
HAL Id: hal-00551041
https://hal.science/hal-00551041

Submitted on 2 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ciglitazone negatively regulates CXCL1 signaling
through MITF to suppress melanoma growth

Thomas Botton, Alexandre Puissant, Yann Cheli, Tijana Tomic, Sandy
Giuliano, Lluis Fajas, Marcel Deckert, Jean-Paul Ortonne, Corine

Bertololotto, Sophie Tartare-Deckert, et al.

To cite this version:
Thomas Botton, Alexandre Puissant, Yann Cheli, Tijana Tomic, Sandy Giuliano, et al.. Ciglitazone
negatively regulates CXCL1 signaling through MITF to suppress melanoma growth: Negative regula-
tion of MITF/CXCL1 axis by ciglitazone. Cell Death and Differentiation, 2010, �10.1038/cdd.2010.75�.
�hal-00551041�

https://hal.science/hal-00551041
https://hal.archives-ouvertes.fr


1 
 

Ciglitazone negatively regulates CXCL1 signaling through MITF to 

suppress melanoma growth 

 

Thomas Botton1,2, Alexandre Puissant1,2, Yann Cheli1,2, Tijana Tomic1,2, Sandy 

Giuliano1,2,  Lluis Fajas3, Marcel Deckert4, Jean-Paul Ortonne1,2,5, Corine Bertolotto1,2,5, 

Sophie Tartare-Deckert1,2,5, Robert Ballotti1,2,5 and Stéphane Rocchi1,2,5. 

 

 

1 INSERM, U895, équipe 1 Nice, France; 2 Université de Nice Sophia Antipolis, UFR de 

Médecine, IFR50, Nice, France; 3 Metabolism and Cancer Laboratory, CRLC Val d’Aurelle, 

Montpellier, France; 4 INSERM U576, Nice, France ; 5 Service de Dermatologie, CHU Nice, 

France 

 

Address correspondence to: Stéphane Rocchi, INSERM U895, Centre Méditerranéen de 

Médecine Moléculaire (C3M), Bâtiment Archimed, 151 route de Saint Antoine de Ginestière, 

BP 2 3194, 06204 Nice cedex 3, France, Tel: (33) 4 93 37 76 99, Fax: (33) 4 89 06 42 21, 

srocchi@unice.fr 

 

Running Title: Negative regulation of MITF/CXCL1 axis by ciglitazone 

 

 



2 
 

Abstract 

We have previously demonstrated that the thiazolidinedione ciglitazone inhibited, 

independently of PPARγ activation, melanoma cell growth. Further investigations now 

show that ciglitazone effects are mediated through the regulation of secreted factors. Q-

PCR screening of several genes involved in melanoma biology reveals that ciglitazone 

inhibits expression of the CXCL1 chemokine gene. CXCL1 is overexpressed in 

melanoma and contributes to tumorigenicity. We show that ciglitazone induces a 

diminution of CXCL1 level in different human melanoma cell lines. This effect is 

mediated by the down regulation of microphthalmia-associated transcription factor, 

MITF, the master gene in melanocyte differentiation and involved in melanoma 

development. Further, recombinant CXCL1 protein is sufficient to abrogate 

thiazolidinedione effects such as apoptosis induction, while extinction of the CXCL1 

pathway mimics phenotypic changes observed in response to ciglitazone. Finally, 

inhibition of human melanoma tumor development in nude mice treated with ciglitazone 

is associated with a strong decrease in MITF and CXCL1 levels.  

Our results demonstrate that anti-melanoma effects of thiazolidinediones involve an 

inhibition of the MITF/CXCL1 axis and highlight the key role of this specific pathway in 

melanoma malignancy. (178 words) 

 

 

Keywords: melanoma, thiazolidinedione, chemokine, MITF, apoptosis. 
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Introduction  
 

Cutaneous melanoma is an aggressive skin cancer that originates from epidermal 

melanocytes. Typically, primary lesions progress to malignant tumors through a multistep 

process including dysplasia, radial growth phase (RGP), invasive vertical growth phase 

(VGP), and metastasis. This transition is accomplished through the accumulation of genetic 

alterations in growth control pathways including oncogenic mutations or gene amplification. 

For example, constitutive activation of the Ras/MAPkinase-signaling pathway is frequently 

observed in melanomas, as a consequence of activating mutations of the B-Raf and N-Ras 

genes 1-3. Melanoma progression is also accompanied by generation of autocrine and 

paracrine loops associated with the aberrant production and secretion of growth factors and 

chemokines that sustain growth, survival and invasion 4. 

In human, melanoma is one of the most lethal cancers among young adults. Melanoma has a 

high capability of invasion and rapid metastasis to other organs. The prognosis of metastatic 

melanoma is extremely dismal, as the various treatments have not shown survival benefit 5. It 

appears thus necessary to develop approaches enabling the discovery of new molecular 

targets, candidates for specific biotherapy treatment of this disease.  

Thiazolidinediones (TZD) regulate transcriptional activity of the nuclear receptor 

Peroxysome Proliferator Activated Receptor gamma (PPARγ) and are currently used in type 

II diabetes treatment. More recently, TZD have been reported to inhibit proliferation and 

survival of numerous cancer cells 6-11. Furthermore, we have previously demonstrated that 

ciglitazone, that belongs to TZD family, inhibits growth and viability of melanoma cells 

without affecting normal melanocyte growth 12.  

To further investigate the molecular events elicited by ciglitazone and to better understand the 

implication of TZD signaling in melanoma biology, we examined whether ciglitazone affects 

the production of autocrine and paracrine factors known to be implicated in melanoma 
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malignancy. In the present report, we demonstrate that ciglitazone inhibits the expression of 

(C-X-C motif) ligand 1 (CXCL1), a chemokine involved in melanoma growth, survival, 

angiogenesis and metastasis 13-16. Interestingly, ciglitazone treatment decreases CXCL1 level 

in various human melanoma cell lines but not in normal human melanocytes. We also show 

that treatment of melanoma cells with recombinant CXCL1 compensates for the loss of 

endogenous CXCL1 secretion induced by ciglitazone and abolishes the loss of viability of 

melanoma cells. Further, CXCL1 inhibition by ciglitazone is mediated by the decrease in 

MITF expression. CXCL1 appears to be a new target gene of microphthalmia-associated 

transcription factor (MITF), the master gene of melanocyte differentiation that was also 

involved in melanoma development 17-21. Finally, we demonstrate that a dramatic inhibition of 

melanoma xenograft development in mice in response to ciglitazone is associated with a 

decrease in MITF gene expression and in circulating CXCL1 level. 

Our results demonstrate for the first time that ciglitazone-induced apoptosis of melanoma 

involves an inhibition of a MITF/CXCL1 signaling cascade. 
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Results 

Effect of ciglitazone on CXCL1 expression and secretion 

We first determined whether the biological effects of ciglitazone in melanoma cells were 

mediated by secreted factors. We confirmed that ciglitazone did not affect normal human 

melanocytes (NHM) viability (Fig. 1A). 

In contrast, the number of melanocytes was significantly reduced when incubated in presence 

of conditioned medium from A375 melanoma cells exposed to ciglitazone compared to 

conditioned medium from DMSO-treated A375 cells (Fig. 1B). These results suggest that the 

inhibition of melanoma cells growth or survival elicited by ciglitazone was at least in part 

mediated by secreted factors. 

To substantiate this observation, we analyzed by quantitative-PCR, the expression of 19 

transcripts encoding for proteins known to be secreted by melanoma (Table 1). Among them 

ciglitazone clearly repressed the expression of CXCL1. Due to the important role of the 

CXCL1 chemokine in melanoma progression, we decided to investigate thoroughly the 

involvement of this cytokine in the effect of ciglitazone on melanoma cells.  

RT-QPCR analysis confirmed a dose-dependent downregulation of CXCL1 expression in 

ciglitazone-treated A375 melanoma cells (Fig. 2A). Then, we demonstrated a decrease in 

CXCL1 cytoplasmic protein by immunofluorescence (Fig. 2B). TNFα, an activator of NF-κB 

pathway, significantly increased CXCL1 level. To confirm the presence of CXCL1 receptor, 

CXCR2 labeling was carried out (Fig. 2B, lower part). A375 cells expressed CXCR2 receptor 

and ciglitazone did not change its expression.  

CXCL1 amount in medium was evaluated by ELISA. TNFα increased CXCL1 level while 

ciglitazone induced a dose-dependent reduction of CXCL1 in both basal and TNFα conditions 

(Fig. 2C). Western blot of the secreted matricellular SPARC protein was used as loading 

control. 
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Relationship between CXCL1 downregulation and cell viability inhibition induced by 

ciglitazone 

One could think that the inhibition of CXCL1 is the consequence of the decrease in cell 

viability induced by ciglitazone. However, reduction of CXCL1 was detectable after 2h and 

therefore could not result from the decrease in viability of cells that was observed after 12h 

(Fig. 3A). In contrast, the slight decrease in CXCL1 level observed after 12h to 48h of 

staurosporine treatment appeared to be the consequence of cell death induced by this agent. 

Next, other TZD, pioglitazone and rosiglitazone had no significant effect on CXCL1 secretion 

(Fig. 3B). In contrast, troglitazone showed a dose-dependent decrease in CXCL1 level 

comparable to that observed with ciglitazone. Moreover, the decrease in CXCL1 level in 

response to ciglitazone treatment was still observable when PPARγ expression was abrogated 

by siRNA silencing, indicating that ciglitazone acts independently of PPARγ to repress 

CXCL1 expression (Fig. S1) 

Interestingly, no CXCL1 was detectable in NHM (Fig. 3C). However, treatment of 

melanocytes by TNFα induced an increase in the level of CXCL1 that was not modulated by 

ciglitazone. Ciglitazone was unable to control CXCL1 expression in melanocytes.  

Finally, we tested ciglitazone on different tumor cell lines. SK-Mel-28, WM793 and 1205 Lu 

melanoma cells had basal CXCL1 levels comparable to that found in A375 while MeWo had 

very low CXCL1 level. In all melanoma cells, TNFα induced a significant increase in CXCL1 

level and ciglitazone decreased strongly the chemokine level. In contrast to neuroblastoma 

cells SH-SY5Y, prostate tumor cells PC-3 presented a high CXCL1 basal level. As in 

melanoma cells, TNFα significantly increased the cytokine level in both cell lines while 

ciglitazone strongly reduced CXCL1 level (Fig. 3D). The effects of ciglitazone on growth and 

survival in these cell lines were tested (Fig. 3E and S2). Ciglitazone treatment decreased cell 
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number in all tumor cell lines tested so far. However, the most striking effect was observed in 

melanoma cell lines with a high basal CXCL1 level. 

 

Effect of recombinant CXCL1 on the decrease in cell viability induced by ciglitazone  

To determine whether CXCL1 inhibition played an important role in ciglitazone-induced loss 

of melanoma cell viability, we compensated the loss of endogenous CXCL1 by adding human 

recombinant CXCL1 (rCXCL1). As expected, ciglitazone (10µM) induced a loss of 65% of 

cell viability (Fig. 4A). Addition of rCXCL1 prevented in a dose-dependent manner the loss 

of cell viability. Similarly, the reduction of cell viability induced by ciglitazone was reversed 

by TNFα (Fig. 4B). Consequently, rCXCL1 as well as the TNFα-induced CXCL1 increase 

induced by TNFα had a protective effect against ciglitazone action.  

Interestingly, rCXCL1 did not prevent cell viability reduction mediated by two apoptosis 

inductors, TRAIL and staurosporine (Fig. 4C). The protective effect of rCXCL1 thus seems 

specific of the ciglitazone action.  

We have previously established that low concentrations of ciglitazone induced a G0/G1 cell 

cycle arrest of A375 melanoma cells. Our results demonstrated that rCXCL1 was able to 

reverse ciglitazone-induced cell cycle arrest (Fig. S3). 

We have also shown that high concentrations of ciglitazone induced melanoma cells 

apoptosis. We observed that 10µM ciglitazone induced the disappearance of the zymogenic 

form of caspases 3, 8 and 9 as well as a cleavage of poly(ADP-ribose) polymerase (PARP). 

Consistently with the protective effect of rCXCL1, cleavage of caspases and  PARP evoked 

by 10μM ciglitazone were not detected in presence of rCXCL1 (Fig. 5A). These results were 

confirmed by caspase 3, 8 and 9 activation assays (Fig. 5B). Interestingly, rCXCL1 was not 

able to prevent the activation of these three caspases induced by staurosporine. Further, flow 

cytometry analysis showed that rCXCL1 blocked the accumulation of cell in sub-G1 (Fig. S3) 
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and prevented the increase in annexin-V labeling (Fig. 5C), both induced by ciglitazone. In 

conclusion, CXCL1 protects melanoma cells from apoptosis induced by ciglitazone.  

Our observations prompted us to check whether CXCL1 inhibition was sufficient to reduce 

melanoma cell viability. Transfection of A375 cells with increasing concentrations of si-

CXCL1 induced a strong and dose dependent reduction of the CXCL1 protein level (Fig. 6A). 

Using XTT assay, we observed that A375 cells transfected with si-CXCL1 showed a dose-

dependent reduction of cell viability reaching 50% decrease at 50 nM of si-CXCL1 (Fig. 6B). 

Addition of rCXCL1 completely restored the cell viability. Then, we observed a dose-

dependent reduction of A375 cell viability in the presence of anti-CXCL1 neutralizing 

antibodies (Fig. 6C). No significant reduction in the viability of these cells was detected in 

presence of control antibodies.  

We next showed that CXCL1 silencing induced the activation of caspases 9, 8 and 3 (Fig. 6D) 

as well as an increase in annexin-V labeling (Fig. 6E). Taken together, these results indicate 

that the inhibition of CXCL1 production is sufficient to induce apoptosis in melanoma cells. 

In the same way, inhibition of CXCR2 signaling by neutralizing antibody or pharmacological 

inhibitor (SB225002) mimics the effects of ciglitazone on growth inhibition (Fig. S4). 

 

Involvement of MITF in the regulation of CXCL1 expression by ciglitazone 

To further investigate the mechanism responsible for ciglitazone-induced CXCL1 

downregulation, we focused our attention on MITF that was recently reported to be regulated 

by some PPARγ agonists 22,23. Ciglitazone induced a dose-dependent reduction of MITF 

expression in both A375 and SK-Mel-28 melanoma cells (Fig. 7A). We demonstrated that 

MITF inhibition by ciglitazone was not due to its cleavage during apoptosis since the MITF 

decrease was observed after 2h of treatment, while PARP cleavage appeared clearly later 

(12h). To confirm this result we showed that the pan-caspase inhibitor Z-VAD-FMK 
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prevented melanoma cell death induced by ciglitazone treatment (Fig. S5) by preventing 

apoptosis induction monitored by PARP processing (Fig. 7A, Right panel). However, MITF 

inhibition evoked by ciglitazone was still observed in the presence of Z-VAD-FMK. Finally, 

using RT-QPCR, we also found a dose-dependent decrease of MITF expression confirming 

that ciglitazone inhibited MITF expression at the transcriptional level (Fig. 7B). 

We next checked whether MITF might control CXCL1 expression. MITF silencing by 

specific si-RNA induced a strong reduction of the MITF transcript and a concomitant 

reduction of CXCL1 gene expression (Fig. 7C). Melanoma cells transfected with a vector 

encoding for wild-type MITF revealed an increased in CXCL1 labeling by 

immunofluorescence (Fig. 7D). Consistently, forskolin or forskolin/IBMX that increased 

endogenous MITF level showed a significant increase in CXCL1 (Fig. 7E).  

To determine whether MITF controlled the CXCL1 promoter activity, we performed 

luciferase assays on melanoma cells using either tyrosinase or CXCL1 promoter upstream the 

luciferase coding sequence. Transfection with a dominant negative form of MITF (DN MITF) 

led to a decrease in both tyrosinase and CXCL1 promoter activity. The effect on CXCL1 

promoter was weak but significant. Conversely, transfection of A375 melanoma cells with the 

wild-type form of MITF (MITF) led to an upregulation of tyrosinase and CXCL1 promoter 

activity (Fig. 7F). 

Then, to verify the binding of MITF to the CXCL1 promoter in intact cells, we performed 

chromatin immunoprecipitation (ChIP) assays. Direct PCR amplification with specific 

primers spanning the CXCL1 promoter between -410 and +77, on total DNA extract or after 

immunoprecipitation with antibody to polymerase II as a positive control amplified a 500bp 

fragment (Fig. 7G). Alternatively, after immunoprecipitated with non-immune mouse IgG no 

amplification could be observed. After immunoprecipitation with anti-MITF, we amplified a 

band at 500bp corresponding to the CXCL1 promoter. The intensity of this band was clearly 
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decreased in extracts from cells exposed to ciglitazone but not in extracts from cells exposed 

to forskolin (Fsk). Conversely, using specific GAPDH promoter primers, we amplified 

160bp-fragment corresponding to the GAPDH promoter in both the total extract and the anti-

Pol II precipitates, but not in the anti-MITF precipitates. These results demonstrate that MITF 

binds to the CXCL1 promoter in intact cells and that this interaction is abolished by 

ciglitazone treatment. 

 

Effect of ciglitazone on circulating CXCL1 and melanoma tumor xenografts 

development in mice. 

Then, to determine the effect of ciglitazone on circulating CXCL1 and on tumor development 

in vivo, human A375 melanoma cells were injected subcutaneously in athymic nude mice. 

Nineteen days post injection, mice were treated with vehicle or ciglitazone (50mg/kg/day) 

during 11 days.   

Tumors from untreated mice dramatically grew throughout the time course of the study (Fig. 

8A). In contrast, treatment of mice with ciglitazone markedly attenuated the capacity of cells 

to develop visible tumors. Indeed, 3 out of 6 ciglitazone treated-mice did not have a 

measurable tumor at the end of the treatment. Moreover, visible tumors of other mice were 

significantly smaller compared to untreated control mice confirming that ciglitazone has anti-

melanoma activity in vivo. 

After mice sacrifice, RT-QPCR were performed on RNA extracted from tumors. 

Interestingly, MITF and CXCL1 gene expression were significantly lower in tumors of mice 

treated with ciglitazone (Fig. 8B). In parallel, we measured the quantity of serum CXCL1 

(Fig. 8C). A huge amount of circulating CXCL1 was detected in mice with human melanoma 

tumors compared to non-tumor bearing mice (no detectable human CXCL1). Further, no 

significant CXCL1 level was detected in mice treated with ciglitazone in comparison to 
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vehicle-treated mice. When we expressed the quantity of serum CXCL1 as a function of 

tumor volume, we observed a 3.5-fold significant reduction in the level of circulating CXCL1 

in ciglitazone-treated mice. Therefore, the decrease in CXCL1 serum level observed in 

ciglitazone-treated mice was not due to a decrease in tumor volume, but was likely a 

consequence of CXCL1 inhibition induced by ciglitazone. Finally, to unequivocally 

demonstrate the importance of CXCL1 downregulation in the in vivo effects of ciglitazone, 

we evaluated the effects of rCXCL1 peritumoral injections (200 ng/tumor/day for 14 days) on 

the development of tumors in mice treated or not with ciglitazone. As expected, treatment of 

mice with ciglitazone markedly impaired tumors development (Fig. 8D). However, rCXCL1 

treatment dramatically favored tumor development and abrogated anti-tumoral effects of 

ciglitazone. Injection of human recombinant CXCL1 therefore compensates for the decrease 

in endogenous CXCL1 level mediated by ciglitazone treatment and promotes tumor growth. 

This experiment clearly demonstrates the importance of CXCL1 expression in melanoma 

tumor development and highlight the pivotal role of CXCL1 downregulation in ciglitazone 

effects.
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Discussion 

Because metastatic melanoma are resistant to all currently used treatments, the 

discovery of new therapeutic drugs is a very important challenge. We and others have 

previously shown that ciglitazone, a molecule of the TZD family, is able to induce apoptosis 

independently of PPARγ activation and to inhibit proliferation of melanoma cells 12,24-26. In 

the present report, we have investigated the molecular mechanism by which ciglitazone exerts 

its anti-melanoma activity.  

Our results showed that conditioned media from ciglitazone-treated melanoma cells 

inhibit normal human melanocyte growth indicating that the effects of ciglitazone on 

melanoma cells are mediated by secreted factors. RT-QPCR screening demonstrating an 

inhibition of CXCL1 chemokine upon ciglitazone treatment prompted us to focus our 

attention on this cytokine. CXCL1, also named Melanoma Growth Stimulating Activity 

(MGSA) or Growth Regulated Oncogene alpha (GROα) belongs to the CXC family. CXCL1 

is essential for the establishment and the maintenance of the tumoral potential of melanoma 

27,28. The CXCL1 gene product is located within the CXCL1-3 gene cluster on chromosome 

4q12-q13 29. CXCL1, CXCL2 and CXCL3 bind with high affinity to a common receptor, 

CXCR2, with CXCL1 having the highest affinity for this receptor 30. Overexpression of 

CXCL1 in INK4a/ARF-/- mice favors melanoma development 31 and promotes malignant 

growth of murine squamous cell carcinoma by a CXCR2 dependent pathway 32. Blocking 

antibodies to either CXCL1 or CXCR2 inhibit melanoma cell growth demonstrating the key 

role of the CXCL1/CXCR2 signaling pathway in melanoma development 33,34. In addition to 

its autocrine role, CXCL1 has been shown to play an important paracrine role by regulating 

angiogenesis during tumor development including melanoma 35,36. 

First, we demonstrate that ciglitazone negatively regulates mRNA and protein CXCL1 levels. 

This inhibition is accompanied by a reduction of CXCL1 in the medium. The inhibition of 
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CXCL1 in response to ciglitazone precedes the decrease in cell viability, indicating that the 

decrease in CXCL1 expression induced by ciglitazone is not a consequence of cell death. A 

similar decrease in CXCL1 is also observed in response to troglitazone while rosiglitazone 

and pioglitazone have no significant effect on CXCL1 secretion. This result is in agreement 

with our previous report demonstrating that both rosiglitazone and pioglitazone have only 

marginal PPARγ dependent effect on viability of melanoma cells 12. Consistent with this 

finding, PPARγ silencing by siRNA does not abrogate the effects of ciglitazone on CXCL1 

expression, indicating that the regulation of CXCL1 is PPARγ independent. 

In normal human melanocytes, there is not basal CXCL1 production. Treatment of normal 

human melanocytes with TNFα stimulation increases CXCL1 secretion that is not affected by 

ciglitazone. Conversely, melanoma cells generally have a constitutive basal CXCL1 

expression mainly due to the NF-κB pathway constitutive activation 27. Independently of the 

mutational status, melanoma development stage or CXCL1 basal level, we found that 

ciglitazone inhibits CXCL1 production in all tested melanoma cell lines. Moreover, there is a 

positive correlation between the level of basal CXCL1 and the decrease in cell viability 

mediated by ciglitazone, suggesting that melanoma cells producing CXCL1 are addict to these 

cytokine. 

In the same way, in other cancer cell lines such as prostate carcinoma or neuroblastoma, 

ciglitazone also decreases CXCL1 level and cell viability. These results support the idea that 

inhibition of CXCL1 cytokine could play a general role in the anti-tumoral effects of 

ciglitazone.   

It has been proposed that some PPARγ agonists lead to inhibition of NF-κB activation 37-39, 

but in our system, the inhibition of CXCL1 by ciglitazone is not mediated by the down-

regulation of NF-κB activity (data not shown). Interestingly, a recent paper showed that 

ciglitazone led to a decrease in MITF expression 22 and in silico analysis of the CXCL1 
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promoter showed four potential E boxes that match with the consensus binding-site for MITF 

transcription factor (data not shown), thereby suggesting the possible involvement of MITF in 

the control of CXCL1 expression. These two observations promoted us to investigate the role 

of MITF in the regulation of CXCL1 by ciglitazone. First, ChIP experiments and luciferase 

assays demonstrate that MITF binds to and regulates the CXCL1 promoter. MITF silencing 

decreases CXCL1 messengers and inhibits CXCL1 protein secretion. Additional studies 

suggest that MITF interacts with the CXCL1 promoter through a responsive element 

(CAGGTG) at -375. 

Further, we have previously found that MITF is cleaved in response to the apoptosis inductor, 

TRAIL 40. MITF diminution that we observed in response to ciglitazone is not due to a protein 

cleavage by caspases since MITF decrease is seen before apoptosis induction and is also seen 

on mRNA level and in presence of pan-caspase inhibitor Z-VAD-FMK. These interesting 

results highlight a new specific pathway mediated by ciglitazone in melanoma cells. We have 

demonstrated that the negative regulation of MITF by ciglitazone is a PPARγ independent 

event. However, the precise mechanism responsible for this negative regulation of MITF is 

not known. One possible mechanism might involve downregulation of the Wnt/β-catenin 

pathway because this pathway is inhibited by some PPARγ agonists and might mediate the 

inhibition of MITF expression 22,23. Thus, considering all our results we demonstrate for the 

first time that the control of MITF expression by ciglitazone is involved in the inhibition of 

CXCL1 expression and secretion. This new signaling pathway involves MITF in the 

regulation of CXCL1 and strengthens the importance of this transcription factor in melanoma 

tumorigenicity. 

We have previously demonstrated that ciglitazone has cytostatic and cytotoxic effects 12. We 

found that both cell cycle arrest and apoptosis evoked by ciglitazone are reversed by addition 

of rCXCL1 or TNFα. These data suggest that ciglitazone effects on cell viability are mediated 
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mainly by a decrease in CXCL1 expression and secretion. In addition, rCXCL1 does not 

protect cells from apoptosis induced by TRAIL and staurosporine, suggesting a potential 

specificity of rCXCL1 on ciglitazone effects. The depletion of CXCL1 with siRNA is 

sufficient to mimic the biological effects of ciglitazone on A375 cells. Consequently, these 

results reinforce the hypothesis that inhibition of CXCL1 synthesis by ciglitazone is implied 

in the biological effects of this TZD. A second approach by CXCL1 neutralizing antibodies 

confirmed these results. Therefore, the reduction of secreted form of CXCL1 is involved in 

ciglitazone biological effects.  

At the molecular level, the stimulation of CXCR2 by CXCL1 induces activation of several 

transduction pathways, and particularly Raf/MEK/ERK and PI3K/Akt pathways 14. However, 

in most melanoma cells, Raf/MEK/ERK pathway is constitutively active due to oncogenic 

mutation on B-Raf 41. Consequently, this cytokine rather exerts its action on 

proliferation/survival through the activation of the PI3K/Akt pathway. 

Finally, we have evaluated the correlation between potential anti-melanoma activity of 

ciglitazone and CXCL1 secretion in a mouse model of melanoma xenografts. We have 

previously demonstrated that ciglitazone prevents tumor growth development 12. Importantly, 

our present results show that the short-term administration of ciglitazone not only prevents 

tumor formation but also reduces the volume of already established melanoma tumors. In 

addition, ciglitazone decreases MITF and CXCL1 mRNA level in tumor xenograft, reinforcing 

the hypothesis that in vivo, MITF is also involved in the control of CXCL1 mediated by 

ciglitazone. In parallel, we observe a drastic reduction of serum CXCL1 level in mice. This 

decrease is not due to the reduction of tumor growth because when we expressed the quantity 

of CXCL1 as a function of tumor size, we still found a reduction of circulating CXCL1 in 

ciglitazone-treated mice. Moreover, injection of CXCL1 in ciglitazone treated mice 

compensates for the loss of endogenous CXCL1, impairing the effects of ciglitazone and 
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preventing the decrease in tumor volume. From these observations, we can propose that the 

decrease in CXCL1 secretion mediated by ciglitazone might be responsible for the 

antineoplastic effects of this TZD in vivo. 

In summary, we demonstrate for the first time that ciglitazone inhibits tumor growth through a 

negative regulation of the MITF/CXCL1/CXCR2 axis signaling pathway. This demonstration 

brings new and additional clues to the mechanism of ciglitazone-induced melanoma cell 

death. Finally, taking into account the drastic effect of ciglitazone on melanoma cell growth, 

survival and anti-melanoma xenograft development, it might be worth evaluating ciglitazone 

treatment in patients with metastatic melanoma. Our reports also highlight the pivotal role of 

tumor cell-produced CXCL1 in melanoma cell proliferation and support the idea that CXCL1 

might be used as a new progression marker in the follow-up of the metastatic melanomas. 

Because the overexpression of CXCL1 and the CXCL1-regulation by ciglitazone are not 

specific to the melanomas, our study, besides its interest in melanoma pathology, contributes 

to better understand the general anti-cancer effects of ciglitazone. 
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Material and methods 
 

Materials 

Ciglitazone, Troglitazone and Z-VAD-FMK were purchased from Biomol (Tebu, Le Perray 

en Yvelines, France). Pioglitazone and Rosiglitazone were from Cayman Chemical Company 

(Ann Arbor, MI, USA). Dimethyl sulfoxide (DMSO), staurosporine, forskolin, 3-Isobutyl-1-

methylxanthine (IBMX), hydrocortisone, insulin, phorbol-12 myristate 13-acetate, MCDB 

153 medium, sodium fluoride, dimethylacetamide, Hoechst 33258, tween 80, sodium 

orthovanadate, 4-(2-aminoethyl)-benzene-sulfonyl fluoride (AEBSF), aprotinin and leupeptin 

were purchased from Sigma-Aldrich (Saint Quentin Fallavier, France). Labrafil M 1944 Cs 

was purchased from Gattefossé (Saint-Priest, France). The caspase substrates and the caspase 

inhibitors were from MERCK Eurolab (Fontenay-sous-Bois, France). Trypan blue, 

Dulbecco's Modified Eagle's Medium (DMEM), penicillin/streptomycin and trypsin were 

from Invitrogen (Pontoise, France); Fetal Calf Serum (FCS) from Hyclone (Brevieres, 

France). TRAIL was obtained from R&D Systems (Lille, France). Recombinant human TNFα 

and recombinant human CXCL1 were purchased from Peprotech (Neuilly-sur-Seine, France). 
 

Cell cultures     

Normal human melanocytes were prepared and maintained as described 42. Human A375 

(CRL-1619TM), SK-Mel-28 (HTB-72TM) and MeWo (HTB-65TM) melanoma cells, prostate 

cancer PC-3 (CRL-1435TM) and neuroblastoma SH-SY5Y (CRL-2266TM) cell lines were 

purchased from American Tissue Culture Collection (Molsheim, France) and grown in 

DMEM medium supplemented with 10% FCS and penicillin/streptomycin (100U/ml/50 

µg/ml). Human WM793 vertical growth phase melanoma cell line and 1205 Lu metastatic 

melanoma cell line were generously provided by Dr M. Herlyn (Wistar Institute, Philadelphia, 

PA) and maintained as described 43. For each experiment, cells were starved in appropriate 

medium without FCS during 14 hours before drug stimulation. 
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Antibodies.  

HSP60 was from Santa Cruz Biotechnology (TEBU; Le Perray en Yvelines, France). The 

polyclonal pro-caspase 9, monoclonal pro-caspase 8, monoclonal pro-caspase 3 and 

polyclonal PARP antibodies were from Cell Signaling Technology (Ozyme, Saint-Quentin-

en-Yveline, France). Monoclonal anti-SPARC was purchased from Haematologic 

Technologies Inc. (Essex Junction, VT, USA). Monoclonal MITF was purchased from Spring 

Bioscience (Fremont, CA, USA). Monoclonal CXCL1 and CXCR2 were purchased from 

R&D Systems (Lille, France). 

 

Real-time quantitative PCR (Q-PCR) 

For gene array analysis, total RNA was isolated using TRIZOL® (Invitrogen). After treatment 

with Dnase I, 2 μg of RNA were reverse transcribed using the High Capacity cDNA Archive 

random priming Kit (Applied Biosystems). The expression level of 19 genes related to 

melanoma secretome was evaluated using an ABI Biosystems 7900HT Sequence Detector 

System and the SYBR Green dye detection protocol as outlined by the manufacturer (Applied 

Biosystems). Gene-specific primers were designed using the Primer Express software 

(Applied Biosystems). Relative expression level of target genes was normalized for RNA 

concentrations of four different housekeeping genes (GAPDH, β-actin, HPRT and ubiquitin). 

For each sample, CT values for the housekeeping genes were determined for normalization 

purposes, and delta CT (ΔCT) between the mean of housekeeping genes values and target 

genes values was calculated. Relative expression level of target genes mRNA between DMSO 

control cells (DMSO) and ciglitazone treated cells (cigli.) was calculated using the formula 

ΔCTCigli.– ΔCTDMSO and expressed as fold over control (2ΔΔCT). Values represent the 

mean of duplicates and are representative of two independent experiments. Other Q-PCR 

were performed exactly as described 44. 
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Cell viability test 

Cell viability was assessed using the Cell Proliferation Kit II (XTT; Roche Diagnostics, 

Meylan, France) according to the manufacturer’s protocol. Cell viability is expressed as the 

percentage of the value in DMSO-treated cells. 

 

ELISA 

CXCL1 ELISA were performed using Quantikine® Human CXCL1/GROα from R&D 

Systems (Lille, France) according to the manufacturer’s protocol. 

 

Immunoflurescence microscopy 

Monolayers prepared for fluorescent staining were grown on glass coverslips. 

Immunofluorescence experiments were carried out as described 12. 

 

Western blot assays 

Western blot analyses were performed as described 12. 

 

Caspase activity  

Caspase activities were carried out exactly as described 12. 

 

Flow cytometry analysis 

All flow cytometry analyses were performed using the FL2 channel of a FACScan (Becton 

Dickinson; Cowley, UK) and data were analyzed with CellQuest software as previously 

described 12. Annexin-V staining was performed using Annexin-V-FLUOS Staining Kit 

(Roche Diagnostics, Meylan, France) according to the manufacturer’s protocol.  
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Small interfering RNA 

Small interfering RNAs (siRNAs) experiments were carried out exactly as described 12. 

siRNA targeting CXCL1 was from Santa Cruz Biotechnology (sc-43816). siRNA targeting 

MITF was described previously 40. As nonspecific control, a scramble sequence for CXCL1 

or MITF siRNA was used.  

 

Construction of the CXCL1 reporter plasmid 

A 1.5-kb fragment 5’ of the transcriptional site of the CXCL1 gene was amplified by PCR 

reaction and isolated by Topo® Cloning Kit (Invitrogen) from genomic DNA. The 1.5-kb 

XhoI/SacI fragment was then subcloned using Rapid DNA Ligation Kit (Roche) into the 

unique XhoI/SacI restriction site of the Promega pGL3 basic vector (pGL3b) upstream of the 

luciferase coding sequence (pCXCL1; -1477/+77).  

 

Transfections and luciferase assays 

Transfections and luciferase assays were performed as described 12. The reporter plasmid 

containing the 2.2-kb fragment of the mouse tyrosinase promoter (pTyro; −2,236/+59) was 

described elsewhere 45. Plasmids coding for microphthalmia coding sequence (WT Mitf) or its 

dominant negative form containing an inframe deletion of the NH2-terminal domain (DN 

Mitf) in pCDNA3 expression vector are described elsewhere 18. 

 

Chromatin Immunoprecipitation Assay 
 
SK-Mel-28 cells were cultured in 100-cm2 culture dishes, stimulated or not with ciglitazone 

or forskolin for 24 h, and then treated with 1% formaldehyde for 10 min at room temperature. 

Next, the cells were harvested, centrifuged (700 X g, 5 min at 4 °C), and resuspended in SDS 

lysis buffer (EZ-ChIPTM Chromatin Immunoprecipitation Kit; Upstate). After sonication the 
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sheared chromatin was immunoprecipitated using indicated antibody. Then, protein/DNA 

cross-linking complexes were reversed by heat treatment (65°C overnight) and proteinase K 

digestion. The genomic captured fragments were purified using spin columns. Identification 

of the captured DNA fragments was performed by PCR analysis using the CXCL1 or 

GAPDH promoter primers. Thirty-two cycles of PCR were performed, and the amplified 

products were analyzed on a 2.5% agarose gel. 

 
In vivo murine cancer model 

Animal experiments were carried out in accordance with the Declaration of Helsinki and were 

approved by a local ethical committee. Female immune-deficient BALB/c nu/nu (nude) mice 

were obtained at 6 weeks of age from Harlan Laboratory.  

Mice were inoculated subcutaneously with A375 melanoma cells (2.5x106 cells/mouse). After 

19 days, animals received intraperitoneal injection of ciglitazone (50 mg/kg/day) dissolved in 

a mixture of Labrafil M 1944 Cs (an amphiphilic oil, Oleic Macrogol-6 Glyceride), 

dimethylacetamide, and Tween 80 (90:9:1%, vol/vol/vol) as previously described 46.  

The growth tumor curves were determined by measuring the tumor volume using the equation 

V= (LxW2)/2. After 11 days of treatment, mice were bled and sera were analyzed using 

ELISA of CXCL1. At the end of the experiment, mice were killed by CO2 inhalation and 

tumors were taken for RNA extraction. 

 

Statistical analysis 

Data presented are mean +/-SD of three independent experiments performed in triplicate. 

Statistical significance was assessed using the Student’s t-test except for in vivo experiments 

in which statistical significance was assessed using two-tailed Wilcoxon rank sum test. A 

value of p < 0.05 was accepted as statistically significant. 
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Figure Legends 
 
Figure 1: Ciglitazone modifies melanoma cell secretome. 

a) Starved normal human melanocytes (NHM) were treated or not with 10µM ciglitazone 
(Cigli.) for 96 hrs. Cells were then harvested and counted using trypan blue. Results are 
expressed in percent of control (100%). 

b) Starved A375 melanoma cells were treated or not with 10µM ciglitazone for 24 hours. 
Conditioned media were collected and centrifuged for 5 minutes at 2000 rpm. Supernatants 
were immediately added to the culture medium of NHM (1:1). After 96 hours, NHM were 
harvested and counted using trypan blue. Results are expressed in percent of control (100%). 
Data are mean +/- SD of three independent experiments performed in triplicate. Significantly 
different from the corresponding control ** p< 0.01.  

Figure 2: Ciglitazone decreases CXCL1 level in A375 melanoma cells. 

Starved A375 melanoma cells were treated for 24 hours with various concentrations of 
ciglitazone or TNFα (10ng/ml). 

a) Total RNA was extracted and analyzed by real-time quantitative PCR using CXCL1 
primers. mRNA expression was normalized using SB34 RNA level. Results are expressed as a 
mean +/- SD from 3 independent experiments. Significantly different from the corresponding 
control * p< 0.05; ** p< 0.01; *** p< 0.001. 

b) A375 cells were fixed and stained for CXCL1 or CXCR2 (green) and with DAPI (blue). 
DAPI staining was used to identify cell nucleus. Right panels show merge of DAPI and 
CXCL1 or CXCR2 staining. Slides were examined with a Zeiss Axiophot fluorescence 
microscope and pictures were taken at X200 magnification. Representative field of three 
different experiments are shown. 

c) ELISA of CXCL1 was performed on supernatants from starved A375 melanoma cells 
treated as indicated. Data are mean +/- SD of three independent experiments performed in 
triplicate. SPARC western blotting on those supernatants was used as loading control. 
Significantly different from the corresponding control * p< 0.05; *** p< 0.001.  

Figure 3: CXCL1 expression in response to various TZD and in different cell lines 

a) Time course of XTT activity (upper panel) and ELISA assay for CXCL1 (lower panel) 
were performed on starved A375 melanoma cells treated for different times with 1 or 10 µM 
ciglitazone or with staurosporine. Results are expressed in percent of control (100%) for each 
time. Data are mean +/- SD of three independent experiments performed in triplicate.  

b) ELISA of CXCL1 was performed on supernatants from starved A375 melanoma cells 
treated for 24 hours with different TZD: ciglitazone (Cigli.), pioglitazone (Pio.), rosiglitazone 
(Rosi.), troglitazone (Trogli.). Results are expressed in percent of control (100%) for each 
time. Data are mean +/- SD of three independent experiments performed in triplicate.  

c) ELISA of CXCL1 was performed on supernatants from starved normal human melanocytes 
(NHM) treated or not for 24 hours with various concentrations of ciglitazone added or not 
with TNFα 10 ng/ml. Data are mean +/- SD of three independent experiments performed in 
triplicate.  
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d) ELISA of CXCL1 was performed on supernatants from different cell lines treated or not 
for 24 hours with 10μM of ciglitazone added or not with TNFα 10 ng/ml. Data are mean +/- 
SD of three independent experiments performed in triplicate. Significantly different from the 
corresponding control * p< 0.05; ** p< 0.01; *** p< 0.001; # p< 0.05. 

e) Starved cells from various cell lines were treated or not with 10µM ciglitazone for 60 hrs. 
Cells were then harvested and counted using trypan blue. Results are expressed in percent of 
control (100%). Data are mean +/- SD of three independent experiments performed in 
triplicate.  

Figure 4: Recombinant CXCL1 is sufficient to abrogate decrease of cell viability induced 
by ciglitazone. 

XTT activity was performed on starved A375 melanoma cells treated with ciglitazone 10µM 
added or not with various concentrations of recombinant CXCL1 (a), 10 ng/ml TNFα (b) or 
treated with various concentrations of TRAIL or staurosporine added with 50 ng/ml of 
recombinant CXCL1 (c). Results are expressed in percent of control (100%) for each time. 
Data are mean +/- SD of three independent experiments performed in triplicate. Significantly 
different from the corresponding control * p< 0.05; *** p< 0.001. 

Figure 5: Recombinant CXCL1 is sufficient to abrogate apoptosis induced by 
ciglitazone. 

Starved A375 melanoma cells were treated for 24 hours with various concentrations of 
ciglitazone added or not with 50 ng/ml of recombinant CXCL1 (rCXCL1). 
 
a) Western blot was performed on cell lysates (30 μg total protein per lane). Proteins were 
separated by 10% SDS-PAGE and analyzed by western blot using the indicated antibody. 
HSP60 was used as loading control. One representative experiment of three is shown. 
 
b) Caspase 3, 8 and 9 activities were performed on cell lysates (30µg per condition). Lysate 
from cells treated for 5 hours with 1 µM staurosporine was used as positive control of 
caspases activation. Results are expressed in relative fluorescence units per minute and per 
mg of protein (UAF/min/mg of prot.). Data are mean +/- SD of three independent experiments 
performed in triplicate. Significantly different from the corresponding control; ** p< 0.01; 
*** p< 0.001; # p< 0.05. 

c) Cells were detached and stained with Annexin-V-Fluorescein before being analyzed by 
flow cytometry. Data are representative of three independent experiments performed in 
triplicate. 

Figure 6: Inhibition of CXCL1 decreases cell viability. 

a) Starved A375 cells were transfected for 48 hours with various concentrations of siRNA 
targeting CXCL1 (si-CXCL1) or a scramble sequence (si-CT). ELISA for CXCL1 was 
performed on supernatants from transfected cells. Results are expressed in percent of control 
(100%). Data are mean +/- SD of three independent experiments performed in triplicate. 
SPARC western blotting on those supernatants was used as loading control. Significantly 
different from the corresponding control *** p< 0.001. 

b) XTT activity was performed on starved A375 transfected for 48 hours with various 
concentrations of siRNA targeting CXCL1 and added or not with rCXCL1 (50 ng/ml). 
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Results are expressed in percent of cells transfected with the control siRNA (100%) for each 
concentration. Data are mean +/- SD of three independent experiments performed in triplicate. 
Significantly different from the corresponding control * p< 0.05; *** p< 0.001. 

c) XTT activity was performed on starved A375 treated for 24 hours with various 
concentrations of blocking antibody targeting CXCL1. Results are expressed in percent of 
control (100%). Data are mean +/- SD of three independent experiments performed in 
triplicate. Significantly different from the corresponding control * p< 0.05; *** p< 0.001. 

d) Caspase 3, 8 and 9 activities were performed on cell lysates (30µg per condition) from 
starved A375 transfected for 48 hours with various concentrations of control (CT) or CXCL1 
siRNA. Results are expressed in relative fluorescence units per minute and per mg of protein 
(UAF/min/mg of prot.). Data are mean +/- SD of three independent experiments performed in 
triplicate. Significantly different from the corresponding control *** p< 0.001.  

e) Starved A375 cells were transfected for 48 hours with 50nM of siRNA targeting CXCL1 
(si-CXCL1) or a scramble sequence (si-CT). Cells were detached and stained with Annexin-
V-Fluorescein before being analyzed by flow cytometry. Data are representative of three 
independent experiments performed in triplicate. 

 

Figure 7: Decrease of CXCL1 mediated by ciglitazone involves MITF transcription 
factor. 

a) On left panel, starved A375 or SK-Mel-28 melanoma cells were treated or not with 10µM 
ciglitazone (Cigli.) at different times. On right panel, starved SK-Mel-28 were treated for 24 
hours with DMSO or ciglitazone added or not with 100µM Z-VAD-FMK. 
Proteins were separated by 12% SDS-PAGE and analyzed by western blot using the indicated 
antibody. HSP60 was used as loading control. One representative experiment of three is 
shown.  
 
b) Total RNA from starved A375 cells treated for 24 hours with various concentrations of 
ciglitazone was extracted and analyzed by real-time quantitative PCR using MITF primers. 
mRNA expression was normalized using SB34 RNA levels. Results are expressed as a mean 
+/- SD from 3 independent experiments. Significantly different from the corresponding 
control * p< 0.05; *** p< 0.001. 
 
c) Total RNA from starved A375 cells transfected for 48 hours with siRNA targeting MITF 
(si-MITF) or its scramble sequence (si-CT) was extracted and analyzed by real-time 
quantitative PCR using MITF and CXCL1 primers. mRNA expression was normalized using 
SB34 RNA level. Results are expressed as a mean +/- SD from 3 independent experiments. 
Significantly different from the corresponding control *** p< 0.001. 
 

d) A375 cells transfected with the wild type form of MITF were fixed and stained for MITF 
(green), CXCL1 (red) and with DAPI (blue). DAPI staining was used to identify cell nucleus. 
Slides were examined with a Zeiss Axiophot fluorescence microscope and pictures were taken 
at X200 magnification. Representative field of three different experiments are shown. 

e) Starved A375 melanoma cells were treated or not with 20µM forskolin (Fsk) added or not 
with 100µM IBMX for 7 hours. ELISA of CXCL1 was performed on supernatants from 
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starved A375 melanoma cells treated as described. Results are expressed in percent of control 
(100%). Corresponding proteins were separated by 12% SDS-PAGE and analyzed by western 
blot using the indicated antibody. HSP60 was used as loading control. One representative 
experiment of three is shown. Significantly different from the corresponding control *** p< 
0.001. 

f) A375 cells were transfected with vector encoding the basal luciferase construct (Mock), 
wild type MITF (WT MITF) or its dominant negative form (DN MITF) and with pTyro or 
pCXCL1 luciferase reporters. Measurement of luciferase activity was carried out 36 hours 
after transfection. Variability of transfection was normalized with βGal activity and results 
were expressed in percent of control (100%). Data are mean +/- SD of three independent 
experiments performed in triplicate. Significantly different from the corresponding control ** 
p<0.01; *** p< 0.001. 

g) Chromatin immunoprecipitation assays were performed on extracts of cells treated for 24 
hours with DMSO, 10µM ciglitazone (Cigli.), or with 20µM forskolin (Fsk) for 7 hours. 
Immunoprecipitations were performed using specific anti-MITF or anti-polymerase II (Pol II) 
antibody, and rabbit IgG (IgG) as control. Primers spanning the CXCL1 promoter region were 
used for the PCR amplification. A control of PCR amplification was performed on non-
immunoprecipitated extracts (Input). Another control was performed using a primer pair to 
the human GAPDH promoter. 

Figure 8: In vivo antineoplastic effects of ciglitazone correlate with decrease of MITF 
and CXCL1 expression. 

a) Mice were inoculated subcutaneously with A375 melanoma cells (2.5 x 106), and after 19 
days animals (n=6 in each group) were treated with ciglitazone (50 mg/kg/day) or labrafil for 
11 days. Growth tumor curves were determined by measuring the tumor volume using the 
equation V= (LxW2)/2. Significantly different from the corresponding control * p< 0.05; ** 
p< 0.01. 

b) Total RNA was extracted from mice tumors and analyzed by real-time quantitative PCR 
using CXCL1 primers. mRNA expression was normalized using SB34 RNA level. 
Significantly different from the corresponding control *** p< 0.001. 

c) ELISA for CXCL1 was performed on mice sera from bleeding after 11 days of ciglitazone 
or labrafil treatment. Sera from non tumor-bearing animals were used as negative control. 
Data are mean +/- SD of 6 samples collected in each group. Significantly different from the 
corresponding control * p< 0.05. Ratio serum CXCL1/tumor volume (right panel). 

d) Mice were inoculated subcutaneously with A375 melanoma cells (2.5 x 106), and after 12 
days animals (n=6 in each group) received intraperitoneal injection of ciglitazone (50 
mg/kg/day) or labrafil and subcutaneous peritumoral injections of human recombinant 
CXCL1 (200 ng/tumor/day) or water for 14 days. Growth tumor curves were determined by 
measuring the tumor volume using the equation V= (LxW2)/2. Significantly different from 
Labrafil/H2O * p< 0.05; ** p< 0.01. Significant difference between Ciglitazone/H2O and 
Ciglitazone/CXCL1 # p< 0.05; ## p< 0.01. 

Table 1: Genes differentially expressed in melanoma cells stimulated or not with 
ciglitazone.  
The expression level of 19 genes from proteins secreted by melanomas was evaluated by real- 
time quantitative PCR analysis. Total RNA was extracted from A375 cells stimulated or not 
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with ciglitazone for 24 hours and then subjected to real-time quantitative PCR analysis as 
described in methods. Data are expressed in arbitrary units as fold change between DMSO-
treated control cells and ciglitatone-treated cells and are a mean of two independent 
amplifications performed in duplicate. 
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