (18) for bH
 and tH
 can be found. The 

coefficients of Eqs. (18) are defined by Eqs. (A1) and (A2) in the Appendix, except 7bc , 8bc , 

6tc and 8tc which are defined by Eqs. (A3) and (A4).

In the case of a vertical uniformly distributed load q applied over the left half of the 

span from 0�x to 2lx � cable equations (15) are written as
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where the deflections 1w and 2w , obtained from Eq. (4), correspond to the individual 

characteristic parts of the truss span: 2,01 lw � and llw ,22 � . Substituting the 

individual deflection Eq. (4) into Eqs. (20) and performing the necessary integration the 

identical coupled system of cubic cable equations (18) for bH
 and tH
 can be found. The 

coefficients of Eqs. (18) are defined by Eqs. (A1) and (A2) in the Appendix, except 7bc , 8bc , 

6tc and 8tc which are defined by Eqs. (A5) and (A6).
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To solve the nonlinear cable equations (18) Newton-Raphson iterations were applied. 

All the derived equations and results are equally applicable to biconvex and biconcave 

cable trusses. In the case of a biconvex truss � �bb bd � and/or � �tt bd � are positive and bH


and tH
 calculated from the Eqs. (18) are also positive. For the resulting values of the 

bottom and top horizontal components of cable forces holds true

                                                bbb HHH 
�� 0

                                                                                                                                                (21) 

                                                 ttt HHH 
�� 0                                                                         

In the case of a biconcave truss � �bb bd � and/or � �tt bd � are negative and bH
 and tH


calculated from Eqs. (18) are also negative. Substituting bH
� and tH
� into Eqs. (21), the 

resulting values of horizontal components of cable forces are in the form

                               

                                               bbb HHH 
�� 0

                                                                                                                                                (22)

                                               ttt HHH 
�� 0                                                                       

In the deflection Eq. (4) it is necessary to substitute all terms with the corresponding signs. 

The additional deflection is of course still positive. 

5. Comparison with finite element results

In order to verify the accuracy of the nonlinear analytical model developed in this 

study, solutions have been generated for the cable truss with immovable supports previously 

examined by Kassimali and Parsi-Feraidoonian [4]. The non-linear finite element method was

used in [4]. The structure analyzed was a symmetric biconcave cable truss with a span 

60�l m and the cross-sectional areas of the bottom and top cables 23m1031 �� ..Ab

and 23m1002 �� ..At , shown in Fig. 5. The moduli of elasticity of both cables 

are 28kNm10481351 ��� ..EE tb . The initial horizontal components of pretension in the 
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bottom and top chord are 60358800 .HH tb �� kN. There is a vertical uniformly distributed 

load 1kNm918 �� .q applied over the left half of the span. Seven different loading levels q , 

q2 , q3 , q4 , q5 , q6 and q7 were considered. The following data for the geometrical 

quantities are specified: 50.dd tb �� m and 524.bb tb �� m (see Fig. 5).

In the case of the closed-form analysis, five ties symmetrically situated along the truss 

span are replaced by a continuous diaphragm.

Vertical deflections w in the third of the truss span versus applied loads obtained by 

the present non-linear closed-form solution (when Eqs. (18) with the coefficients from Eqs. 

(A1), (A2), (A5) and (A6) and Eq. (4) and Eq. (9) are used) and by non-linear FEM [4] are 

shown in Fig. 6. Results confirmed a good agreement.

   The deflection course of the cable truss under a load 1kNm918 �� .q obtained by the 

present solution (when Eq. (4) and Eqs. (9) and (10) are used) is shown in Fig. 7.

6. Linear and non-linear behaviour of cable trusses

Consider a biconcave initially symmetric and asymmetric cable truss about the 

longitudinal axis (see Fig.1) with a span m60�l and cross-sectional areas of the bottom and 

top cables 23m1031 �� ..Ab and 23m1002 �� ..At . The moduli of elasticity of both cables 

are 28 kNm1051 ��� ..EE tb . There is a vertical uniformly distributed load 1kNm010 �� .q

applied over the entire span. In the case of the closed-form analysis, the ties with a large axial 

stiffness are replaced by a continuous diaphragm.

Resulting responses of the symmetric and asymmetric cable trusses with various 

geometries (shallow and deep profiles) obtained by the present non-linear closed-form 

solution are compared with those obtained by Irvine’s linear solution and those by the non-

linear FEM, when COSMOS/M software [25] is used. 

In the case of a symmetric truss the initial horizontal components of pretensions in the 

bottom and top chord are 060000 .HH tb �� kN. Eight different span-to-sag ratios of the top 

carrying cable that are equal to eight span-to-camber ratios of the bottom stabilizing cable, 

�� clsl 7.5, 10, 12.5, 15, 17.5, 20, 22.5 and 25 are considered. The following data for the 

geometrical quantities are specified:  �� tb bb 8.5, 6.5, 5.3, 4.5, 3.93, 3.5, 3.17 and 2.9 m and 

50.dd tb �� m. 
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Results, i.e. horizontal components of cable forces in the bottom bbb HHH 
�� 0

and top chord ttt HHH 
�� 0 (see Fig. 8 and Fig. 9) and vertical deflections w in the mid-

span of the truss under applied load versus the span-to-sag ratio sl of the carrying cables 

(see Fig. 10) obtained by the present non-linear closed-form solution are compared with those 

obtained by the linear solution (when Irvine’s linear analytical model is applied) and those by 

non-linear FEM (when software COSMOS/M is used). 

In the case of an asymmetric truss eight different span-to-sag ratios of the top carrying 

cable, �sl 7.5, 10, 12.5, 15, 17.5, 20, 22.5 and 25 were considered. The span-to-camber ratio 

of the bottom stabilizing cable was kept constant at �cl 25 for all mentioned cases. The 

following data for the geometrical quantities are specified: 92.bb � m, �tb 8.5, 6.5, 5.3, 4.5, 

3.93, 3.5, 3.17 and 2.9 m, and 50.dd tb �� m. The initial horizontal component of pretension 

in the bottom chord is 06000 .H b � kN. The initial horizontal component of pretension in the 

top chord tH0 is calculated according to the changing value of sag (at the middle of span) of 

the carrying cable from the equation of internal equilibrium for the initial pre-stressed 

unloaded asymmetric truss, which can be written as scHH bt 00 � .                 

Results, i.e. horizontal components of cable forces in the bottom bbb HHH 
�� 0

and top chord ttt HHH 
�� 0 (see Fig. 11 and Fig. 12) and vertical deflections w in the 

mid-span of the truss under applied load versus the span-to-sag ratio sl of the carrying 

cables (see Fig. 13) obtained by the three mentioned approaches are compared. This

demonstrates that there are differences between the responses of the investigated cable trusses 

obtained by the linear and non-linear analyses.   

As shown in Fig. 8 and Fig. 11 the differences between the resulting horizontal 

components of cable forces at the bottom chords of trusses and between the deflections (Fig. 

10 and Fig. 13) obtained by the linear and non-linear solution are more significant as the

span-to-sag ratio sl of the carrying cables increases. Deflection response is overestimated, 

which is conservative, while additional tension in the chords is underestimated when the 

linear theory is assumed.

In the case of a symmetric truss the differences in the resulting deflections begin at the 

span-to-sag ratio 5.17�sl as shown in Fig. 10. In the case of an asymmetric truss are these 

differences more significant and they already occur at the span-to-sag ratio 5.12�sl as

shown in Fig.13.
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When a symmetric or asymmetric truss is initially flat (shallow truss with the small 

sag and camber), i.e. when the span-to-sag ratio of carrying cables increases the differences 

between the results obtained by the linear and non-linear theory can not be ignored as they are 

significant and the non-linear solution need to be performed. 

Results show that the responses obtained by the present non-linear closed-form 

computational model are of a very good agreement with those obtained by the nonlinear FEM 

when COSMOS/M software is used.     

7. Conclusions

In this paper the non-linear closed-form static solution of the pre-stressed suspended 

biconvex and biconcave cable trusses with unmovable, movable, or elastic yielding supports 

subjected to vertical distributed load applied over the entire span and over a part (over the 

half) of the span has been presented. Irvine’s linearized forms of the deflection and the cable 

equations were modified because of the effects of the non-linear truss behaviour. The concrete 

forms of the system of two non-linear cubic cable equations due to the load type were derived 

and presented. From a solution of a non-linear vertical equilibrium equation for a loaded cable 

truss, the additional vertical deflection was determined. The computational analytical model 

serves to determine the response, i.e. horizontal components of cable forces and deflection of 

the geometrically non-linear biconvex or biconcave cable truss to the applied loading, 

considering effects of elastic deformations, temperature changes and elastic supports. 

The application of the derived non-linear analytical model was illustrated by 

numerical examples. Verification of the results was performed and the behaviour of the 

symmetric and asymmetric pre-stressed cable trusses with various initial geometries was

investigated. Results, i.e. horizontal components of cable forces in the bottom and top chord 

and vertical deflections in the mid-span of the truss under applied load versus the span-to-sag 

ratio of the carrying cables obtained by the present non-linear closed-form solution were 

compared with those obtained by the linear solution when Irvine’s linear analytical model was 

applied and those by non-linear FEM when software COSMOS/M was used. 

The obtained results confirm the correctness of the derived equations and their 

mathematical and physical importance.

To compare the non-linear structural analysis results obtained by the other analytical 

or numerical methods and to perform a quick reliability assessment of cable trusses: that is 

why this new closed-form model is useful.
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It is believed that the non-linear solution presented will lead to an improved closed-

form analysis of cable trusses in the non-linear range.  
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Appendix

In the case of a vertical uniformly distributed load q applied over the entire span of 

the truss, the individual coefficients of Eqs. (18) are
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- for the top cable
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In the case of a vertical uniformly distributed load q applied from ax � to bx �

along the span of the truss, are the coefficients of Eqs. (18) defined by Eqs. (A1) and (A2) 

except 7bc , 8bc , 6tc and 8tc which are

- for the bottom cable
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In the case of a vertical uniformly distributed load q applied over the left half of the 

span from 0�x to 2lx � , are the coefficients of Eqs. (18) defined by Eqs. (A1) and (A2) 

except 7bc , 8bc , 6tc and 8tc which are

- for the bottom cable
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- for the top cable
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Figure Captions

Fig.1. Profile geometry for biconcave and biconvex cable truss.

Fig. 2. Vertical equilibrium of a loaded biconvex cable truss.

Fig. 3. Characteristic loading types.

Fig. 4. Displacements of elements of bottom and top cables in a loaded biconvex cable truss.

Fig. 5. Geometry and loading of a biconcave cable truss [4].

Fig. 6. Vertical deflections of a cable truss at various loads obtained using the present non-
linear closed-form model and discrete finite element method proposed by Kassimali and 
Parsi-Feraidoonian [4].

Fig.7. Vertical deflection course of a cable truss obtained using the present non-linear closed-
form computational model.

Fig. 8. Horizontal component of cable force in bottom chord of symmetric cable truss at 
various span-to-sag ratios obtained using linear and non-linear approaches.  

Fig. 9. Horizontal component of cable force in top chord of symmetric cable truss at various 
span-to-sag ratios obtained using linear and non-linear approaches.  

Fig. 10. Mid-span vertical deflection of symmetric cable truss at various span-to-sag ratios 
obtained using linear and non-linear approaches.  

Fig. 11. Horizontal component of cable force in bottom chord of asymmetric cable truss at 
various span-to-sag ratios obtained using linear and non-linear approaches.  

Fig. 12. Horizontal component of cable force in top chord of asymmetric cable truss at 
various span-to-sag ratios obtained using linear and non-linear approaches.  

Fig. 13. Mid-span vertical deflection of asymmetric cable truss at various span-to-sag ratios 
obtained using linear and non-linear approaches.  
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