
HAL Id: hal-00551178
https://hal.science/hal-00551178

Submitted on 2 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical unsteady model for thermoacoustic devices
Abdennour Boufermel, Nicolas Joly, Pierrick Lotton

To cite this version:
Abdennour Boufermel, Nicolas Joly, Pierrick Lotton. Numerical unsteady model for thermoacoustic
devices. 10ème Congrès Français d’Acoustique, Apr 2010, Lyon, France. �hal-00551178�

https://hal.science/hal-00551178
https://hal.archives-ouvertes.fr


10ème Congrès Français d'Acoustique 
Lyon, 12-16 Avril 2010 

 
 

Numerical unsteady model for thermoacoustic devices  
Abdennour Boufermel, Nicolas Joly, Pierrick Lotton 

Laboratoire d’Acoustique de l’Universite du Maine. Avenue Olivier Messiaen, F-72085 Le Mans Cedex 09  
Abdennour.boufermel.etu@univ-lemans.fr 

The thermoacoustic devices process various nonlinear effects in high noise levels originating from the 
interaction between the acoustic oscillations in the fluid and thermal and mechanical conditions on the solid 
walls. A numerical model is presented to describe first the acoustic field in thermoviscous fluid and second the 
induced phenomena at large time-scale such as acoustic streaming and heat transfer. The equations of the model 
are derived from the instantaneous mass, momentum and energy conservation equations. The formulation for 
heat transfer and streaming flow is presented as a standard form of weak compressible flow based on the 
separation of time scales, using the velocity of mass transport vector as variable. The steady streaming flow and 
heat transfer is presented in various acoustic devices, showing the ability of this formulation to compute 
numerically the slow phenomena induced by acoustics and illustrating the physics in annular or resonant 
thermoacoustic devices. 

1  Introduction 

Thermoacoustic process results from the thermal 
interaction between an oscillating fluid and a solid surface. 
This interaction is responsible for acoustic work generation 
and/or hydrodynamic heat transfer. Thermoacoustic 
refrigerators use and amplify this effect in a stack of solid 
plates located in an acoustic resonator in order to transfer 
heat from a cold heat exchanger to a hot heat exchanger. 
This acoustically induced slow phenomenon can be 
disturbed by another slow phenomenon called “acoustic 
streaming”. This phenomenon corresponds to a net mean 
flow generated by non linear processes associated with the 
propagation of a high level acoustic wave. 

Analytical models allowing the description of such 
acoustical slow phenomena (thermoacoustic heat transfer 
and acoustic streaming) are usually based on simple 
geometries and idealized conditions. Real acoustic devices, 
for instance the resonant cavities used in thermoacoustic 
engines, have more complex geometries and require 
numerical approaches. The most accurate is the Direct 
Numerical Simulation (DNS) of the full-coupled Navier-
Stokes equations in the time domain [1, 2], considering all 
the scales for time and space. However, it is often not suited 
to real systems because of the high computational cost 
required. Less expensive methods are available for fluid 
flow modeling (Large Eddy Simulation LED [3], Reynolds 
Averaged Navier-Stokes RANS [4]), which are based on 
simplifying assumptions and approximations, neglecting for 
instance temperature dependence of physical parameters of 
the fluid, or time and/or spatial variation of mean fluid 
density [5]. However, considering space or time averaged 
variables, these simplified methods cannot precisely 
describe the nonlinear effects and the localized forces, 
inside the boundary layers, exciting the averaged streaming 
flow. 

In this paper, we present a formulation for modeling the 
nonlinear phenomena induced by acoustics based only on 
time scale splitting between the fast acoustical phenomena 
(acoustic oscillation), and slow acoustical phenomena 

(acoustic streaming and heat transfer). This formulation is 
suited for any arbitrary geometry and considers the full-
coupled equations. This formulation can be used in 
analytical models, but can easily be implemented for 
numerical simulation and leads to short computational time 
when compared to the direct numerical simulation models. 
It can be processed using standard computational fluid 
dynamic tools and, thus, does not need any development of 
specific numerical method; the formulation is based on the 
mass transport velocity as variable instead the streaming 
velocity. Using this new formulation, the full nonlinear 
effects can be considered in the streaming excitation forces. 

2 Basic equations and time splitting 

The coupled fluid motion and thermal transfer are 
described by the conservation equations for mass, 
momentum and energy. Considering Newtonian fluid and 
the Fourier’s law for heat transfer, these equations have the 
following form [6]:  
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where ρ  is the density, t  is the time, p  is the pressure, μ  
is the shear dynamic viscosity, ( )32μξη −=  is the second 
viscosity with ξ  the bulk dynamic viscosity, pC  is the heat 
capacity at constant pressure, T  is the temperature, 

( ) β̂vp CCh −−=  is a calorimetric coefficient with vC  the 

heat capacity at constant volume and ( )ρβ Tp ∂∂=ˆ  is the 
increase in pressure per unit increase in temperature at 



 
constant density, λ  is the thermal conductivity of the fluid 
and disE  is the dissipation of kinetic energy by viscosity 
effect. The vectors v  and I  are the particle velocity and the 
unit tensor, respectively. The equations (1) are completed 
by a state law linking the thermodynamical variables of 
pressure, density, and temperature of the form 
( ) 0,, =Tpf ρ .  

To study the acoustic movement (fast phenomenon at 
the acoustic period time scale) and the secondary induced 
fluid motion or heat transfer (slow phenomena), each 
variable or physical property ϕ  is assumed to be the 
addition of two components, where one is quasi-static mϕ  
and the other ϕ~  is an acoustic perturbation [7]. This 
involves two time scales which have sufficiently different 
magnitude to describe the fast acoustic phenomena with the 
‘‘short’’ time at , while the acoustic streaming and heat 
transfer are described in using the “long” time  st : 

( ) ( )asm tt ϕϕϕ ~+=   (2) 

where the time averaged component mϕ  over the acoustic 
period ωπτ /2=  is used for slow phenomena, and ϕ~  
denotes the small acoustic perturbation whose time 
averaged value over the acoustic period vanishes 
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3 Linear acoustic formulation 

The harmonic solution for the acoustic field is usually 
obtained by solving the Helmholtz equation for the acoustic 
pressure variable, but such formulation is not suited to 
model the vortical and entropic motions which cause 
dissipation of acoustic energy, the shear viscosity stress and 
the associated momentum transfers exciting the streaming.  
In order to account for the acoustical, viscous and thermal 
effects, and their respective or combined effects particularly 
in the boundary layers, the acoustic modelling in a 
thermoviscous fluid is based on acoustic particle velocity 
and temperature variation [8]. The linear formulation is 
obtained from the basic equations (1), where only the “fast” 
variations ϕ~ . The other variables can be expressed as a 

function of the both variables v~  and T~ ; For instance the 
pressure and density variations related to the acoustic 
perturbation  are ( ) v~.~ˆ~ 2

0 ∇−= γωρβ ciTp m  and 
( ) v~.~ ∇= ωρρ mi , where 0c  is the adiabatic speed sound, 

and γ  is the ratio of heat capacities per unit mass. The 
oscillating field is numerically computed using this 
formulation, with the finite element method as presented in 
reference [9]. 

4 Thermoacoustic formulation 
The time splitting decomposition is next applied to the 

fundamental equation (1), and time-averaging is applied 
over the acoustic period to consider only the slow 
phenomena developed by acoustic at large time-scale st . 

4.1 Velocity of mass transport 

Taking both the averaged and perturbation components 
for density ρρρ ~+= m  and velocity vvv ~+= m  in the 
continuity equation (1.1), and in time-averaging over the 

acoustic period τ, we obtain 0. =∇+
∂
∂ M
t
mρ , where the 

vector M  sets the total average mass flux. The ratio of this 
vector to the average density mρ  is a velocity, called the 
velocity of mass transport and denoted U . It is composed 
of the average velocity of acoustic wind and a ratio between 
an acoustic quadratic quantity and the average density of 
fluid: 

( )mm ρρvvU ~~+=   (3) 

This velocity is a fundamental variable for the acoustic 
streaming modeling, because it considers the net mass flow 
in combining both the fluid dynamics and the acoustic 
contribution to the average mass transport. Rudenko and al. 
[10] defined U  with the initial state density of fluid 0ρ  
(incompressible flow) instead of mρ  which takes into 
account time and spatial variations.  

4.2 Governing equations 

Using “long” and “short” time components for all 
variables and properties of fluid in the basic equations (1) 
and averaging over the acoustic period and using the 
velocity of mass transport (4) yields to the following 
expressions for the conservation equations expressed at the 
large time scale stt = : 
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where ∇+
∂
∂= .U
tDt

D  is the particle derivative, and the 

terms ( ) ppmmp CCC ~~' ρρρ +=  and ( ) hhh mm
~~' ρρρ +=  

denote the effective heat capacities including average 
fluctuant components. We note that these governing 
equations keep the usual basic form for fluid mechanics 
modeling because the velocity of mass transport is used as 
variable. The acoustic nonlinear contributions are accounted 
by source terms in the right hand side: F  in the momentum 
conservation equation and q  in the energy conservation 
equation. Then, the velocity of mass transport (4) is well 
suited for modeling streaming in acoustic devices because it 
takes into account variations of density due to temperature 
and pressure gradients, and giving desired streaming 
velocityfrom Eq. (4) ( )mm ρρvUv ~~−= . The excitation 
force for the momentum contains three nonlinear 
components, 
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and the term of the heat source q has five nonlinear 
components, 
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mpmd TCq ∇= .~~vρ   (6.4) 

mme phq ∇= .~~vρ   (6.5) 

The average term of the dissipation contains a nonlinear 
component representing the average heating in dissipating 
kinetic energy by the viscosity effect,  
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5 Applications 
To investigate the acoustic streaming and heat transfer 
using a standing sound wave, a rectangular enclosure 
(L=0.1m, H=0.01m) filled with air is considered as 
illustrated in Figure 1. The left wall  
vibrates as a piston, at a frequency such that 2/λ=L  
where λ  is the wavelength. The harmonic velocity of the 
vibrating wall is given by maxXvw ω=  where maxX  is the 
maximum displacement of the wall, and fπω 2=  is the 
angular frequency. When considering progressive waves, 
the general formulation is used to describe the behavior of 
an acoustitron [11]: a schematic representation of this 
resonator is shown in Fig. 2a: it consists of an annular 
resonator with a radius of curvature 0R  and a waveguide 
diameter D . A set of driven elements regularly spaced 
along the duct acts on the acoustitron walls. The velocity of 
each driving element is normal to the walls.  The frequency 
is set in such a way that the length of developed resonator 
fits an integer number n  of the wavelength of the 
perturbation profile of the acoustitron walls ( anL λ=  with 

aa kπλ 2=  where ak  is the acoustitron wave number). 
Tuning adequately the relative phase shift between the 
velocities of the acting elements allows the generation of a 
given kind of acoustic wave inside the annular resonator. In 
particular, a travelling acoustic wave can be generated. For 
a diameter much less than the acoustic wavelength 
( λ<<D ), the channel curvature curvature can be neglected 
on the propagation of sound waves and on the 

hydrodynamic flow [12, 13]. In this case, the annular 
geometry of the resonator can be considered as a linear one, 
that is a straight duct whose length fits the circumference 
perimeter, as presented in Fig. 2b. Consequently, all 
functions φ  and their derivatives describing the acoustic 
field and fluid flow satisfy the periodicity condition 
( ) ( )Lxx === φφ 0 . Recently, the transient streaming in 

acoustitron has been studied by Amari et al. for quasi-
adiabatic and quasi-isothermal wave/wall interaction 
regimes [14]. 
 
 

 

 
Figure 1: Bidimensional resonator for standing waves. 

 

 

Figure 2: The acoustitron with travelling wave, a- annular 
geometry, b- developed geometry. 

 
 
The governing equations are discretised using the finite 

element method, where non-slip  and zero variation 
temperature are used for acoustic field, non-slip for the 
streaming flow, and heat flux for thermal conduction,  were 
used for all the solid walls. Since the interaction between 
the wave field and the viscous boundary creates the acoustic 
streaming, and because the interaction with the thermal 
boundary creates a temperature gradient especially in the 
ends of stack, modeling the acoustic boundary layers 
thickness is a required condition to accurately compute the 
acoustic flow and temperature gradient. The used mesh has 
a non uniform distribution for the elements, highly refined 
in the vicinity of the solid walls. The numerical 



 
computations were made with constant mean static pressure 
(101325 Pa), temperature (20°C) and density (1.2 kg/m3). 
We considered only the steady-state analysis ( 0=∂∂ t ). 

In the following, we investigate numerically the acoustic 
streaming and heat transfer resulting from standing or 
travelling acoustic wave in two-dimensional devices. First, 
the acoustic streaming structures from standing wave in a 
resonator empty (Fig. 3), and in a resonator with a stack 
(Fig. 4), then from travelling wave in an acoustitron (Fig. 
5). Second, the temperature gradient (heat conduction) 
resulting from standing acoustic wave in a resonator with a 
stack (Fig. 6-7). 

5.1 Acoustic streaming 

When the Mach number of the flow is small ( 3.0<M ), 
the streaming flow can be considered as quasi- 
incompressible because the variation of density caused by 
the variation of velocity is negligible. Assuming that there 
is no mean heat transfer (no stack or heat exchanger where 
the temperature field is homogeneous 0TTm = ), the 
acoustic wave propagation generates a streaming flow with 
a constant average density mρ  and a constant shear 
dynamic viscosity mμ ; the bulk dynamic viscosity η  is 
neglected here (Stokes assumption). As mentioned above, 
the energy equation is not considered, because it is 
uncoupled to the momentum and the continuity equations 
for isothermal and incompressible streaming flow. In this 
case, the incompressible acoustic streaming results from 
momentum transfer in the fluid, which is caused by the 
nonlinear acoustic phenomena expressed by the motion 
forces F  in Eq. (6), mainly localized inside the boundary 
layers. It is governed by the formulation composed of two-
dimensional simplified equations (5.1) and (5.2): 
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For the standing wave resonator, the computations were 
done with 1µm amplitude for the vibration of the wall. The 
acoustic streaming flow field is shown in Fig. 3. This flow 
is based on the average mass transport velocity. Four large 
size cells are observed inside the resonator where two ones 
(up right & down left) are clockwise and two ones counter-
clockwise. The horizontal length of the vertical structures is 
a quarter-wavelength ( 4/λ ). The steady movement of air is 
directed from the maximum of acoustic velocity to the two 
nodes along the walls of the tube, and in the opposite 
direction at the tube axis. 

 

 

Figure 3: Streamlines of the steady-state acoustic streaming 
flow in the standing wave resonator of figure 1. 

 
 
In a second modell, the streaming flow is computed 

around a stack placed inserted inside the resonator. The 

length l of the stack is much smaller than the resonator (l=H 
is considered here). The effect of the stack on acoustic 
streaming is presented in Fig. 4a. The thickness of stack 
plates is neglected and the distance between two plates is 

mmy 2=Δ . In this case, there are only two main cells near 
the ends of stack, as presented in Fig. 4b. These circulations 
result of the localized exciting forces located in a small 
zone near the stack (Fig. 4c). Due to the shear movement, 
the field shows vortices in the ends of stack (Fig. 4d). 

 

(a) 

 

(b)  (c)  

(d)  

Figure 4: a- Streamlines of the acoustic streaming flow in a 
resonator equipped with a stack, b- Detailed streamlines 
near the Stack, c- x component of the volume exciting 
forces for the flow, localised near the ends of the stack 

(blue -550 N/m3, red +365 N/m3), d- Excited vortices near 
the ends of the stack (blue -600 s-1, red +560 s-1). 

 

In a third modell, the formulation presented in this paper 
is used to describe the acoustic streaming generation in a 
travelling wave resonator (developed acoustitron) filled 
with air at atmospheric static pressure and ambient 
temperature. The travelling wave is excited by the initial 
velocity of the vibrating wall 1=wv  µm/s; its wavelength 
λ  is equal to the developed length of the resonator where 
the frequency is 00 2 Rcf π= . We studied the acoustitron 
with 34.00 =R m and 075.0=D m. The stationary solution 
of the velocity of mass transport field, on a half section of 
the acoustitron, is illustrated in Fig. 5. The momentum 
diffuses from the wall to the bulk of the fluid, due to the 
viscosity effects developed inside the viscous boundary 
layer.  

The velocity field is symmetric, and the maximum 
velocity is obtained inside the viscous boundary layer (Fig. 
5a). The velocity of mass transport is always positive and 
represents the direction of mass flow. In the acoustitron 
there is no recirculating closed cell for the streaming flow 
in the waveguide cross-section, but the fluid motion is 
guided by the annular resonator. When a stack is inserted 
inside the acoustitron, the general shape of the acoustic 
streaming flow is changed: the exciting forces for the mean 



 
flow are mainly localized inside and near the stack, and far 
from the stack, the velocity field takes the form of 
“Poiseuille” flow (Fig. 5b); there are no vortices, except 
very small ones just near the ends of the stack, as 
previously observed in the case of a standing acoustic wave. 
The effect of the viscous boundary layers in the walls of 
resonator is still present, but it is much less intensive 
because the sack takes the role of an engine exciting 
streaming. 

    
               (a)                                  

  
               (b)  

 
Figure 5: Dimensionless velocity field in half section of 
developed acoustitron, a- without stack, b- with stack. 

 

5.2 Heat transfer 

We consider here heat transfer due to the only heat 
conduction: the secondary flow in the enclosure is now 
neglected ( )0U = , such that there is no convective heat 
transfer. The governing equation for heat transfer reduces 
to: 

 
 ( ) qT dismm +=∇−∇ E. λ   (9) 

 
The heat source q caused by nonlinear effects distribution is  
presented in figure 6: it is localised just near the stack. This  
source is very small everywhere, except the ends of the 
stack. This heat source is positive in the side of the moving 
wall, and negative in the other. The steady-state 
temperature field for conduction is presented in Fig. 7a, 
showing a small temperature difference (Fig. 7b) between 
the two end of stack. 

 
 

 

Figure 6: Heat source q inside the stack  
(bleu -2.37e4 W/m3, red 2.282e4 w/m3). 

 
 

(a) 

 

         (b) 

 
Figure 7: a- Numerical steady-state temperature field inside 

the resonator (Bleu 293.085 °K, Red 293.217 °K), b- 
Temperature variation inside the resonator. 

 
 

6 Conclusion 

A general formulation based on the variable of mass 
transport velocity is presented to compute slow acoustic 
phenomena. The used variable is the mass transport velocity 
U . It represents the net mass flow and contains both the 
average velocity of acoustic streaming and the average 
mass transfer related to the acoustic perturbation in 
compressible fluid. Using the velocity of mass transfer, a 
very convenient form is obtained for the governing 
equations of fluid dynamics and heat transfer, where the 
nonlinear exciting forces for acoustic streaming and the 
term source for heat transfer, are accounted for by new 
source terms. The formulation is adapted to a resolution by 
usual computational fluid dynamic tools with the usual 
numerical methods. The application of this formulation to 
compute the acoustic streaming generated by a standing or 
travelling wave shows the simplicity of its numerical 
resolution. This formulation is well suited to study the 
acoustic phenomena in various acoustic devices and can be 
used for diverse applications, for example in micro-fluidics. 
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