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We study the stability characteristics of the Molecular Stress Function (MSF) model, i.e. a constitutive theory based on molecular arguments that extends the original Doi-Edwards theory to the case of branched polymers and without assuming that the tension in the deformed polymer chain is equal to its equilibrium value. We derive analytical, closed-form conditions for Hadamard stability under general 3-D high-frequency, shortamplitude wave disturbances in bi-quadratic form, which reduce to simple algebraic criteria for the cases of 1-D and 2-D disturbances. Application of the derived conditions in the case of general biaxial extension, which provides a simplified description of many industrial polymer-forming processes such as blow-molding, fibber spinning and film casting, shows that the MSF is Hadamard unstable, casting doubts on its elastic response under rapid extensional deformations such as those encountered in industry; the threshold of instability in terms of strain is around 2. The region of instability widens with the strengthening of network connectivity or the alignment strength of the flow. Dissipative stability of the MSF is examined using two necessary criteria: The first and less restrictive criterion requires the stress to be monotonically and unboundedly increasing function of strain in uniaxial elongation and simple shear. The second criterion requires the free energy and the rate of energy dissipation to be bounded functions of deformation.

We find that while MSF satisfies the first stability criterion, violates the second, revealing thermodynamic inconsistencies in formulating the dissipative terms of the constitutive equation.

Introduction

The apparent success of the Doi-Edwards constitutive theory in explaining nonlinear viscoelasticity of entangled linear polymer fluids thirty years ago sparked a still ongoing flurry of activity aiming in providing molecular explanations in rheology modeling. A large part of this activity is motivated by the realization that in polymers the dependence of the viscoelastic (VE) memory on deformation is not "universal" but depends on the macromolecular architecture: strain-thinning is diminished with the extent of long chain branching, especially when this is due to the formation of internal (doublecrosslinked) branches. The reason is that, following a sudden deformation, the presence of appropriately positioned chemical bonds (branch ends) contributes to some remaining segmental stretching, which along with segmental orientation, accentuates stress survival. Therefore, the type and degree of branching as well as the branch length and location (internal vs. external, i.e., crosslinked on both ends vs. tethered) improve the connectivity of the temporary (since we are dealing with liquids) polymer network, reduce entanglement destructibility upon deformation and, therefore, smooth the nonlinear viscoelastic character of the fluid. Consequently, molecular or phenomenological constitutive models owe to accommodate a range of network connectivity strengths; in both flexible polymer liquids [START_REF] Doi | Dynamics of concentrated polymer systems Part 2 -Molecular motion under flow[END_REF][START_REF] Doi | Dynamics of concentrated polymer systems. Part 3 -The constitutive equation[END_REF][START_REF] Mcleish | Tube theory of entangled polymer dynamics[END_REF][START_REF] Kroger | Simple models for complex non-equilibrium fluids[END_REF][START_REF] Larson | Constitutive Equations for Polymer Melts and Solutions[END_REF][START_REF] Pearson | Recent advances in the molecular aspects of polymer viscoelasticity[END_REF][START_REF] Doi | The Theory of Polymer Dynamics[END_REF][START_REF] Leygue | A tube-based constitutive equation for polydisperse entangled linear polymers[END_REF][START_REF] Mcleish | Molecular constitutive equations for a class of branched polymers: Pom-Pom polymer[END_REF][START_REF] Marrucci | A 2D model for tube orientation and tube squeezing in fast flows of polymer melts[END_REF][START_REF] Marrucci | Flow-induced orientation and stretching of entangled polymers[END_REF][START_REF] Tsenoglou | Simple constitutive modelling of nonlinear viscoelasticity under general extension[END_REF][START_REF] Tanner | Simple constitutive models for linear and branched polymers[END_REF][START_REF] Verbeeten | Differential constitutive equations for polymer melts: the extended Pom-Pom Model[END_REF] and solids [START_REF] Bloch | The behaviour of rubberlike materials in moderately large deformations[END_REF][START_REF] Graessley | Entangled linear, branched and network polymer systems[END_REF][START_REF] Tsenoglou | Rubber Elasticity of Cross-Linked Networks with Trapped Entanglements and Dangling Chains[END_REF][START_REF] Haughton | On non-linear stability in unconstrained non-linear elasticity[END_REF] this increases with the ratio of permanent cross-links over temporary entanglements.

One such constitutive equation (CE) is the MSF model, proposed by Wagner et al. which is especially developed to calculate the elongational stresses of entangled polymers; it is derived by generalizing the strain energy function of the Doi-Edwards model in a way that covers a wide spectrum of degrees of dispersity and branching (Br), starting from a purely linear chain where Br = 0. Moreover, the strain measure of the MSF differs from the one of the Doi-Edwards in such a way, that, contrary to the latter theory, it takes into account the change of the tension in the ends of the deforming Nevertheless, in real polymer processes, complex and three -dimensional flows, in the region of high Deborah numbers, are encountered. Employment of the constitutive theories in such cases has been hindered by the appearance of several types of instabilities, not observed in real life, during numerical simulation, reflecting the poor formulation of the CEs. The purpose of this paper is to study the stability of the MSF, which is a quite versatile constitutive scheme.

As explained by Kwon and Leonov [START_REF] Kwon | Stability constraints in the formulation of viscoelastic constitutive equations[END_REF], viscoelastic CEs, may be plagued by two types of mathematical instabilities: the Hadamard and the dissipative instability. The Hadamard instability means the ill-posedness of the solution under sudden or high frequency wave disturbances and, therefore, addresses the elastic character of a CE. The dissipative instability addresses its viscous character; for differential CEs is caused by improper formulation of dissipative terms which, in an integral CE, are hidden inside the `hereditary functional'. Testing a score of CEs [START_REF] Kwon | Stability constraints in the formulation of viscoelastic constitutive equations[END_REF] showed that few fulfil the tough constraints for both Hadamard and dissipative stability. Unless one neglects inertial terms (and sometimes even then), unstable CEs lead to unphysical prediction of flow properties and implementation problems in trying to solve them numerically; these are especially true in high Deborah number (De) flows.

The set of a CE concerning a viscoelastic liquid plus the continuity equation and equation of motion with which it is coupled may be defined as Hadamard stable (or evolutionary stable, or well-posed) when its solution at any time provides the complete initial conditions for determining the solution at subsequent times [START_REF] Rutkevich | Some general properties of equations of viscoelastic incompressible fluid dynamics[END_REF]. Thus, Hadamard stability allows solutions to propagate in the positive direction of the time axis.

Otherwise, blow-up instability occurs very quickly, even with extremely short wave
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disturbances. This results in progressive failure of numerical calculations; the finer the mesh, the worse will be the degradation of the results [START_REF] Lee | Practical comparison of differential viscoelastic constitutive equations in finite element analysis of planar 4:1 contraction flow[END_REF][START_REF] Vaithianathan | Numerical approach to simulating turbulent flow of a viscoelastic polymer solution[END_REF][START_REF] Lee | New formulations, positivity preserving discretizations and stability analysis for non-Newtonian flow models[END_REF]. In many cases, one can treat the Hadamard instability as a blow-up type increase in the amplitude of initially infinite small waves of disturbances as the wavelength tends to zero. This type of instability can be associated with a nonlinear rapid response of the CE; i.e., the CE should possess a perfect elastic limit and, furthermore, its elastic potential should be thermodynamically stable. Therefore, Hadamard instability depends on such quasiequilibrium properties as the differential operator in the evolution equation of a differential CE model or the elastic potential of an integral model. Moreover, Hadamard stability is closely related with thermodynamic admissibility constrains, such as the Baker -Ericksen inequality and the strong ellipticity condition [START_REF] Truesdell | Static grounds for inequalities in finite strain of elastic materials[END_REF]48]. If a CE is Hadamard stable then it follows that:

• The greater principal force corresponds always to the greater principal stretch

• The curve of principal stretch against the corresponding principal force, when the other principal forces are kept constant, slopes upward

• The curve of principal force against the corresponding principal stretch, when the other principal stretches are kept constant, slopes upward

• The force-stretch relations are uniquely invertible

In some cases, regularization of ill-posedness may be achieved. The most common remedy is the addition of a small newtonian term to the stress. However, in complex flow simulation, this may not be enough to suppress numerical instability, and when the newtonian term becomes larger, the description of the CE deviates from the experimental data of viscoelastic liquids.

Dissipative instabilities, on the other hand, result from the poor formulation of the viscous terms of the CE, and may occur even if the rate of energy dissipation is positive definite. Their study was initiated by Leonov [START_REF] Leonov | Analysis of simple constitutive equations for viscoelastic liquids[END_REF] and was based on the general Maxwell fluid. The motivation was that the upper convected Maxwell model, although globally Hadamard stable, displays the unbounded growth of stress in simple extension, when the elongation rate exceeds the half of the reciprocal relaxation time. For VE fluids describable by a differential CE, subject to any regular flow with a given history, Leonov proposed a sufficient condition (close to the necessary one) for dissipative stability [START_REF] Leonov | Analysis of simple constitutive equations for viscoelastic liquids[END_REF].
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The corresponding conditions for a single integral time -strain separable with exponential type memory CE fluid were derived in [START_REF] Kwon | On instabilities of single-integral constitutive equations for viscoelastic liquids[END_REF]. It is noticeable that, in many viscoelastic flows knowledge of both strain and stress history is necessary for a proper dissipative stability analysis [START_REF] Leonov | Analysis of simple constitutive equations for viscoelastic liquids[END_REF][START_REF] Kwon | On instabilities of single-integral constitutive equations for viscoelastic liquids[END_REF]. Several patterns of pathological behavior related to dissipative instability, predicted for 1D flow by some popular variations of Maxwell-like CEs are exposed in [START_REF] Kwon | On 1D instabilities in simple shear and extensional flows as predicted by some Maxwell-like constitutive equations[END_REF]. For stability, it is necessary that both the steady flow curves in simple shear and simple elongation are monotonically and unboundedly increasing [START_REF] Kwon | On 1D instabilities in simple shear and extensional flows as predicted by some Maxwell-like constitutive equations[END_REF].

By reviewing the literature, one discovers that Hadamard stability (the most studied of the two types) was initiated for viscoelastic fluid models by Rutkevich [START_REF] Rutkevich | Some general properties of equations of viscoelastic incompressible fluid dynamics[END_REF] and Godunov [START_REF] Godunov | Elements of Continuum Mechanics[END_REF]. Significant results obtained until the late 1980's are summarized by

Joseph [START_REF] Joseph | Fluid Mechanics of Viscoelastic Liquids[END_REF]. These studies dealt with Hadamard stability of specific differential VE constitutive equations, both time-strain separable and non-separable, for specific flows, employing the method of characteristics to derive the stability criteria. They had also focused on specifying the functional form of the evolution operator of the Cauchy tensor for these CEs.

Kwon and Leonov [START_REF] Kwon | Stability constraints in the formulation of viscoelastic constitutive equations[END_REF][START_REF] Kwon | On instabilities of single-integral constitutive equations for viscoelastic liquids[END_REF][START_REF] Kwon | On Hadamard-type stability of single-integral constitutive equations for viscoelastic liquids[END_REF] have studied Hadamard stability of a variety of both differential and time -strain factorable integral Kaye-Bernstein Kearsley Zapas (K-BKZ) VE constitutive equations. The strain measure of the fluid models is the Cauchy tensor, which is supposed to be positive definite and its time evolution is described by a linear differential operator. Their results were obtained by employing standard perturbation analysis of small amplitude and extremely short and high frequency waves of disturbances imposed on a basic flow. They have shown that this technique, called the method of "frozen coefficients", is equivalent to the more general method of characteristics.

Kwon and coworkers [START_REF] Kwon | On instability of the Doi-Edwards model in simple flows[END_REF][START_REF] Lee | Mathematical characteristics of the pom-pom model[END_REF] shown that the conformation tensor eventually becomes negative.

Rajagopal and Wineman [START_REF] Rajagopal | A constitutive equation for nonlinear solids which undergo deformation induced microstructural changes[END_REF] put forward a general theory to describe the mechanics of solid materials in which microstructural changes are induced due to deformations. Contrary to classical theories, they considered the possibility that as the material is deformed more than a single micromechanism determine the Cauchy stress.

The creation of the second micromechanism is given by an activation criterion similar to a yield condition in plasticity, which is fixed once and forever and there is no evolution of a yield surface. "Inelastic" behavior of materials can be explained within the context of such a theory. Following a more general approach based on thermodynamics, Dunn and They propose a class of schemes that can be used to simulate differential constitutive equations regardless of time and spatial resolution.

In this paper, we derive criteria for Hadamard stability of the MSF model by employing the method of 'frozen coefficients' for any flow situation. Contrary to the existing studies, which for integral CEs have focused on K-BKZ type models, the strain measure of the MSF model is the nonlinear second-order orientation tensor S and MSF is not based on the assignment of the Helmotz free energy, as in the BKZ CEs, but calculates it by appropriate thermodynamic relationships. Two conditions for dissipative stability, a phenomenological and an energy-based one, are thoroughly examined instead of demonstrating either stability or instability in simple cases, as done for CEs based on molecular arguments by previous researchers [START_REF] Kwon | On instability of the Doi-Edwards model in simple flows[END_REF][START_REF] Lee | Mathematical characteristics of the pom-pom model[END_REF].

The MSF constitutive description of nonlinear viscoelasticity
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Any quantitative description of an isothermal incompressible flow is based upon the conservation of mass and momentum:

0 ∇ ⋅ = v (2.1) ( ) t ρ ∂ ⎛ ⎞ + ⋅∇ =∇⋅ ⎜ ⎟ ∂ ⎝ ⎠ v v v T (2.2)
v denotes the particle velocity, ρ the fluid density, T is the total stress tensor,

P = -+ T I σ (2.3)
P is the hydrostatic pressure, I the unit tensor, and σ the extra stress tensor. Here the body forces acting upon the fluid are neglected [START_REF] Bird | Dynamics of polymeric liquids Vol. 1 Fluid mechanics[END_REF]. The rate of change of the deformation gradient tensor, ( )

t, t′ F
, is given by: ( )

; T = ∇ + ∇ v v & F F F
where ( )

' t t = = F I (2.4)
Deformation is expressible in terms of the Hencky strain measure, ε,

= ln ; ε F incompressibility demands 3 1 0 i i tr ε = ≡ = ∑ & & ε (2.5)
Integral CEs, where the strain and time dependence of the memory function may be partitioned, dominate nonlinear viscoelastic modelling in the last third of a century, on the basis of their conformity with phenomenological observations and compliance with molecular theory [START_REF] Larson | Constitutive Equations for Polymer Melts and Solutions[END_REF]. In general, nonlinear viscoelasticity (strain thinning) is due to reversible loss of microstructural connectivity after deformation. The degree of this loss varies with the nature of the material. As already mentioned in the Introduction, Wagner et al. proposed a CE [START_REF] Wagner | A constitutive analysis of uniaxial, equibiaxial and planar extension of a commercial linear high-density polyethylene melt[END_REF][START_REF] Wagner | The strain-hardening behavior of linear and long-chain branched polyolefin melts in extensional flows[END_REF][START_REF] Wagner | Quantitative assessment of strain hardening of LDPE melts by MSF model[END_REF][START_REF] Wagner | Relating molecular structure of model branched polystyrene melts to strain hardening by molecular stress function theory[END_REF] accommodating a wide spectrum of viscoelastic nonlinearity and its relationship with microstructural variations: 

( ) ( ) 2 t M t t f t dt -∞ ′ ′ ′ = - ∫ σ S ( 2 
( ) ( ) ( ) 2 exp ln 1 f β β β ′ = ⋅ + - u F (2.8)
In the original model, the material parameterβ constitutes an inverse measure of network connectivity, and its assigned values were made to range between 0< β ≤1 [START_REF] Wagner | Quantitative assessment of strain hardening of LDPE melts by MSF model[END_REF]. For β = 1 the model follows the Graessley strain dependence (Eq. 57 of Ref. 17) and reproduces the behavior of linear chains. For β = ½ its strain variation resembles that of the classical rubber elasticity theory (Eq. 39 of Ref. 

( ) ( ) ( ) ( ) { } 2 ' 1 1 l n ' t W M t t f dt β β -∞ ′ = - -+ - ⋅ ∫ u F (2.9) ( ) ( ) ( ) 1 2 T dW D tr dt = ∇ + ∇ - v v & σ (2.10)
These last two expressions form the basis of examining Dissipative Stability (Section 4).

Conditions for the Hadamard stability

The most general method for studying Hadamard stability of a CE is by means of the second energy variation; in case it is zero, the sign of higher order variations is examined [START_REF] Haughton | On non-linear stability in unconstrained non-linear elasticity[END_REF]. Complexity and difficulty in obtaining a sufficient stability condition is a major drawback of this standard tool of analysis. A simpler and yet equally general method for quasi-linear equations is that of the "frozen coefficients" [START_REF] Rutkevich | Some general properties of equations of viscoelastic incompressible fluid dynamics[END_REF][START_REF] Joseph | Fluid Mechanics of Viscoelastic Liquids[END_REF]; it is based on the local Let { } 2 , ,P, , , f v T F σ denote a basic solution of the MSF model that satisfies some appropriate initial and boundary conditions. Let a small wave perturbation of the basic solution be written in the following quasi-periodic form:

{ } { } ( ) 2 2 
P P e x p f e f i e

δ δ δ δ δ δ θ = v v T F σ T F σ , , , , , , , , , , (3.1) 
where e is infinitesimally small. The amplitudes of the quasi-periodic disturbances, { } 2 , ,P, , , f v T F σ , and the phase of oscillations, θ, are functions of the slowly-varying space and time coordinates, ex and et, respectively . The three characteristic parameters of the phase of the perturbing oscillations, that is the wave vector k, the frequency ω and the propagation speed u, are defined by the set of equations

j j 1 k x e θ ⎛ ⎞ ∂ ⎛ ⎞ = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ∂ ⎝ ⎠ ⎝ ⎠ , 1 e t θ ω ∂ ⎛ ⎞⎛ ⎞ = -⎜ ⎟⎜ ⎟ ∂ ⎝ ⎠⎝ ⎠ , j j u k ω ⎛ ⎞ = ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ (3.2) 
In addition, frequency and wave vector satisfy the continuity equation 0 k t ω ∂ ∂ +∇ = . In the limit of infinitesimal e, Eq. (3.2) suggests that the frequency and the wave vector tend to infinity, while the propagation speed remains finite. Then, a simple local approximate form of the phase of oscillation, θ, is

(
)

t e θ ω ≅ ⋅ - k x (3.3) 
Since no assumption has been made so far concerning space and time coordinates, the approximate form of the phase of oscillations holds in the vicinity of any point x and time t. The wave perturbation of the basic solution takes the form:

{ } { } ( ) ( ) 2 2 2 P P e x p f e f i t e δ δ δ δ δ δ ω = ⋅- v v kx T F σ T F σ , , , , , , , , , , (3.4) 
Assuming that the wave numbers k t ∂ ∂ are real, thus restricting the form of the imposed spatial disturbances to sinusoidal waves, the stability of the CE is solely determined by the imaginary part of the frequency: if it is strictly positive, the CE is Hadamard unstable; otherwise, it is stable.

A c c e p t e d m a n u s c r i p t

The first step towards investigating the nature of the imaginary part of ω and thus establishing the necessary and sufficient stability conditions necessitates the following change of variables:

{ } { } 2 2 P P P f f f δ δ δ δ δ δ → + + + v v v 2 , , , , , , + , + , , + , T F σ T T F F σ σ
The new variables are substituted into the MSF model, coupled with the continuity and momentum equations. The system of equations that determines the linear stability of the MSF CE is obtained by collecting the lowest order terms of e:

( )

0 j j m m v T k ρ ω -⋅ + = k v (3.5) 0 = m m k v (3.6)
( )
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Given that the LHS of Eq. (3.12) is always non-negative, a sufficient condition for the MSF to be Hadamard stable under isothermal and incompressible conditions is the Q tensor to be positive semi-definite. Suppose that MSF is Hadamard stable, thus Eq. (3.12) holds, and for a given flow history the Q tensor is not positive semi-definite. We consider the particular case of stress relaxation after complex step strain where the applied
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instantaneous Hencky strain is equal to the accumulated Hencky strain of the flow that make Q negative definite. For this particular case, Eq. (3.12) takes the form ( ) ( )

2 j j ijmn i j m n v v G t Q v k v k ρ ω -⋅ = k v (3.13)
It follows by contradiction that MSF cannot be stable and at the same time Q not to be positive semi-definite. As a result, MSF is globally Hadamard stable under threedimensional (3-D) disturbances if and only if the rank-four tensor Q is positive semidefinite:

0 ijmn Q ≥ (3.14)
The Q tensor can be regarded as the sum of a second and a fourth rank tensor, l and L, respectively; each is a function of the normalized product of the deformation gradient tensor with the unit vector,

′ ′ ⋅ ⋅ u u F F . The relationships connecting ′ ′ ⋅ ⋅ u u F F
with the second and a fourth rank tensors are

ij i j l ⎛ ⎞ ⎛ ⎞ ′ ′ ⋅ ⋅ = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ′ ′ ⋅ ⋅ ⎝ ⎠ ⎝ ⎠ u u u u F F F F and ijmn i j m n L ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ′ ′ ′ ′ ⋅ ⋅ ⋅ ⋅ = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ′ ′ ′ ′ ⋅ ⋅ ⋅ ⋅ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ u u u u u u u u F F F F F F F F , respectively.
The special case of Hadamard stability under one-dimensional (1-D) disturbances is studied by setting two amplitudes of the velocity disturbance and of wave vector equal to zero. Then, the necessary and sufficient condition for Hadamard stability (3.14) is reduced to:

( )( ) ( ) ( ) 2 1 2 2 e x p l n 0 , jj iijj jj jj iijj l L l l L i j β β β β - - + + - > ≠ ′ ⋅u F (3.15)
Similarly, for the special case of two-dimensional (2-D) disturbances, one amplitude of the velocity disturbance and one of the wave vector are set equal to zero.

Due to incompressibility, the two non-zero components of the wave vector are linearly related; the proportionality constant is the negative inverse ratio of the corresponding amplitudes of the velocity disturbances. The resulting necessary and sufficient condition for Hadamard stability is:

( ) ( ) ( ) ( ) ( ) 1 2 2 2 1 1 , 2 , exp ln 0, jj ij ii V l L x x xl l l V l L i j x β β β - ⎛ ⎞ ⎛ ⎞ - + + - + - > ≠ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ′ ⋅u F (3.16)
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where ( ) ( )( ) ( ) ( )

1 2 2 1 1 , 2 2 4 - 2 4 - 2 iiii jjjj iiij jjji iijj jj ij ii V l L L L x x L L x x L x x xl l l x - - -⎛ ⎞ = + + + + -+ + - + ⎜ ⎟ ⎝ ⎠ .
We mention in passing that if the memory function M(t) was not factorizable into pure strain and time components, then Eq. (3.14) would constitute a necessary and sufficient condition for Hadamard stability only in the case of a single relaxation time. In the multi-modal unfactorizable case, Eq. (3.14) should pose a necessary condition for each and every relaxation time; the existence of even a single relaxation time falsifying (3.14) makes the whole model Hadamard unstable [START_REF] Leonov | Analysis of simple constitutive equations for viscoelastic liquids[END_REF].

Application in the case of general biaxial extension

In the case of general biaxial extension, which provides a simplified description of many industrial polymer-forming processes such as blow-molding, fibber spinning and film casting, the velocity and the deformation gradient tensors are equal to [START_REF] Larson | Constitutive Equations for Polymer Melts and Solutions[END_REF]:

( )

0 0 0 0 0 0 1 m m ε ε ε ⎡ ⎤ ⎢ ⎥ ∇ = ⎢ ⎥ ⎢ ⎥ -+ ⎣ ⎦ v & & & and ( ) ( ) 1 0 0 , 0 0 0 0 m m t t λ λ λ -+ ⎡ ⎤ ⎢ ⎥ ′ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ F (3.17)
λ is the relative extension ratio, ε λ e = , and m is a geometry-related parameter ranging from -0.5 for uniaxial extension to 1 for biaxial compression. In a spherical coordinate system, the vector

′ ′ ⋅ ⋅ u u F F becomes: ( ) ( ) 2 1 2 2 2 2 2 2 2 1
sin cos 1 sin sin sin cos sin sin cos cos

m m m m λ ϕ θ λ ϕ θ λ ϕ θ λ ϕ θ λ ϕ λ ϕ -+ -+ ⎡ ⎤ ⎢ ⎥ ′ ′ ⋅ ⋅ = ⎢ ⎥ + + ⎢ ⎥ ⎣ ⎦ u u F F (3.18)
In this type of flow, 12 [START_REF] Tanner | Simple constitutive models for linear and branched polymers[END_REF] 1

-D: ( )( ) ( ) ( ) 2 1 2 2 e x p l n 0 , jj iijj jj jj iijj l L l l L i j β β β β - - + + - ⋅ > ≠ ′ u F 2-D: ( )( ) ( )( ) 2 2 1 8 2 2 8 2 2 exp ln 0, ii jj iijj iiii jjjj ii jj ii jj iijj iiii jjjj l l L L L l l l l L L L i j β β β β β β β - + + - - + + + + + - - > ≠ ′ ⋅u F
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The left-hand side of both the above inequalities is called stability function, SF, and has meaning for i, j =1,2,3 with i≠j. Pair values of the Hencky strain ε and the molecular parameter β that make SF negative also cause MSF to become Hadamard unstable. As depicted in Figure 3.1 for i = 2, j = 1 and m covering the entire spectrum of general biaxial extension, this may never happen for one-dimensional disturbances. Hadamard stability also holds for the worse case scenario of i = 3, j = 1.

On the other hand, the two-dimensional cases of Figures 3.2a and b (i = 1 and j =

3) demonstrate unstable regions picking at around λ ~ 2; these regions narrow with the weakening of network connectivity (β increase). MSF is also expected to be Hadamard unstable subject to three dimensional disturbances: By employing the Reynolds-Orr energy equation, Ramkissoon et al [START_REF] Ramkissoon | Three-dimensional disturbances of planar viscometric flows[END_REF] have shown that any basic flow is less stable against 3-D than against 2-D perturbations.

Dissipative Stability

Caused by improper formulation of the dissipative terms and less studied than Hadamard instability, dissipative instability addresses the unacceptable suggestion that faster flows, resulting in larger deformations, require less energy. For Hadamard-stable time-strain separable single integral CEs that utilize the Cauchy tensor, C, as a strain measure, Kwon and Cho [START_REF] Kwon | Time-Strain non-separability in viscoelastic constitutive equations[END_REF] have shown that they are always dissipative unstable due to violation of the positive definiteness of C. In this Section, we first show that the MSF model satisfies a simple, yet necessary condition for dissipative stability, namely that the stress should always be a monotonically increasing and unbounded function of strain in steady simple shear and uniaxial elongation ( § 4.1). However, MSF is dissipative unstable since it fails to fulfill an energy-based necessary criterion: the free energy, W, and rate of energy dissipation, D, are not bounded functions of deformation in any regular flow ( § 4.2). The instability occurs because the molecular stress function, f, expressed in terms of the principal Hencky strain, increases exponentially with respect to time.

4.1a Uniaxial Simple Elongation

A c c e p t e d m a n u s c r i p t

Inquiring about conditions guaranteeing monotonic and unbounded stress increase with strain, we first resort to CE Eq. 2.6-9 subject to the flow field of Eq. 3.17 for m=-0. 

1 2 3 3 3 2 2 1 1 1 3 3 3 2 3 0 0 1 a r c t a n 1 3 exp exp 1 2 1 N f z d f d λ λ λ ξ ξ σ σ λ ξ ξ τ τ λ +∞ +∞ ⎡ ⎤ - - - ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎢ ⎥ = - = - = - + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎢ ⎥ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ - ⎢ ⎥ ⎣ ⎦ ∫ ∫ (4.1) ( ) ( ) ( ) ( ) ( ) 
where f 2 is given by Eq. 2.8 and ( )

3 3 arctan 1 ln ln 1 1 λ λ λ - ′ ⋅ = -+ - u F . Let ( ) 2 , ( ) g f z λ β λ = .
The derivative of ( ) , g λ β with respect to β is always negative,

( ) ( ) ( ) ln , 1 1e x p l n g z λ β λ β β β ⎡ ⎤ ⎛ ⎞ ∂ ⎢ ⎥ ⎜ ⎟ = - + - ⎢ ⎥ ⎜ ⎟ ∂ ⎝ ⎠ ⎣ ⎦ ′ ⋅ ′ ⋅ u u F F ,
meaning that, ( ) , g λ β is a monotonically decreasing function of β. Therefore, a sufficient condition for the steady flow curve to increase monotonically with respect to the imposed strain rate is ( ) 

( ) ( ) { } 2 1 1 1 3 3 0 lim lim exp lim N f z d ε ε ε ξ σ σ λ ξ τ +∞ →∞ →∞ →∞ ⎛ ⎞ = - = - =∞ ⎜ ⎟ ⎝ ⎠ (4.2)
Considering that ( ) 

f e β ε ε λ π β λ →∞ →∞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ -, condition (4. 
2) becomes more specific:

( )

1 1 lim 1 lim exp 1 N e ε ε β ξ β β τ ε τ β β ξ ετ β βτ →∞ →∞ →∞ ⎛ ⎞ ⎡ ⎤ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ - = -+ -= ∞ ⎜ ⎟ ⎢ ⎥ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ - ⎢ ⎥ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎣ ⎦
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It is easy to see that Eq. 4.3 is always true.

4.1b Simple Shear

The conditions that guarantee monotonic and unbounded stress increase with simple shear may be obtained by combining Eqs. (2.6-9) with the relevant flow field which in the case of simple shear, the velocity and the deformation gradient tensors are equal to [START_REF] Larson | Constitutive Equations for Polymer Melts and Solutions[END_REF]:

0 0 0 0 0 0 0 0 γ ⎡ ⎤ ⎢ ⎥ ∇ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ v &
and ( ) ( )

1 0 0 , 1 0 0 0 1 t t t t γ ⎡ ⎤ ⎢ ⎥ ′ ′ = - ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ & F (4.4) Then, ( ) ( ) ( ) ( ) 3 2 2 2 2 0 0 0 sin s sin 1 0 exp 4 1 sin sin2 sin xy co Wi G f dd d Wi Wi π π ϕ θ ξ θ σ τ ξ θ ϕ ξ π ξ ϕ θ ξ θ ∞ ⎛ ⎞ + ⎜ ⎟ = - ⎜ ⎟ + + ⎝ ⎠ ∫ ∫∫ , f 2 is
given by Eq. 2.8 and ( )

2 2 2 0 0 1 ln ln 1 sin sin 2 sin sin 8 Wi Wi d d π π ξ ϕ θ ξ θ ϕ θ ϕ π ⎡ ⎤ = + + ⎣ ⎦ ′ ⋅ ∫ ∫ u F .
The Weissenberg number, Wi γ τ = ⋅ & , is a measure of the length of viscoelastic memory and the intensity of the flow. Figure 4.2 reveals that shear stress is an unbounded monotone function of Wi and therefore, of strain rate, for all β.

Energy stability criteria

A more general Criterion (2) for dissipative stability requires that the free energy, W, and rate of energy dissipation, D, (Eqs. 2.9 & 2.10) are bounded functions of deformation for any regular flow [START_REF] Kwon | On instabilities of single-integral constitutive equations for viscoelastic liquids[END_REF][START_REF] Kwon | On 1D instabilities in simple shear and extensional flows as predicted by some Maxwell-like constitutive equations[END_REF] 

β β ⎛ ⎞ ⎜ ⎟ - ⎜ ⎟ ⎝ ⎠ ′ ⋅ ′ ⋅ u u F F holds for all 1 ≥ β > 0, it follows that 2 ln ,1 0 f β < ≥ > ′ ⋅u F
. The upper and lower bounds of the functional of free energy, W, are:

( )( ) ( ) 2 2 ' 1 ' ' ' t t M t t f dt W M t t f dt β -∞ -∞ - - < < - ∫ ∫ (4.6)
Beris and Edwards [START_REF] Beris | On the admissibility criteria for linear viscoelastic kernels[END_REF] have shown that the positive definiteness of the memory function M(t) is a necessary condition for the thermodynamic stability in the region of linear viscoelasticity. Since molecular theories of viscoelastic fluids justify the existence of a maximum relaxation time τ max and a corresponding modulus G max , the criteria of Beris and Edwards imply the following asymptotic behavior ( )

max max max exp G t M t τ τ ⎛ ⎞ ⎛ ⎞ - → ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ when t → ∞ (4.7) 
It follows that the integrals in Eq. (4.6) exist if and only if f increases slower than exponentially. D & is defined as the residual of ( )

1 2 T tr ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ∇ + ∇ v v σ
minus the time derivative of the free energy (Eq.2.10). When the free energy W does not diverge, the rate of energy dissipation D & is bounded if and only if ( )

1 2 T tr ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ∇ + ∇ v v σ
is also bounded.

Since the flow is regular and the strain measure never exceeds unity due to its normalized nature (S ≤ 1; Eq. (2.6))

( ) ( ) ( ) ( ) ( ) 2 1,2,3 1 3 max ' ' 2 t T i tr E M t t f dt i = -∞ ∇ + ∇ ≤ - ∫ v v σ (4.9)
For similar reasons, a lower limit for ( ) ( ) ( )

1 2 T tr ∇ + ∇ v v σ is ( )( ) ( ) ( ) ( ) ( ) 1 2 2 1,2,3 1,2,3 3 min min ' ' t T i i i i E S M t t f d t t r = = -∞ - ≤ ∇ + ∇ ∫ v v σ (4.10)
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The molecular stress function f has an exponential dependence on the norm of the strain measure S. Therefore, if ln 0 → ′ ⋅u F approaching from below when t → ∞, then the MSF model is dissipative stable. It is reminded here that, ( )

1,2,3 ln ln max ln i i ε ∞ ∞ = ′ ≥ = + ′ ′ ⋅ ⋅ u u u F F (4.11)
The incompressibility condition requires 
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  molecular chains and the decrease of the tube diameter with increasing deformation. In the tube concept for extensional flows, extension of a network strand can only be achieved by reduction of the tube diameter. The functional form of the MSF model consist the basis for many recently proposed CEs [8,10,11], also developed for the description of extensional flows. The proposed CEs have been developed and established by comparison with experimental data for simple flows and low Deborah (De) numbers (De ~ the product of deformation rate times relaxation time), which they can describe accurately.

A c c e p t e d m a n u s c r i p t

  have studied both Hadamard and dissipative stability of two constitutive equations based on molecular arguments: the Doi-Edwards and the differential pom-pom models. They have derived criteria for Hadamard stability in the general case of three-dimensional disturbances for both models. An attempt has been also made to derive Hadamard stability for the original, integral version of the pom-pom model. However, it failed to provide any such criteria. Instead of deriving criteria for dissipative stability, they have considered the limiting case of creep shear flow and have

Rajagopal [ 29 ]A c c e p t e d m a n u s c r i p t

 29 perform a stability analysis of incompressible VE fluids of differential type. A dissipation principle and the assumption that the stored energy should reach an extremum at equilibrium constitute the cornerstones of their study. Rajagopal and Srinivasa[START_REF] Rajagopal | A thermodynamic frame work for rate type fluid models[END_REF] continue by developing a thermodynamic framework for modeling differential VE fluids based on the notion of an "evolving natural configuration". The fluid is supposed to have a family of elastic responses governed by the stored energy function. Changes in the current natural configuration result in dissipative behavior, determined by a rate of dissipation function. The evolution of the current configuration is dictated by a "maximum rate of dissipation" criterion and the constraint that the difference between the stress power and the rate of change of the stored energy is equal to the rate of dissipation. Integral fluid models such as the K-BKZ[START_REF] Larson | Constitutive Equations for Polymer Melts and Solutions[END_REF] can be also derived within this context by appropriate selection of the stored energy and the rate of dissipation[START_REF] Rao | The status of the K-BKZ model within the framework of materials with multiple natural configurations[END_REF]. Furthermore, integral type CE's, more general than K-BKZ, may be derived by relaxing some of the assumptions that lead to the K-BKZ model. Based on the idea of evolving natural configurations and the maximization of the rate of dissipation, Rao and Rajagopal[START_REF] Rao | A thermodynamic framework for the study of crystallization in polymers[END_REF] developed a thermodynamic framework to describe crystallization in polymers. Specific models are constructed by specifying forms for the internal energy, entropy and rate of dissipation. The reduced energy-dissipation equation is used to obtain the constitutive relation for the stress and the maximization of the rate of dissipation is used to obtain equations for the evolution of the underlying natural configuration and the rate of crystallization. The activation criterion indicating the onset of crystallization is defined in terms of the difference in the Helmholtz potential between the amorphous and crystalline phase. Based on the thermodynamic framework developed by Rajagopal and coworkers, Palade and coworkers[START_REF] Palade | A new constitutive equation that models extensional flow strain hardening based on evolving natural configurations: stability analysis[END_REF][START_REF] Palade | An integral constitutive law for viscoelastic fluids based on the concept of evolving natural configurations: stability analysis[END_REF] propose a general singleintegral constitutive equation, capable of describing extensional flows and strainhardening phenomena. The evolution of the Cauchy-Green tensor is described by a thermodynamically admissible differential equation. Preliminary analysis that subjected the rest state to small first order perturbations established the sufficient conditions that pressure terms should fulfill for guaranteed stability of the proposed CE.Concerned with numerical convergence, Lee et al[START_REF] Lee | Practical comparison of differential viscoelastic constitutive equations in finite element analysis of planar 4:1 contraction flow[END_REF] study eight differential constitutive equations under high De flow, using as benchmark a planar contraction flow around a sharp entrance corner. They observe that Hadamard or dissipative unstable models yield great difficulties in converging to a solution (even for relative low De) and suffer from severe numerical degradation. Vaithianathan and Collins[START_REF] Vaithianathan | Numerical approach to simulating turbulent flow of a viscoelastic polymer solution[END_REF] propose two algorithms for simulating the FENE-P VE fluid in transient flows. The algorithms guarantee that polymer extension, represented by the trace of the conformation tensor, does not exceed the finite extensible length and the conformation tensor remains symmetric and positive definite for all times. Lee and Xu[START_REF] Lee | New formulations, positivity preserving discretizations and stability analysis for non-Newtonian flow models[END_REF] also address the issue of discretization schemes that preserve positive definiteness of the conformation tensor.
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  stability analysis, investigating the effect of an infinitesimal, extremely short-amplitude and high-frequency wave perturbation, propagating with a finite speed on a basic solution.

  conditions for stability, Eqs. (3.15) and (3.16), may be simplified as follows:

  first normal stress difference is :

  and monotonically increasing function of λ.) (λ z of Eq. (4.1a) is also positive and monotonically increasing with λ. Since g(λ,1) (< g(λ,β<1)) is the product of two positive and monotonically increasing functions, The kernel of the stress integral, g(λ,β), and therefore N 1 is increasing with the Hencky strain ε; this is shown in Figure4.1 for β ranging from 0.5 to 1. The requirement for N 1 to increases unboundedly with respect to the imposed strain rate is:
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  & ; this implies that at least one of the three principal values of the Hencky strain rate measures i ε & is strictly positive. Both terms in the right hand of inequality(4.11) are positive. As a result, the functionals of the free energy and dissipation diverge and the MSF model is always dissipative unstable.5. ConclusionsStability analysis of a constitutive expression addresses its physical standing for the widest possible range of deformation intensities and material parameters. A CE that fails criteria for Hadamard and dissipative stability lacks of predictability, both qualitative and quantitative, for flow simulations in the region of high De numbers and complex flow histories, which is the operating region for most of the industrial polymer-forming processes. The usefulness of such a CE is also hindered in simpler flows due to the violation of thermodynamic admissibility constrains, such as the Baker -Ericksen inequality and the strong ellipticity condition, which follows as a consequence of Hadamard and dissipative instability. We hereby examine the stability of a recently proposed constitutive equation for non-linear viscoelasticity, specially developed for extensional flows, utilizing the molecular stress function (MSF) to cover a wide spectrum of strain hardening behavior.A necessary and sufficient condition for Hadamard stability is provided by Eq.3.14; this guarantees stability under 3-dimensional extremely short amplitude and high frequency wave disturbances. When implemented for the special case of general biaxial extension, which is an idealization of many industrial processes such as blow-molding, fibber spinning and film casting, under 2-dimensional disturbances, it reveals CE instability for a range of strains around 2. This range widens with the strengthening of network connectivity (β increase in Eq. 2.8) and the alignment strength of flow (m decrease in Eq. 3.17). Regarding the qualitative behavior of MSF subject to 3dimensional disturbances, it is expected to be Hadamard unstable, too. An inquiry for dissipative stability shows that, although the predicted stress under uniaxial elongation and simple shear is a monotonically and unboundedly increasing function of strain, MSF is unstable, since the free energy and the rate of energy dissipation are not bounded functions of deformation for any regular flow.
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 333 Figure 3.1a Stability function variation with λ and β (i = 2 and j = 1) for the onedimensional perturbation case, where stability is always guaranteed, for any m, which here increases from top to bottom, from m = -0.5 (uniaxial elongation) to m = 0.0 (planar extension), with step Δm = 0.1.
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 3 Figure 3.2b Two-dimensional stability function for i = 1 and j = 3, corresponding to planar extension (m = 0.0). Hadamard instability region peaks around λ ~ 2, narrows with the weakening of network connectivity (β increase) and is wider than the region corresponding to a bigger m (Figure 3.2a).
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 4142 Fig. 4.1. Unbounded growth of stress component g(λ,β) (Eq.4.2) indicates the same for N 1 , for β increasing from (top to bottom) 0.5 to 1 (step = 0.1).

( 4 . 4 )

 44 with flow intensity,Wi γ τ = ⋅ & , for β increasing from (top to bottom) 0.5 to 1

  

  ; in CEs involving MSF, this occurs if and only if f, expressed in terms of the principal Hencky strain, increases slower than exponentially. A continuous function φ(x), , is bounded. A fluid flow is regular if the strain rate tensor is limited, whether the flow is steady or not. It follows that any flow with a smooth history is regular. As a result,

	& ε	( ) , ' t t	<	E	and ( ) , ' t t	≤	( ) ' E t t -
	n 0 ∈ℜ = . , increases slower than exponentially if Before we proceed with Criterion (2), some definitions need to be made: A second x for any positive number a, ( ) ( ) lim exp x x x a φ →∞ -rank tensor A is called limited if its norm, ( ) tr = ⋅ A A A A c c e p t e d m a n u s c r i p t

ε (4.5) where E is the upper bound of the Hencky strain rate for the given flow. Since the inequality ln exp ln
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