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Abstract

In the spirit of the variational approach of Fracture Mechanics initiated in [1] and
[2], we define the loss of stability of the elastic response of the body as the criterion
of initiation of cracks. The result is very sensitive to the choice of the surface energy
density. On one hand, if we adopt the Griffith assumption, then the elastic state
is generally always stable. On the other hand, in the case of a surface energy of
the Barenblatt type, i.e. a surface energy depending non trivially on the jump of
the displacement and inducing cohesive forces, the elastic response remains stable
only if the stress field does not reach a critical value. In the full three-dimensional
context of an isotropic material, we prove that this yield stress criterion is equivalent
to a maximal traction criterion and a maximal shear criterion if the surface energy
density is Fréchet differentiable at the origin. When the surface energy density is
only Gâteaux differentiable, we obtain a yield stress criterion based on an intrinsic
curve in the Mohr diagram. In any case, the domain of the admissible stress tensors
is convex, unbounded in the direction of the hydrostatic pressures and depends only
on the extreme eigenvalues of the stress tensor.

Key words: Fracture, Calculus of Variations, Stability, Cohesive forces, Yield
stress
PACS: 46.15.Cc, 46.50.+a, 62.20.Mk, 47.50.Gj

Email addresses: panga973@yahoo.com (Miguel Charlotte),

Preprint submitted to Elsevier Science 2 April 2006



1 Introduction.

Griffith’s theory of fracture [3] remains untill now the most used although it
contains major drawbacks. The most important is probably its incapacity to
account for crack initiation in a sound elastic body. Let us recall that this
theory is based on two fundamental ingredients: (i) an assumption on the sur-
face energy inducing the absence of any cohesive force between the lips of a
crack; (ii) a criterion of propagation formulated in terms of a critical energy
release rate. The classical methods of the Calculus of Variations reveals that
the Griffith criterion of propagation is nothing but a so-called first order op-
timality condition, see [2]. Specifically, it can be seen as a necessary condition
of the state of the body to be a local minimum of the energy. It is obtained
by comparing the energy of the body in its initial state with that of the body
containing a new small crack surface. If we try to apply it to a sound body, it
appears that the release of the potential energy due to a small crack surface
tends generally to zero more quickly than the area of the crack. Hence no initi-
ation is possible. That result has been regarded as true since a long time even if
a quite general proof is recent, see [4]. In order to correct the drawbacks of the
Griffith’s theory, the first idea was to conserve the Griffith assumption on the
surface energy and to simply reinforce his criterion by changing the concept of
local minimum by that of global minimum. Unfortunately, even if it becomes
thus possible to predict realistic crack initiation in some circumstances, the
reinforced criterion appears too strong in general, particularly when surface
or body forces are prescribed, see [5]. So, if one wants to remain within the
variational framework of Fracture Mechanics, the unique solution is to change
the form of the surface energy.

By using the concept of local minimum with a surface energy of the Barenblatt
type, it is shown in [1] that a bar will break once a critical stress is reached. Of
course, this concept of yield stress was introduced by Barenblatt himself [6] to
correct other drawbacks of the Griffith theory, like the inevitable presence of a
stress singularity at the crack front. Nevertheless, Barenblatt, like Dugdale [7]
and many other workers [8] [9] after, was satisfied to introduce the concept of
cohesive forces, but he never made use of it as a criterion of crack initiation.
The cause was surely the absence of a genuine variational approach. Several
works have been published since, in the same spirit, but all were limited to the
one-dimensional context, see [10], [5] or [11]. In the second part of our paper,
we investigate once more the one-dimensional case in order to illustrate all
the different concepts of stability introduced in the first part. That also allows
to easily compare the stability results obtained in the case of the Griffith
surface energy with those related to a Barenblatt-type surface energy. But the
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principal interest of the paper lies incontestably in the third part where one
tackles the questions of initiation of crack in the three-dimensional structures.

Let us mention finally that, since we are only interested in obtaining a criterion
of crack initiation, it is not necessary to set the whole evolution problem of the
cracking in the body when the loading evolves with the time. In particular,
it is unnecessary to account for the irreversibilty of the cracking, condition
which needs additional assumptions and which constitutes a delicate question
in the case of Barenblatt surface energy.

The paper is organized as follows. In Section 2, we introduce the ingredients
of our variational approach: the different parts of the energy, the definitions
of global, local or directional stability, the elastic response of the body. The
criterion of initiation of cracks is then defined as the loss of stability of the
elastic response. The end of the section is devoted to the derivations of the so-
called zero-, first- and second order stability conditions which are used in the
sequel. Section 3 is devoted to the treatment of the general one-dimensional
case. The main results are Propositions 4 and 6. In Proposition 4, it is proved
that the elastic response is locally stable for any loading in the case of the
Griffith surface energy. On the other hand, in the case of a Barenblatt surface
energy, Proposition 6 establishes that it becomes unstable once the stress
reaches a critical value σc given by the slope at the origin of the surface energy
density. Moreover, this stress yield criterion is one of the first order necessary
stability conditions for any state of the body, what allows to consider σc as the
rupture limit stress of the material. In Section 4, the full three-dimensional
problem is investigated by assuming that the Barenblatt surface energy density
is isotropic and Gâteaux differentiable. We prove in Proposition 9 that the
elastic response is locally directionally stable provided that the elastic stress
field satisfies a so-called yield stress criterion. The inequality (102) that the
stress tensor must satisfy pointwise involves the directional derivatives of the
surface energy density at the origin and generalizes the one-dimensional result.
Furthermore, an extended analysis shows that this criterion is equivalent to a
maximal traction criterion and a maximal shear criterion if the surface energy
density is Fréchet differentiable (Proposition 10). When the surface energy
density is only Gâteaux differentiable, the criterion is written in terms of
an intrinsic curve in the Mohr diagram (Proposition 11). In both cases, the
domain of the admissible stress tensors is convex, unbounded in the direction
of the hydrostatic pressures and depends only on the extreme eigenvalues of
the stress tensor. This part completes the preliminary results presented in [12].

From the technical standpoint, we essentially use basic tools of the Calculus of
Variations, see [13], [14] or [15], and basic concepts of Fracture Mechanics, see
[16], [17] or [18]. Throughout, intrinsic vectorial notation are generally used:
vectors and tensors are represented by boldface letters, their components by
italic letters. The point · stands for the inner product of vectors or tensors:
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for instance, v · v =
∑

i vivi, σ · ε =
∑

i,j σijεij. The norm of vectors, tensors
or fields is represented by ‖ ‖.

2 The ingredients of the variational approach

2.1 The energies and the admissible displacement fields

Let Ω be the reference configuration of a body. We assume that Ω is an open,
bounded and connected subset of RN , 1 ≤ N ≤ 3, with a smooth boundary
∂Ω. The open set Ω is the interior of its closure Ω, which ensures that the
body is free of any preexisting crack.

Let u be a displacement field of the body, i.e. u is a vector field defined
on Ω with values in RN . We allow u to be discontinuous across a (N − 1)-
dimensional oriented set called the jump set of u and denoted by Su. To
simplify the presentation, we will assume that Su is the reunion of a finite
number of smooth hypersurfaces. Denoting by ν(x) the unit normal to Su at
the point x, the jump [[u]](x) of u at x is defined by

[[u]](x) = u+(x)− u−(x), u±(x) = lim
{y→0:y·ν(x)>0}

u(x± y). (1)

Assuming that the displacements are small, the (linearized) strain tensor field
ε(u) is defined on the “uncracked” part of the body Ω \ Su and reads as:

2εij(u) = ui,j + uj,i. (2)

The total mechanical energy E(u) associated at the displacement field u is
divided into three parts:

E(u) = Eb(u) + Es(u) + F(u). (3)

The first part Eb(u) corresponds to the strain energy of the body. We assume
that the behavior of the uncracked part of the body is governed by the elastic-
type potential Ψ which is a strictly convex function defined on the linear
space of N × N symmetric matrices. Moreover, Ψ is supposed at least twice
continuously differentiable and enjoys the growing condition

∃a ∈ R,∃α > 0,∃p ∈ (1, +∞) : Ψ(ε) ≥ a + α‖ε‖p (4)

where ‖ε‖ denotes the euclidean norm of matrices, i.e. ‖ε‖ =
∑

i,j
√

εijεij. So,
the bulk energy reads as

Eb(u) =
∫
Ω\Su

Ψ(ε(u))dx. (5)
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The second part Es(u) of the total mechanical energy represents the surface
energy due to the discontinuities of the displacement field u. Introducing the
surface energy density Φ which may depend on the local orientation ν of the
surface Su and on the jump [[u]] as well, the total surface energy reads as

Es(u) =
∫

Su

Φ(ν, [[u]])dS. (6)

In order to prohibit the interpenetration of the lips of the cracks, the normal
jump must be non negative:

[[u]] · ν ≥ 0 on Su. (7)

This condition can also be ensured by imposing that the density surface energy
is infinite when the normal jump is negative:

Φ(ν, [[u]]) = +∞ if [[u]] · ν < 0. (8)

In the same manner the jump set Su could be restricted to be some part of the
body. For instance, let us assume that the body is made of two materials which
divide Ω into two parts Ω1 and Ω2 separated by the interface I = ∂Ω1 ∩ ∂Ω2.
Then, one can restrict Su to be only inside the first material domain (or at
its boundary) if the second material is unbreakable, by imposing Es(u) = +∞
if Su 6⊂ ∂Ω1. One can also restrict Su to be only at the interface as well, by
imposing Es(u) = +∞ if Su 6⊂ I.

The third part F(u) of the total mechanical energy is the potential of the
prescribed bulk or surface forces. By assuming that the body is submitted to
a density f of bulk forces and to a density F of surface forces on a part ∂F Ω
of its boundary, F(u) reads as:

F(u) = −
∫
Ω
f · u dx−

∫
∂F Ω

F · u dS. (9)

Moreover we assume that the densities f and F are smooth enough so that
f ∈ Lq(Ω, RN) and F ∈ Lq(∂F Ω, RN), with q = (p− 1)/p. Naturally, it is also
possible to insert the kinematic boundary conditions in the definition of F(u).
Indeed, let us assume that the displacements are prescribed on the part ∂DΩ
of the boundary ∂Ω et let U be their value. Since a discontinuity may appear
on this part of the boundary, i.e. Su∩∂DΩ 6= ∅, the kinematic condition must
be written in terms of the outer trace of u on ∂DΩ. If ν is chosen as the outer
(resp. the inner) normal to ∂Ω, then the kinematic condition reads as

u+(resp. u−) = U on ∂DΩ. (10)

This condition will appear in the potential energy of the loads by imposing

F(u) = +∞ if u+(resp. u−) 6= U on ∂DΩ. (11)
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Adopting these extended definitions of the energies, we will consider as being
admissible any displacement field with finite energy.

Definition 1 For a given loading of the body, a displacement field u is called
an admissible state of the body if u is piecewise smooth and if its associated
total energy E(u) is finite. The set of all the admissible states is denoted by D.
By construction, D is a convex cone. Moreover, we will distinguish the subset
C of D containing all continuous admissible states:

C = {u ∈ D : Su = ∅}. (12)

In the definition of local stability below enters a norm for the displacement
field which must be chosen in accordance with the properties of the strain
energy density. In view of the growing condition (4), the norm of u is defined
as

‖u‖ =

(
1

vol(Ω)

∫
Ω\Su

‖ε(u)‖pdx

)1/p

+
1

vol(Ω)

∫
Su

‖[[u]]‖dS, (13)

where the volume of Ω is introduced so that the norm is dimensionless. (In
(13), three norms appear. The first is the defined norm of the displacement
field, the second is the euclidean norm of matrices and the third is the usual

euclidean norm of vectors, i.e. ‖[[u]]‖ =
∑

i

√
[[ui]][[ui]].)

2.2 The stability definitions

We are now in a position to define the concepts of stability of a state. We
will distinguish three types of stability, by starting from the concept of global
stability (the strongest requirement) and by finishing by the concept of local
directional stability (the weakest one).

Definition 2 (Global stability) For a given loading, we say that the dis-
placement field u is a globally stable state of the body if the total energy
of the body in this state is less than or equal to the total energy of the body in
any state :

∀v ∈ D, E(u) ≤ E(v). (14)

Definition 3 (Local stability) For a given loading, we say that the admis-
sible displacement field u is a locally stable state if there exists a neighbor-
hood (in the sense of the chosen norm) of u such that the total energy of the
body in this state is less than or equal to the total energy of the body in any
state of this neighborhood :

∃r > 0, ∀v ∈ D : ‖v − u‖ ≤ r, E(u) ≤ E(v). (15)
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Definition 4 (Local directional stability) Let v be a displacement of norm
1. For a given loading, we say that the admissible displacement field u is lo-
cally stable in the direction v if there exists a line segment [u,u + rv]
such that the total energy of the body at u is less than or equal to the total
energy of the body at any of the states of this segment:

∃r > 0, ∀h ∈ [0, r], E(u) ≤ E(u + hv). (16)

When u is locally stable in any direction, we say that u is locally directionally
stable.

The reader will note that these notions of stability of a state depend on the
type of loading. In other words, the same displacement field may be a stable
equilibrium state when the boundary conditions are prescribed by a hard
device, but unstable when the loading is prescribed by a soft device.

2.3 The elastic state and the crack initiation criterion

Let us first define the elastic state of the body.

Definition 5 (Elastic state) For a given loading, the elastic state of the
body is defined as the continuous admissible state ue which minimizes the
total energy of the body among all continuous admissible states, i.e.

ue ∈ C : ∀v ∈ C, E(ue) ≤ E(v). (17)

This definition is of course conform to the usual definition of the equilibrium
state of an elastic body according of the theorem of the potential energy
minimum: owing to the strict convexity and the growing properties of Ψ, and
owing to the smoothness assumptions on the loading, this theorem ensures
the existence and the uniqueness of ue. Moreover, the elastic state satisfies
the following variational equation:∫

Ω
σe · ε(v) dx =

∫
Ω
f · v dx +

∫
∂F Ω

F · v dS, ∀v ∈ C0, (18)

where σe = Ψ′(ε(ue)) denotes the elastic stress field. Of course, the elastic
stress field satisfies the equilibrium equations and the natural boundary con-
ditions (in a classical sense or in a weak sense following the smoothness of f
and F):

divσe + f = 0 in Ω, σen = F on ∂F Ω. (19)

However, although this theorem says that the elastic response is globally sta-
ble under continuous perturbation fields, it does not ensure that the elastic
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response is a stable state in the sense of any of the three definitions above,
because it remains to compare its energy to that of discontinuous states. There-
fore, we propose to define the concept of crack initiation as the loss of stabil-
ity of the elastic response, in the spirit of the stability concepts developed by
Nguyen Q. S. [19].

Definition 6 (Crack initiation) The loading is said no more compatible
with the uncracked state of the body once the elastic response is no more locally
stable in at least one direction:

∃v : ‖v‖ = 1,∃{hn}n∈N : hn ↓ 0 such that E(ue + hnv) < E(ue). (20)

In practice, we will determine the set of loadings such that the elastic response
is locally directionally stable and the boundary of this set will give the critical
loadings at which a first discontinuity appears in the body.

2.3.1 The stability conditions

To test the local stability of the elastic state ue we have to compare its energy
with that of all its neighbors. A neighborhood of ue is made of states of the
form

ue + hv with 0 < h < r, ‖v‖ = 1, (21)

where r can depend on v if we test only the directional stability. In order that
ue +hv is admissible (i.e. with finite energy), the direction v must satisfy the
following conditions:

[[v]] · ν ≥ 0 on Sv, v+( or v−) = 0 on ∂DΩ. (22)

Like D, the set of all the admissible directions, i.e. the set of v satisfying
(22), is a convex cone denoted by D0. Its subset which is made up with all the
continuous functions will be denoted by C0; C0 is a linear space.

Let uh = ue + hv be a family of admissible states in a neighborhood of ue

with h > 0, v ∈ D0 and ‖v‖ = 1. When h tends to 0, uh converges to ue. The
energy E(uh) can be expanded in powers of h provided that both the elastic
potential Ψ and the surface energy density Φ are smooth enough. In such a
case, that leads to the following expansion:

E(ue + hv) = E0(u
e;v) + hE1(u

e;v) +
h2

2
E2(u

e;v) + o(h2). (23)

In the case of the Griffith assumption on the surface energy, since Φ is not
continuous, E0(u

e;v) is not equal to E(ue) but homogeneous of degree 0 in v,

∀λ > 0, E0(u
e; λv) = E0(u

e;v). (24)
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In the case of Barenblatt surface energy, we have E0(u
e;v) = E(ue), but the

functional u 7→ E(u) is not necessarily differentiable. If we assume that it
admits at least directional derivatives, the term E1(u

e;v) is not necessarily
linear in v but at least homogeneous of degree 1; Similarly, E2(u

e;v) is not
necessarily quadratic but at least homogeneous of degree 2:

∀λ > 0, E1(u
e; λv) = λE1(u

e;v) and E2(u
e; λv) = λ2E2(u

e;v). (25)

In order that ue be locally directionally stable, the inequality E(ue + hv) ≥
E(ue) must hold for all h ∈ (0, r) and all v ∈ D0 such that ‖v‖ = 1. Conse-
quently, passing to the limit in (23) when h tends to 0 leads to E0(u

e;v) ≥ 0.
This inequality must hold for all the admissible directions of norm 1, but,
because of the homogeneity of E0, it must hold in fact for any admissible di-
rection. Moreover, if E0(u

e;v) > E(ue), we can choose h sufficiently small so
that E(uh) ≥ E(ue) and hence ue is locally stable in that direction v. We have
obtained the so-called zero order stability conditions:

Proposition 1 (SC0) The elastic state ue is locally directionally stable only
if it satisfies the zero order stability conditions:

∀v ∈ D0, E0(u
e;v) ≥ E(ue). (26)

The elastic state ue is locally stable in the direction v if E0(u
e;v) > E(ue).

Let us now consider a direction v such that E0(u
e;v) = E(ue). In order that ue

be locally stable in this direction v, ue must satisfy E1(u
e;v) ≥ 0. Moreover,

if E1(u
e;v) > 0, we can choose h sufficiently small so that E(uh) ≥ E(ue) and

hence ue is locally stable in that direction v. We have obtained the so-called
first order stability conditions.

Proposition 2 (SC1) The elastic state ue is locally directionally stable only
if ue satisfies the first order stability conditions:

∀v ∈ D0 : E0(u
e;v) = E(ue), E1(u

e;v) ≥ 0. (27)

The elastic state ue is locally stable in the direction v if E0(u
e;v) > E(ue) or

if (E0(u
e;v) = E(ue) and E1(u

e;v) > 0).

We can reiterate the process to obtain the so-called second order stability
conditions.

Proposition 3 (SC2) The elastic state ue is locally directionally stable only
if ue satisfies the second order stability conditions:

∀v ∈ D0 : E0(u
e;v) = E(ue) and E1(u

e;v) = 0, E2(u
e;v) ≥ 0. (28)

The elastic state ue is locally stable in the direction v if E0(u
e;v) > E(ue) or
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if (E0(u
e;v) = E(ue) and E1(u

e;v) > 0) or if (E0(u
e;v) = E(ue), E1(u

e;v) = 0
and E2(u

e;v) > 0).

3 The one-dimensional case

3.1 Setting of the problem

Consider now a homogeneous bar of natural length L and of cross-sectional
area S. The bar is made of an elastic breakable material characterized by the
elastic potential Ψ and the surface energy density Φ, the properties of which
will be given below. Before any loading, the bar is assumed to be sound. Its
reference configuration is the interval Ω = (0, L). When a field u is discontin-
uous at x ∈ [0, L], the normal ν is taken equal to +1 so that u+ (resp. u−)
denotes the right (resp. left) limit. The prime will denote the derivative of any
function with respect to its scalar variable. We will only consider fields u con-
taining a finite number of discontinuity points, the interested reader should
refer to [20] for a treatment of such a problem in the whole space of functions
of bounded variations.

The elastic potential Ψ is a twice continuously differentiable and strictly con-
vex function of ε = u′ which grows to infinity like |ε|p with 1 < p < +∞.
Consequently, the norm is chosen as follows:

‖u‖ =

(
1

L

∫
(0,L)\Su

|u′|p
)1/p

+
1

L

∑
Su

|[[u]]| . (29)

The bar is submitted to a linear density of forces f ∈ Lq, q = p/(p− 1). The
extremity x = 0 is fixed whereas the extremity x = L is controlled by a soft
device and submitted to a force F . Let u be a displacement field of the bar.
Its potential energy F(u) reads as

F(u) =

−
∫ L
0 f u dx− Fu+(L) if u−(0) = 0,

+∞ otherwise.
(30)

For the surface energy density, we will successively consider the models of
Griffith and of Barenblatt.

(1) Griffith’s model : In the case of the Griffith model [3] the surface energy
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Fig. 1. The Griffith and Barenblatt surface energy densities.

density is given by

Φ([[u]]) =


0 if [[u]] = 0

Gc if [[u]] > 0

+∞ if [[u]] < 0

. (31)

The surface energy of the bar reads then as :

Es(u) =
∑
Su

GcS = card(Su)GcS, (32)

provided that [[u]] > 0 on Su. In (32), card(Su) denotes the cardinal of
Su, i.e. the number of points where u is discontinuous.

(2) Barenblatt’s model : In the case of the Barenblatt model [6], the sur-
face energy density Φ is a concave function which depends continuously
on the positive values of the displacement jump, starts from 0 and pro-
gressively grows up to the Griffith’s value Gc when the displacement
jump grows from 0 to infinity. Specifically, we assume that the surface
energy density is twice continuously differentiable and satisfies the fol-
lowing properties:

Φ = +∞ on (−∞, 0), Φ(0) = 0 and Φ′(0+) = σc > 0, (33)

Φ′ > 0 and Φ′′ < 0 on (0, +∞), Φ(+∞) = Gc. (34)
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3.2 The elastic state

The elastic response is obtained by minimizing Eb(u) + F(u) on C with

Eb(u) =
∫ L

0
Ψ(u′(x))S dx (35)

and
C = {u ∈ W 1,p(0, L) : u(0) = 0}. (36)

By virtue of the strict convexity and the coercivity of Ψ the elastic state ue is
unique. Denoting by εe and σe the elastic strain and stress fields, i.e. εe = ue′

and σe = Ψ′(εe), we obtain

σe(x)S = F +
∫ L

x
f(s) ds (37)

and
ue(x) =

∫ x

0
(Ψ′)−1(σe(s)) ds. (38)

Let us note that the stress field is absolutely continuous on [0, L] and so it
reaches its maximum somewhere.

3.3 The case of Griffith’s surface energy

Proposition 4 (Stability of the elastic state) In the case of the Griffith
surface energy, the elastic state ue is locally stable for any loading.

Moreover, the elastic state is globally stable if and only if the bar is nowhere
in traction, i.e. iff σe(x) ≤ 0 ∀x ∈ [0, L].

Proof. According to (17) we may only consider the admissible discontinuous
directions v, i.e. v such that card(Sv) > 0 and [[v]] > 0 on Sv. The local
directional stability is easily checked while remarking that the zero order term
E0(u

e; v) reads as
E0(u

e; v) = E(ue) + Gc S card(Sv) (39)

and by using Proposition 1. The local stability proof requires to refine the
estimates. The convexity of Ψ gives

σe(ε− εe) ≤ Ψ(ε)−Ψ(εe), ∀ε. (40)

By virtue of the equilibrium equations and the boundary conditions satisfied
by σe, we have ∫

[0,L]\Sv

σeS v′ dx + F(v) = −
∑
Sv

σeS[[v]] (41)
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for any admissible direction. Furthermore,

E(v)− E(ue)≥
∫
[0,L]\Sv

σeS(v′ − ue′) dx + F(v − ue) + GcS card(Sv) (42)

=−
∑
Sv

σeS[[v]] + GcS card(Sv). (43)

When the bar is everywhere in compression, since [[v]] > 0 on Sv, (43) ensures
that E(v) ≥ E(ue) for all v and hence that ue is globally stable.

Otherwise, the definition (13) of the norm gives

L‖v − ue‖ ≥
∑
Sv

[[v]] (44)

and we deduce from (43) that

E(v)− E(ue) ≥ GcS − max
x∈[0,L]

σe(x)S L‖v − ue‖. (45)

Thus ue is a minimizer of E on the ball of center ue and of radius r with

r =
Gc

maxx∈[0,L] σe(x)L
, (46)

which gives the desired local stability result.

Let us finally prove that the energy is not bounded from below when the
loading is such that the bar is somewhere in traction in its elastic state, i.e.

inf
v∈D

E(v) = −∞ if max
[0,L]

σe > 0. (47)

Let x1 ∈ [0, L] be such that σe(x1) = max[0,L] σ
e > 0 and consider then the

family of admissible fields {vn}n∈N defined as follows:

v′n = ue′ in [0, L] \ {x1}, [[vn]](x1) = nL. (48)

By using (37), we get

E(vn) = E(ue) + GcS − nσe(x1)SL. (49)

By passing to the limit when n goes to infinity we obtain (47). 2

Proposition 5 (Other stable states) The other locally directionally stable
states are the admissible displacements fields u such that
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(1) card(Su) > 0;
(2) the associated stress field Ψ′(u′) is equal to the elastic stress field σe;
(3) Su ⊂ {x ∈ [0, L] : σe(x) = 0}.

Of course, such states exist only for the particular loadings such that the bar
is neither in traction everywhere nor in compression everywhere.

Proof. By virtue of the strict convexity of Ψ and of the theorem of the poten-
tial energy minimum, the elastic state is the unique locally stable continuous
state. Let us assume that u ∈ D is another locally directionally stable state,
then card(Su) > 0. For any admissible direction, we get:

E0(u; v) = E(u) + GcS card(Sv \ Su), (50)

E1(u; v) =
∫
[0,L]\(Su∪Sv)

σS v′ dx + F(v), (51)

where σ = Ψ′(u′) denotes the stress field of the state u. Owing to Proposition 1,
u is locally stable in any direction v such that card(Sv \ Su) > 0. So, we have
only to consider the directions v such that Sv ⊂ Su.

Let v ∈ C∞(0, L) be a smooth direction with v(0) = 0. Since Sv = ∅, E0(u; v) =
E(u). Then, by virtue of Proposition 2, we must have E1(u; v) ≥ 0. By changing
v by −v, we obtain the converse inequality and so the equality E1(u; v) = 0.
Since this equality must hold for every v in C∞(0, L) such that v(0) = 0,
classical arguments of the Calculus of Variations yield

σ′S + f = 0 in (0, L) \ Su, [[σ]] = 0 on Su, σ(L) = F (52)

and then σ = σe. In other words the stress field is necessarily equal to the
elastic stress field.

Let v be now an admissible direction such that Sv = Su. Since E0(u; v) = E(u),
we must still have E1(u; v) ≥ 0. By inserting (52) into (51), the first order
stability condition reads as

0 ≤
∫
[0,L]\Su

σeS v′ dx + F(v) = −
∑
Su

σeS[[v]]. (53)

Since [[u]] > 0 on Su, [[u+hv]] > 0 on Su for h small enough. Consequently, [[v]]
is arbitrary on Su and if v is an admissible direction, so is −v. The inequality
in (53) must be an equality. Owing to the arbitrariness of [[v]], we necessarily
have

σe = 0 on Su. (54)

We have thus proved that an admissible field u is locally directionally stable
only if u satisfies the three conditions stated in the proposition.
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Conversely, let us consider u satisfying these conditions. Then E0(u; v) ≥ E(u)
for any admissible direction and the equality holds for any v such that Sv ⊂ Su.
Moreover, for such a direction we have also E1(u; v) = 0. Let us finally consider
the second order stability conditions. Since E2(u; v) reads as

E2(u; v) =
∫
[0,L]\Su

Ψ′′(u′)S v′
2
dx (55)

and since Ψ is strictly convex, we have E2(u; v) > 0 in any direction of norm
1 such that Sv ⊂ Su. Thus, u is locally directionally stable. 2

Remark 1 The third condition of Proposition 5 ensures that there is no co-
hesive force at a cut if we adopt the Griffith surface energy.

In conclusion, adopting the Griffith surface energy leads to a paradoxical situ-
ation: the elastic response is always locally stable and is never globally stable
when the bar is somewhere in traction. Consequently, in order to explain at
the same time a certain resistance and a certain threshold of rupture of the bar
under a traction loading, there is no other alternative but to consider another
type of surface energy.

3.4 The case of Barenblatt’s surface energy

Proposition 6 (Stability of the elastic state and yield stress) In the
case of a Barenblatt surface energy, the elastic state is locally stable provided
that the elastic stress field σe is everywhere smaller than the critical stress σc

given by the slope of the surface energy density at the origin. The elastic state
is no more locally directionally stable when the elastic stress field σe is equal to
or greater than σc somewhere. On the other hand, the elastic state is globally
stable if and only if the bar is everywhere in compression:

max
x∈[0,L]

σe(x) < σc⇐⇒ue locally stable, (56)

max
x∈[0,L]

σe(x) ≤ 0⇐⇒ue globally stable. (57)

Proof. It suffices to consider the admissible discontinuous directions v. Let
us first remark that

E0(u
e; v) = E(ue), (58)

E1(u
e; v) =

∫
[0,L]\Sv

σeS v′ dx + σcS
∑
Sv

[[v]] + F(v). (59)
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After inserting (41) into (59), we obtain

E1(u
e; v) =

∑
Sv

(σc − σe)S[[v]]. (60)

We conclude that ue is locally directionally stable when max[0,L] σ
e < σc, by

virtue of Proposition 2.

Let us consider now the case where the maximal stress is reached at a certain
point x1 and is greater than the critical stress σc: σe(x1) = max[0,L] σ

e > σc.
Let us consider the following admissible direction v of norm 1:

v−(0) = 0, [[v]] = L on Sv = {x1}, v′ = 0 in [0, L] \ Sv. (61)

We obtain E1(u
e; v) = (σc −max[0,L] σ

e)SL < 0 which implies that the elastic
state is not locally stable in this direction v.

Let us consider the limit case where σe(x1) = max[0,L] σ
e = σc. If we choose

the same direction as above, we get E1(u
e; v) = 0, the second order term reads

as
E2(u

e; v) = Φ′′(0)SL2 (62)

and is negative because of the concavity of Φ. We conclude that ue is not
locally stable in the direction v by virtue of Proposition 3.

To improve the above result of local directional stability in the case where
max[0,L] σ

e < σc we must refine the estimates. Let v be an admissible state.
According to (40) and (41), we have

E(v)− E(ue)≥
∫
(0,L)\Sv

σeS(v′ − ue′) dx + F(v − ue) +
∑
Sv

Φ([[v]])S (63)

=
∑
Sv

(
Φ([[v]])− σe[[v]]

)
S. (64)

If the bar is everywhere in compression, (64) allows to conclude that the elastic
state is globally stable. Let us consider the case where the bar is somewhere
in traction:

0 < σe
m = max

[0,L]
σe < σc. (65)

Let r > 0 and let Br(u
e) be the ball of center ue with radius r:

Br(u
e) = {u ∈ D : ‖u− ue‖ ≤ r}. (66)

By virtue of the definition of the norm and in view of the jump positivity, for
any v ∈ Br(u

e) we have 0 < [[v]] ≤ rL on Sv. Then from the concavity of Φ we
get

Φ([[v]]) ≥ Φ′([[v]])[[v]] ≥ Φ′(rL)[[v]] on Sv. (67)
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Inserting the above inequality into (64) leads to

E(v)− E(ue) ≥
∑
Sv

(
Φ′(rL)− σe

m

)
[[v]] ∀v ∈ Br(u

e). (68)

Since r 7→ Φ′(rL) is continuous and since limr↓0 Φ′(rL) = σc > σe
m, we obtain

the local stability of ue.

Let us finally prove that the energy is not bounded from below when the
loading is such that the bar is somewhere in traction in its elastic state, i.e.
infv∈D E(v) = −∞ if max[0,L] σ

e > 0. The proof is very similar to that
given in the case of the Griffith surface energy. Let x1 ∈ [0, L] be such that
σe(x1) = max[0,L] σ

e > 0 and let {vn}n∈N be the family of admissible fields
defined in (48). By using (37), we get now

E(vn) = E(ue) + Φ(nL)S − nσe(x1)SL ≤ E(ue) + GcS − nσe(x1)SL. (69)

Hence E(vn) → −∞ as n → +∞. 2

Let us now examine which are the states satisfying the first order stability
conditions.

Proposition 7 An admissible state u satisfies the first order stability condi-
tions E1(u; v) ≥ 0 for all the admissible directions v if and only if

(1) σ′S + f = 0 in [0, L] \ Su, [[σ]] = 0 on Su and σ(L) = F ;
(2) σ = Φ′([[u]]) on Su;
(3) σ ≤ σc on [0, L] \ Su.

where σ = Ψ′(u′) denotes the associated stress field. Accordingly, the stress
field is necessarily equal to the elastic stress field: σ = σe.

Moreover, if max[0,L] σ
e ≤ 0, then the elastic state is the unique state verifying

these first order conditions. But, if 0 < max[0,L] σ
e < σc, then there exists an

infinite number of states u verifying these three conditions because the jump
set Su can be chosen arbitrarily as a subset of Ω+ = {x ∈ [0, L] : 0 < σe(x) <
σc}.

Remark 2 The first conditions are the equilibrium equation and the natural
boundary condition. The second one says that the derivative of the surface
energy density gives the cohesive force at the points of discontinuity. The third
one requires that the stress is nowhere greater than the slope σc of the surface
energy density at the origin. It generalizes the condition already obtained for
the elastic state and allows to interpret σc as the critical stress of the material.
It is really important to note that this condition is a part of the first order
stability conditions. This condition rules out all the models of cohesive forces
in which σc = 0, because in such a case the material cannot sustain any
traction.
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Proof. Since E0(u; v) = E(u) for every admissible direction, we have to con-
sider all the admissible directions to derive the first order stability conditions.
Moreover, the set of the admissible directions depends on u because of the
non-interpenetration condition. Denoting it by Du, it is a punctured convex
cone defined by

Du = {v : v−(0) = 0, v′ ∈ Lp(0, L), [[v]] ≥ 0 on Sv \ Su}. (70)

Thus, in order that u is locally directionally stable, u must satisfy

∀v ∈ Du,
∫
[0,L]\(Su∪Sv)

σSv′ dx + F(v) +
∑

Su∪Sv

Φ′([[u]])S[[v]] ≥ 0. (71)

By choosing continuous directions, i.e. v such that Sv = ∅, we deduce the equi-
librium equation and the natural boundary condition by classical arguments
of the Calculus of Variations. This condition (1) of the proposition ensures
that σ = σe, what is due to the fact that there exists a unique statically
admissible stress field in one dimension when one end is submitted to a soft
device. Inserting this condition into (71) provides

∀v ∈ Du,
∑

Su∪Sv

(
Φ′([[u]])− σe

)
S[[v]] ≥ 0. (72)

By choosing v such that Sv ⊂ Su = ∅, since the jump of v is arbitrary on Su,
we obtain the condition (2) of the proposition. By inserting it into (72), we
obtain

∀v ∈ Du,
∑

Sv\Su

(
σc − σe

)
S[[v]] ≥ 0. (73)

Since [[v]] ≥ 0 on Sv \ Su, the above inequality is possible if and only if the
condition (3) holds.

Let us note that if u satisfies the three conditions of the proposition, then

E1(u; v) = 0 ⇐⇒ Sv ⊂ Su ∪ {x ∈ [0, L] : σe(x) = σc}. (74)

If the bar is everywhere in compression, then Su = ∅ because otherwise we
should have 0 ≥ σe = Φ′([[u]]) > 0 on Su by virtue of (2) and of the mono-
tonicity of Ψ. If 0 < max[0,L] σ

e < σc, then Ω+ is a non empty open subset of
[0, L]. Since Φ′([[u]]) decreases continuously from σc to 0 when [[u]] grows from
0 to ∞, we may choose as many points of discontinuity as we want in Ω+ and
then u is simply given by

u−(0) = 0, u′ = (Ψ′)−1(σe) in [0, L] \ Su, [[u]] = (Φ′)−1(σe) on Su. (75)

2

Thus, the first order stability conditions rule out all the loadings such that
max[0,L] σ

e > σc, but otherwise they leave an infinite number of candidates

18



when the bar is somewhere in traction. In fact, by virtue of the second order
stability conditions all these candidates are unstable as it is proved in the
following Proposition.

Proposition 8 It exists no other locally stable state than the elastic state.

Proof. Let u 6= ue be an admissible state satisfying the three conditions of
Proposition 7. (If such a u does not exist, there is nothing to prove.) Hence,
Su 6= ∅. Let x1 ∈ Su and let v be the direction of norm 1 defined as follows:

v−(0) = 0, [[v]] = L on Sv = {x1}, v′ = 0 in [0, L] \ {x1}. (76)

Since Sv ⊂ Su, then E1(u; v) = 0 and E2(u; v) = Φ′′([[u]](x1))SL2 < 0. Hence u
is not locally stable in this direction by virtue of Proposition 3. 2

The results are slightly different if we replace the soft device at the end x =
L by a hard device prescribing the displacement instead of the force. The
interested reader should refer to [5] or [1] where a complete analysis of stability
is made in the case where the bar is free of body forces, i.e. f = 0. The
properties of stability of the discontinuous states are very dependent on the
concavity assumptions made on the density surface energy, see [10].

4 The three-dimensional case

4.1 Surface energy assumptions

We consider now a three-dimensional homogeneous body, N = 3, made of
an isotropic elastic-breakable material. Its surface energy density is of the
Barenblatt type and then depends on both the jump of the displacement and
the local orientation of the discontinuity surface. The isotropy assumption
requires that

Φ(Qν,Qδ) = Φ(ν, δ), ∀Q ∈ SO3,∀ν ∈ S2,∀δ ∈ R3 (77)

where SO3 denotes the group of rotations (i.e. the 3× 3 matrices Q such
that QT = Q−1 and detQ = 1), and S2 denotes the unit sphere of R3, i.e.
S2 = {ν ∈ R3 : ‖ν‖ = 1}. This is possible if and only if the surface energy
density only depends on the invariants of (ν, δ). Since ν is of norm 1, these
invariants are δ ·ν and ‖δ‖, or equivalently, δ ·ν and ‖δ−δ ·ν ν‖. Moreover,
the non-interpenetration condition requires that δ ·ν ≥ 0. Consequently, there
exists a function φ defined on [0,∞)2 such that the surface energy density reads
as

Φ(ν, δ) = φ(δ · ν, ‖δ − δ · ν ν‖), ∀ν ∈ S2,∀δ ∈ R3 : δ · ν ≥ 0. (78)
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The surface energy density vanishes when δ = 0 and hence φ(0, 0) = 0. Since
the surface energy density is of the Barenblatt type, Φ(ν, δ) is a positive
continuous function of δ at given ν. So, φ is also a positive continuous function
which is not necessarily differentiable, in particular near the origin (0, 0). We
make the following assumptions:

Hypothesis 1 The surface energy density (α, β) 7→ φ(α, β) is a continuous
function defined on [0,∞)2 which enjoys the following properties:

(1) φ is continuously differentiable at every point (α, β) 6= (0, 0), the two
partial derivatives being denoted by φ,n and φ,t:

φ,n =
∂φ

∂α
φ,t =

∂φ

∂β
. (79)

(2) φ admits directional derivatives at the origin, i.e. there exists a positive,
one-homogeneous function ϕ such that for all (α, β) : α ≥ 0, β ≥ 0,
(α, β) 6= (0, 0),

0 < ϕ(α, β) = lim
h↓0

1

h
φ(hα, hβ), ϕ(λα, λβ) = λϕ(α, β),∀λ > 0. (80)

In particular, we denote by σc and τc the partial derivatives:

σc = ϕ(1, 0) > 0, τc = ϕ(0, 1) > 0. (81)

When φ is differentiable at (0, 0), then ϕ is linear and reads as

ϕ(α, β) = σcα + τcβ. (82)

Let v ∈ D0 and let h > 0. In view of the smoothness assumptions made on φ,
the energy E(ue + hv) can be expanded in terms of h up to the second order:

E(ue + hv) = E(ue) + hE1(u
e;v) + o(h) (83)

with

E1(u
e;v) =

∫
Ω\Sv

σe · ε(v) dx−
∫
Ω
f · v dx−

∫
∂F Ω

F · v dS

+
∫

Sv

ϕ
(
[[v]]·ν, ‖[[v]]− [[v]]·ν ν‖

)
dS. (84)

The equilibrium equations and the boundary conditions satisfied by σe imply
then

E1(u
e;v) =

∫
Sv

(
ϕ
(
[[v]]·ν, ‖[[v]]− [[v]]·ν ν‖

)
− σeν · [[v]]

)
dS. (85)

20



4.2 The stress yield criterion

We are now ready to prove the following

Proposition 9 The elastic state is locally directionally stable only if the elas-
tic stress field satisfies almost everywhere the following inequality:

σeν · δ ≤ ϕ(δ · ν, ‖δ − δ · ν ν‖), ∀ν ∈ S2,∀δ ∈ R3 : δ · ν ≥ 0. (86)

Furthermore, if the above inequality is strict everywhere, then the elastic state
is really locally directionally stable.

Proof. Since E0(u
e; v) = E(ue) ∀v ∈ D0, the elastic state is locally direction-

ally stable only if it satisfies the first order stability conditions: E1(u
e;v) ≥ 0,

∀v ∈ D0. Let x0 be a point of Ω located at a distance d of the boundary,
ν ∈ S2, δ ∈ R3 such that δ · ν ≥ 0 and η ∈ C∞

0 (R) be a smooth positive
function such that η(0) = 1 and whose support is included in (−d, +d). Let v
be the following admissible direction

v(x) = H((x− x0) · ν)η(‖x− x0‖)δ, (87)

where H denotes the Heaviside function, i.e. H(x) = 0 if x ≤ 0, H(x) = 1
otherwise. Denoting by

P (x0, ν) = {x : (x− x0) · ν = 0} (88)

the hyperplane through x0 of normal vector ν, the field v is discontinuous
across P (x0, ν),

Sv ⊂ P (x0, ν) ∩ B(x0, d). (89)

The jump of v is equal to δ at x0 and more generally

[[v]](x) = η(‖x− x0‖)δ on Sv. (90)

By inserting these relations into (85) and by using the one-homogeneity of ϕ,
the first order stability condition becomes

0 ≤
∫

P (x0,ν)∩B(x0,d)

(
ϕ(δ · ν, ‖δ − δ ·ν ν‖)− σe(x)ν · δ

)
η(‖x− x0‖)dS. (91)

Since η is an arbitrary positive smooth function, since the point x0 is arbitrary
in Ω, since the unit normal vector ν is arbitrary and since the vector δ is
arbitrary, the inequality (86) must hold almost everywhere in Ω.

Conversely, if the inequality (86) is strict everywhere, then (85) gives E1(u
e;v) >

0 for any admissible direction v and we conclude accordingly with Proposi-
tion 2. 2
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We have thus obtained a criterion of initiation of crack in terms of the stress
field. This criterion generalizes to the three dimensional context the one-
dimensional criterion σe ≤ σc. This stress yield is not specific to the elastic
state, but it appears as a first order condition of stability for any state as we
will see below.

4.3 The first order stability conditions of any state

Consider now any admissible state u with a jump set Su. We assume that
u is piecewise smooth so that all the forthcoming calculations of the present
subsection are valid. We introduce the following simplified notation:

[[un]] = [[u]]·ν, [[ut]] = [[u]]− [[u]]·ν ν. (92)

In the jump set Su, we can distinguish the part Sn
u where the jump is normal

from the part St
u where the jump is tangential:

Sn
u = {x ∈ Su : [[ut]] = 0}, St

u = {x ∈ Su : [[un]] = 0}. (93)

In the same way we introduce the normal and the tangential parts of the jump
of the direction v:

[[vn]] = [[v]]·ν, [[vt]] = [[v]]− [[v]]·ν ν. (94)

In order that u + hv satisfies the non-interpenetration condition for h suffi-
ciently small, v must satisfy

[[vn]] ≥ 0 on (Sv \ Su) ∪ St
u. (95)

Let us note also that the expansion of ‖[[ut + hvt]]‖ is not the same on Sn
u as

on Su \ Sn
u:

‖[[ut + hvt]]‖= h‖[[vt]]‖ on Sn
u, (96)

‖[[ut + hvt]]‖= ‖ut‖+ hvt ·
ut

‖ut‖
+ o(h) on Su \ Sn

u. (97)

The necessary first order stability conditions read then
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0≤
∫
Ω\(Su∪Sv)

σ · ε(v) dx−
∫
Ω
f · v dx−

∫
∂F Ω

F · v dS

+
∫

Sv\Su

ϕ
(
[[vn]], ‖[[vt]]‖

)
dS

+
∫

Sn
u

(
φ,n([[un]], 0)[[vn]] + φ,t([[un]], 0)‖[[vt]]‖

)
dS

+
∫

Su\Sn
u

(
φ,n([[un]], ‖[[ut]]‖)[[vn]] + φ,t([[un]], ‖[[ut]]‖)

ut

‖ut‖
· vt

)
dS, (98)

for all the admissible directions v, where σ = Ψ′(ε(u)) denotes the stress field
of the state u. Let us successively consider different types of directions.

•Continuous directions: Sv = ∅. In this case, v belongs to the linear space C0

and (98) reduces to∫
Ω\Su

σ · ε(v) dx =
∫
Ω
f · v dx +

∫
∂F Ω

F · v dS, ∀v ∈ C0, (99)

which is equivalent to the equilibrium equations (including the continuity of
the vector stress on Su) and the natural boundary conditions:

divσ + f = 0 in Ω \ Su, [[σ]]ν = 0 on Su, σn = F on ∂F Ω. (100)

•Directions with a jump at a sound point: Sv ∩ Su = ∅. Inserting the equi-
librium equations into (98) and considering jumps only at sound points lead
to

0 ≤
∫

Sv

(
ϕ([[vn]], ‖[[vt]]‖)− σν · [[v]]

)
dS. (101)

Since v has only to satisfy [[vn]] ≥ 0, we recover the yield criterion for the
stress field σ: σν · δ ≤ ϕ(δ · ν, ‖δ − δ · ν ν‖), which must hold for all ν ∈ S2

and all δ ∈ R3 such that δ · ν ≥ 0. Owing to the one-homogeneity of φ, we
may simply consider unit vector δ and finally the yield stress criterion reads
as

σν · δ ≤ ϕ(δ · ν, ‖δ − δ · ν ν‖), ∀(ν, δ) ∈ S2×S2 : δ · ν ≥ 0. (102)

•Directions with a jump on Su: Sv ⊂ Su. In such a case, after inserting the
equilibrium equations, (98) reads as

0≤
∫

Su

−σν · [[v]] dS

+
∫

Sn
u

(
φ,n([[un]], 0)[[vn]] + φ,t([[un]], 0)‖[[vt]]‖

)
dS

+
∫

Su\Sn
u

(
φ,n([[un]], ‖[[ut]]‖)[[vn]] + φ,t([[un]], ‖[[ut]]‖)

ut

‖ut‖
· vt

)
dS (103)
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from which we deduce the relations giving the cohesive forces on the different
part of Su. After decomposing σν into its normal and its tangential part,

σν = Σν + T, T · ν = 0, (104)

we obtain

On Sn
u : Σ = φ,n([[un]], 0), ‖T‖ ≤ φ,t([[un]], 0), (105)

On St
u : Σ ≤ φ,n(0, ‖[[ut]]‖), T = φ,t(0, ‖[[ut]]‖)

ut

‖ut‖
, (106)

On Su \ (Sn
u ∪ St

u) :

Σ = φ,n([[un]], ‖[[ut]]‖), T = φ,t([[un]], ‖[[ut]]‖)
ut

‖ut‖
. (107)

The inequalities in (105) and (106) are due to the unilateral constraints [[vn]] ≥
0 on St

u and ‖[[vt]]‖ ≥ 0 on Sn
u. The normal part (resp. the tangential part) of

the cohesive force remains undetermined as long as the normal part (resp. the
tangential part) of the jump is zero.

4.4 Analysis of the stress yield criterion

We establish in this subsection the most important properties of the yield
stress criterion (102).

4.4.1 Case of a smooth surface energy density

Let us first consider the case where the surface energy density ϕ is differ-
entiable at the origin. Then ϕ is linear and given by (82). The yield stress
criterion becomes

σν · δ ≤ σcδ ·ν + τc‖δ − δ ·ν ν‖ (108)

and the inequality must hold for all unit vectors ν and δ such that δ ·ν ≥ 0.
Let ν be a given unit vector and let τ be a unit vector orthogonal to ν. Also
decompose δ in its normal and tangential part:

δ = cos θ ν + sin θ τ , θ ∈ [−π/2, π/2]. (109)

Then (108) gives, ∀(ν, τ ) ∈ S2 × S2 : τ ·ν = 0,

(σν ·ν − σc) cos θ + σν ·τ sin θ − τc |sin θ| ≤ 0, ∀θ ∈ [−π/2, π/2]. (110)

or, equivalently,

max
ν∈S2

σν ·ν ≤ σc, max
(ν,τ )∈S2×S2 : ν·τ=0

σν ·τ ≤ τc (111)
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which are nothing but the criteria of maximal traction and maximal shear.
We have thus obtained the following:

Proposition 10 When the surface energy energy density φ is differentiable at
the origin, the yield stress criterion given by the first order stability conditions
consists in a maximal traction criterion and a maximal shear criterion. These
criteria can be written in terms of the eigenvalues (σ1, σ2, σ3) of the stress
tensor and read as

max
i

σi ≤ σc, max
i,j

(σi − σj) ≤ 2τc, (112)

the critical traction σc and the critical shear τc being given by the partial deriva-
tives of φ at (0, 0).

Remark 3 It is worth noticing that these criteria were obtained under the
only assumptions of isotropy and differentiability of the surface energy density.
To obtain other criteria, we must relax at least one of these two assumptions.
In the next subsection, we conserve the isotropy hypothesis and analyze what
happens in the case of a only directionally differentiable surface energy.

4.4.2 Case of a non-smooth surface energy density

Let us consider the “general” case where ϕ is only one-homogeneous. We first
prove the following

Proposition 11 (Intrinsic curve) Let us assume that the surface energy
density φ is only Gâteaux differentiable at the origin and that ϕ is one-homo-
geneous and continuous. Let σ be a given stress tensor and let ν be a given
unit vector. Decompose the stress vector σν into its normal and tangential
parts:

σν = Σν + Tτ , τ ∈ S2 : τ · ν = 0. (113)

Then, the yield stress criterion is satisfied, i.e. the following inequality holds

σν · δ ≤ ϕ(σν ·ν, ‖σν ·τ‖), ∀δ ∈ S2 : δ · ν ≥ 0 (114)

if and only if the stress vector (Σ, T ) lies in the following convex set of the
Mohr diagram :

|T | ≤ ϕ?(Σ) (115)

with

ϕ?(Σ) = inf
λ≥0
{ϕ(λ, 1)− λΣ}. (116)

Moreover the function ϕ? giving the so-called intrinsic curve |T | = ϕ?(Σ)
enjoys the following properties:
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(1) The function ϕ? is defined for Σ ∈ (−∞, σc), concave, continue, de-
creasing and limΣ→−∞ ϕ?(Σ) = τc = ϕ(0, 1). ϕ? is non negative for
Σ ∈ (−∞, σ?

c ] with σ?
c ≤ σc = ϕ(1, 0).

(2) The domain of the admissible (Σ, T ) delimited by the intrinsic curve is
convex, symmetric with respect to the axis T = 0, unbounded in the di-
rection of negative normal stress and bounded by σ?

c in the direction of
positive normal stress, see Figure 2.

Proof. Let us decompose δ ∈ S2 with δ ·ν ≥ 0 into its normal and tangential
parts:

δ = cos θν + sin θτ ′, τ ′ ∈ S2 : τ ′ · ν = 0, θ ∈ [0, π/2]. (117)

Then, (114) reads as: ∀θ ∈ [0, π/2], and ∀τ ′ ∈ S2 such that τ ′ · ν = 0,

Tτ · τ ′ sin θ ≤ ϕ(cos θ, sin θ)− Σ cos θ. (118)

Since |τ · τ ′| ≤ 1, the equality being true as τ ′ = ±τ , we obtain

|T | sin θ ≤ ϕ(cos θ, sin θ)− Σ cos θ,∀θ ∈ [0, π/2]. (119)

Putting θ = 0 gives Σ ≤ ϕ(1, 0) = σc. Choosing then θ 6= 0 and using the
one-homogeneity of ϕ lead to

|T | ≤ ϕ(λ, 1)− λΣ, ∀λ ≥ 0 (120)

and (115) follows. Conversely, if (115) is satisfied, then (114) holds.

Let us now prove the properties of the function ϕ?. If we consider the function
λ 7→ ϕ̄(λ) defined on R by

ϕ̄(λ) =

ϕ(λ, 1) if λ ≥ 0

+∞ otherwise
, (121)

then we see that, by definition, ϕ? = −ϕ̄?, ϕ̄? denoting the Legendre transform
of ϕ̄, see [13]. Since ϕ̄? is convex by construction, ϕ? is concave and continuous.
If Σ > σc, consider the sequence λn = n. Then ϕ?(Σ) ≤ n(ϕ(1, 1/n) − Σ) .
Since limn→∞ ϕ(1, 1/n) = σc, we have ϕ?(Σ) = −∞. If Σ < σc, then λ 7→
ϕ(λ, 1) − λΣ is continuous and tends to +∞ as λ tends to +∞. Thus the
infimum is reached (and finite).

To prove that ϕ? is decreasing, let us consider Σ1 < Σ2 < σc and let λ1 and
λ2 be the points where the infimum is reached. We have

ϕ?(Σ1) = ϕ(λ1, 1)− λ1Σ1≤ϕ(λ2, 1)− λ2Σ1 (122)

ϕ?(Σ2) = ϕ(λ2, 1)− λ2Σ2≤ϕ(λ1, 1)− λ1Σ2 (123)
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and hence ϕ?(Σ1)− ϕ?(Σ2) ≥ (Σ2 − Σ1)λ1 ≥ 0.

Let us prove that limΣ→−∞ ϕ?(Σ) = τc. Note first that ϕ?(Σ) ≤ ϕ(0, 1)−0·Σ =
τc for all Σ. On the other hand, let Σn = −n be the sequence converging to
−∞ and let λn be the associated sequence of minimizers. Then ϕ?(−n) =
ϕ(λn, 1) + nλn ≤ τc, and, since ϕ is positive, limn→∞ λn = 0. Consequently,
since τc ≥ ϕ?(−n) ≥ ϕ(λn, 1), we have limn→∞ ϕ?(−n) = τc.

ϕ? is neither automatically definite nor positive at Σ = σc, see the example
below. If ϕ?(σc) ≥ 0, then the domain of admissible stress vectors is {(Σ, T ) :
−∞ < Σ ≤ σc, |T | ≤ ϕ?(Σ)}. Else, by the continuity and the monotonicity of
ϕ? there exists σ?

c such that ϕ?(σ
?
c ) = 0 and ϕ?(Σ) < 0,∀Σ > σ?

c . In that case,
the domain of admissible stress vectors is {(Σ, T ) : −∞ < Σ ≤ σ?

c , |T | ≤
ϕ?(Σ)}.

The properties (2) are direct consequences of the first ones. 2

Remark 4 In the case where ϕ is linear, we obtain

ϕ?(Σ) =

τc if Σ ≤ σc

+∞ otherwise
(124)

and recover the criteria of maximal traction and maximal shear.

Along the proof of Proposition 11, σ and ν were fixed. For a given σ, when ν
describes the unit sphere S2, the point (Σ, T ) describes the domain delimited
by the three Mohr circles. Consequently, in order that σ satisfy the yield
stress criterion for all ν, the greatest Mohr circle must leave inside the domain
delimited by the intrinsic curve. Finally, the set of admissible stress tensor is
the convex hull of all greatest circles leaving inside that domain. That leads
to the following

Proposition 12 When the density surface energy φ is only directionally dif-
ferentiable at the origin, the set of stress tensors σ satisfying the yield stress
criterion (102) is such that

σ3 − σ1

2
≤ ϕ?

(
σ1 + σ3

2

)
(125)

with

ϕ?(s) = inf
θ∈[0,π/2]

{ϕ(cos θ, sin θ)− s cos θ}. (126)

In (125), the σi’s denote the ordered eigenvalues of the stress tensor σ, i.e.
σ1 ≤ σ2 ≤ σ3.
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This domain of admissible stress tensors is convex, unbounded in the direction
of hydrostatic pressure.

Proof. Let ω ∈ [−π, π] and let (Σ, T ) be the following point of the greatest
Mohr circle:

Σ =
σ3 + σ1

2
+

σ3 − σ1

2
cos ω, T =

σ3 − σ1

2
sin ω. (127)

Then (119) reads as : ∀θ ∈ [0, π/2] and ∀ω ∈ [−π, π],

σ3 − σ1

2
(sin θ |sin ω|+ cos θ cos ω) ≤ ϕ(cos θ, sin θ)− σ3 + σ1

2
cos θ. (128)

Since the supremum of the right hand side of the above inequality is reached
for ω = θ, we obtain ∀θ ∈ [0, π/2],

σ3 − σ1

2
≤ ϕ(cos θ, sin θ)− σ3 + σ1

2
cos θ (129)

and (125) follows. The remaining of the proposition is a consequence of the
properties of the intrinsic curve. 2

Remark 5 As in one-dimension, the asymmetric behavior between traction
and compression is due to the non-interpenetration condition. The convexity
of the domain of admissible stress tensors is a direct consequence of the stabil-
ity conditions. This fundamental property is obtained without any assumption
concerning the convexity of the surface energy density. The fact that the do-
main of admissible stress tensors is obtained from an intrinsic curve in the
Mohr diagramm (and hence does not depend on the intermediary stress eigen-
value σ2) is a consequence both of the stability conditions and of the isotropy
assumption. For anisotropic materials, more general convex sets could appear.

4.5 Examples

In all the examples below, φ is defined by

φ(α, β) = Gc

(
1− exp

(
−ϕ(α, β)

Gc

))
, (130)

with ϕ positive, continuous and one-homogeneous. Then φ is not Fréchet dif-
ferentiable at (0, 0), but its Gâteaux derivative is just ϕ.
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Fig. 2. The set of the admissible stress vectors in the Mohr diagram.

4.5.1 ϕ convex

Let us take ϕ as the following convex function

ϕ(α, β) = 2
√

σ2
cα

2 + τ 2
c β2 − σcα− τcβ. (131)

After some calculations, one gets

ϕ?(Σ) =


τc if Σ ≤ −σc

τc

(√
4−

(
1 + Σ

σc

)2
− 1

)
if − σc ≤ Σ ≤ σc

. (132)

Thus, ϕ? is positive if and only if Σ ≤ (
√

3− 1)σc ≡ σ?
c and σ?

c is the maximal
traction that the material can sustained. The intrinsic curve, represented on
Figure 2, is made of a line segment and of an arc of ellipse.

4.5.2 ϕ concave

Let us consider the case where ϕ is concave and continuous. Then the minimum
of ϕ(cos θ, sin θ) − s cos θ over [0, π/2] is reached at the boundary, i.e. either
at θ = 0 or at θ = π/2. Hence ϕ?(s) = min{σc − s, τc} and we recover the
maximal traction and the maximal shear criteria as in the case where ϕ were
linear.

4.5.3 ϕ neither concave nor convex

Let us consider the following function ϕ:

ϕ(α, β) = τc
β

2
+

√√√√∣∣∣∣∣σ2
cα

2 − τ 2
c

β2

4

∣∣∣∣∣ (133)
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which is neither convex nor concave. Therefore, ϕ(λ, 1) is neither convex nor
concave, and its convex envelop λ 7→ ϕ??(λ, 1) is made of two line segments, see
Figure 3. Then the minimization of λ 7→ ϕ(λ, 1)− λΣ on [0,∞) is equivalent
to minimize its convex envelope λ 7→ ϕ??(λ, 1)− λΣ, see [15]. We easily find

ϕ?(Σ) =

τc if Σ ≤ −σc

τc

2

(
1− Σ

σc

)
if |Σ| ≤ σc

. (134)

Then, σ?
c = σc and the domain delimited by the intrinsic curve is represented

on Figure 3. When we consider the envelop of the greatest Mohr circles lying
inside the intrinsic curve domain, the corners (−σc,±τc) disappear and finally
the domain of the admissible stress tensors is given by

ϕ?(s) =


τc if s ≤ σc −

√
4σ2

c + τ 2
c

τc
σc−s√
4σ2

c+τ2
c

if σc −
√

4σ2
c + τ 2

c ≤ s ≤ σc
. (135)
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T

(i) (ii)

Fig. 3. (i) the graphs of the function λ 7→ ϕ(λ, 1) and of its convex envelop
λ 7→ ϕ??(λ, 1). (ii) the corresponding intrinsic curve.

5 Conclusion

It is important to recall that the yield stress criterion appears in our varia-
tional approach as a necessary first-order optimality condition, i.e. a condition
involving only the first (directional) derivative(s) of the energy with respect
to the displacement field. It is obtained by introducing a “small defect” in a
neighborhood of any sound point of the body and by evaluating the change
that it induces in the energy at the first order. When this method is used
with the Griffith surface energy, we just obtain the famous Griffith criterion
G ≤ Gc, whereas a stress criterion appears when we adopt a Barenblatt surface
energy. In other words, we can symbolize the results given by the variational
approach as follows:
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Griffith’s Energy + Stability=⇒G ≤ Gc

Barenblatt’s Energy + Stability=⇒σ ≤ σc.

Moreover, the domain of admissible stress tensors is necessarily convex and is
deduced from the behavior near the origin of the surface energy density.
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[21] J. Salençon, Calcul à la rupture et analyse limite, Cours de Calcul des Structures
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