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Abstract

Energy and dissipation pseudo-potentials are employed to derive constitutive rela-

tionships, in the context of thermodynamic concepts, for the widely used Modified

Cam-Clay (MCC) model for soil mechanics. A variational formulation of the MCC

evolution equations is proposed in this paper. Since plastic collapse of MCC soils

cannot be embedded in the classical limit analysis theory, finding the critical am-

plification of the load that produces plastic collapse is formulated in the form of a

system of equations and inequalities. Then, a mixed minimization principle is pro-

posed for the plastic collapse analysis of MCC soils. This principle is obtained by

the application of the variational formulation for the flow law introduced in the first

part of the article.
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1 Introduction

The Modified Cam-Clay (MCC) model by Roscoe and Burland (1968) is an

important conceptual framework for constitutive behavior in soil mechanics

(Wood, 1990; Houlsby and Puzrin, 2006; Ulm and Coussy, 2003; Borja and

Lee, 1990; Vaunat et al., 2000; Einav et al., 2007). It has been widely used in

its simpler, classical form and also in more sophisticated versions that extend

its application to a broader variety of situations.

This paper is focused on the formal structure of the classical MCC model as

derived from the energy and dissipation potentials based on thermodynamics.

The systematic application of thermodynamic concepts to the formulation

of constitutive models of inelastic solids has reached a sophisticated stage

due to pioneering work and many outstanding contributions. In a simplified

description of this research field, thermodynamic principles are invoked to find

energy and dissipation functionals that are used to derive state and evolution

relations in the form of potential laws.

Among many other contributions to the thermodynamic formulation of consti-

tutive equations, we cite first the work of Ziegler (1983). Halphen and Nguyen

(1975) (see also Nguyen, 2000) proposed a framework, the Standard Gener-

alized Materials (GSM), which is a widely referenced approach to material

∗ Corresponding author. Tel.: +55 21 2562 8380; fax: +55 21 2562 8383.
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behavior modeling. G. T. Houlsby and coworkers (Collins and Houlsby, 1997;

Houlsby and Puzrin, 2006) contributed with the concept of Hyperplasticity,

which is a complete methodology to consistently develop constitutive equa-

tions based on thermodynamic principles. Rich and rigorous contributions to

thermomechanics with internal variables are also found in Maugin (1992), Han

and Reddy (1999) and Šilhavý (1997).

We use an extension of the concept of potential laws proposed by de Saxcé

(1992), based on a special class of functions, named bipotentials by de Saxcé.

These functions are, by definition, separately convex in two independent vari-

ables and bounded below by the scalar product of the variables. Generalized

potential laws are obtained, in direct and inverse forms, by partial subdifferen-

tiation (Rockafellar, 1970). This gives implicit constitutive equations, instead

of the usual explicit direct and inverse relations. Accordingly, the class of

material represented by this kind of constitutive equations is called Implicit

Standard Materials (ISM) (de Saxcé, 1995; de Saxcé and Bousshine, 1998;

Hjiaj, 1999; Bodovillé, 2001). It is a generalization of GSM.

This paper contains a unified derivation of energy and dissipation potentials

for the MCC model, beginning with some known potentials.

We propose a mixed approach to the evolution relations of MCC materials.

Throughout this paper, the expressions mixed formulation and mixed potential

are used to emphasize that generalized stresses and plastic strains (or strain

rates) are taken together as a pair of independent variables. In the framework

of this mixed approach, we propose a minimization principle for the MCC flow

law.

The mixed variational principles for MCC are applied to the analysis of plastic
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collapse of soils. The expression plastic collapse identifies the phenomenon of

incipient unbounded plastic deformation of a body under constant loading

and constant stress distribution. This is a critical state in soil mechanics. In

the present context, this concept must be carefully distinguished from the case

when a limit load eventually exists. Indeed, an incremental analysis of a simple

system, for instance the conventional drained triaxial compression shown by

Wood (1990, p. 123) and de Borst and Groen (2000, p. 37), demonstrates

that the plastic collapse of MCC soils can effectively occur, in a proportional

loading program, for a loading factor lower than the maximum amplification of

loads previously attained. In triaxial compression this happens when heavily

overconsolidated soil is sheared; we also discuss this example in Section 5.1

(see Figure 1).

Plastic collapse of MCC soils is the subject of Section 5, where we consider: (i)

a formulation of plastic collapse analysis in terms of a system of equations and

inequalities and (ii) a mixed minimization principle whose solution is precisely

related to the plastic collapse solution by a formal proposition, which is proven

with the variational tools developed in previous sections.

2 Potentials for elastoplastic materials

In this section, we briefly introduce the basic notation used in the paper and

some general potentials for the elastoplastic material constitutive equations.
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2.1 State variables and energy potentials

In an isothermal process the second law of thermodynamics can be written as

(Lubliner, 1972; Halphen and Nguyen, 1975; Houlsby and Puzrin, 2006; Han

and Reddy, 1999)

D = σ · d − Ẇ > 0 (1)

where D denotes specific dissipation, W is the Helmholtz free energy, σ is the

stress tensor, d := ε̇ is the strain rate tensor and superposed dot denotes time

derivative.

Let εp denote the plastic deformation and β the strain-like internal variable

associated with hardening. We use this simplified notation although it is often

the case that a list of strain-like scalars or tensors {βi; i = 1 : nh} is needed

in order to represent different hardening mechanisms (Maugin, 1992, pp. 276-

280; Han and Reddy, 1999, p. 52; Nguyen, 2000, p. 73; Nguyen, 2003, p. 82).

The plastic strain is a special internal variable that is identified later. The

internal variable β is not present in ideal plasticity. The generalized internal

variable is defined as

α := (εp,β) (2)

Then, the constitutive equations read as follows

W = W̃ (ε, εp,β) σ = σ(ε, εp,β) (3)

We assume that W̃ (ε, εp,β) is convex and differentiable in (ε, εp,β) and

strictly convex in ε (for any fixed εp and β). Its partial Legendre-Fenchel

conjugate function (Rockafellar, 1970, p. 104; Hiriart-Urruty and Lemaréchal,
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1993b, p. 37; Maugin, 1992, p. 288; Han and Reddy, 1999, p. 75)

G̃(σ, εp,β) := sup
ε

[

σ · ε − W̃ (ε, εp,β)
]

(4)

is the negative of conventional Gibbs free energy, with strain-like parameters.

It is convex with respect to σ (as are all conjugate functions) and differentiable

in σ because W̃ is strictly convex in ε (Hiriart-Urruty and Lemaréchal, 1993b,

pp. 38, 79).

The following state law, in direct and inverse form, is deduced from thermo-

dynamic principles (Han and Reddy, 1999, pp. 50-52)

σ = ∇εW̃ (ε, εp,β) ⇔ ε = ∇σG̃(σ, εp,β) (5)

with ∇εW̃ denoting the partial gradient of W̃ with respect to ε and ∇σG̃

being defined likewise.

We restrict ourselves to consider uncoupled materials, that is, materials whose

tangent elastic compliance ∇σσG̃ (second partial gradient with respect to σ

and σ) is independent of the internal variables. As proven in Collins and

Houlsby (1997, pp. 1979-1981) and Han and Reddy (1999, pp. 50-52) (cf. Ulm

and Coussy, 2003) this hypothesis leads to additive decomposition of strain

ε = εe(σ) + εp (6)

and also to the following form for the Helmholtz free energy

W̃ (ε, εp,β) = W e(ε − εp) +W h(εp,β) (7)

We suppose that the elastic potential W e is strictly convex and differentiable

and that the plastic potential W h is convex and differentiable (cf. Nguyen,

2006, p. 83).
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The state equation (5) now gives

σ = ∇W e(ε − εp) (8)

and the thermodynamic forces conjugate to εp and β are defined as

κ := −∇εpW̃ (ε, εp,β) = ∇W e(ε − εp) −∇εpW h(εp,β) (9)

A := −∇βW̃ (ε, εp,β) = −∇βW
h(εp,β) (10)

According to the definitions (5), (9) and (10) it holds that Ẇ = σ ·d−κ ·dp−

A · β̇. Therefore, the second law of thermodynamics (1) implies the following

constraint

D = A · α̇ := κ · dp + A · β̇ > 0 (11)

where the generalized internal force and flux are

A := (κ,A) α̇ := (dp, β̇) (12)

2.1.1 The conjugate function of the free energy

Let us consider first the conjugate function of the elastic part, W e, of the

Helmholtz free energy, i.e.

Ge(σ) := sup
εe

{σ · εe −W e(εe)} (13)

Then, we have

σ = ∇W e(εe) ⇔ εe = ∇Ge(σ) ⇔ Ge(σ) + W e(εe) = σ · εe (14)

It follows from the above relations that the partial Gibbs free energy, through

the duality transformation (4) to the energy potential given by (7), is

G̃(σ, εp,β) = Ge(σ) + σ · εp −W h(εp,β) (15)

7
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The rest of this subsection is devoted to obtaining the complete dual function

of the free energy W̃ (ε, εp,β).

First, we consider the conjugate function of the inelastic part, W h, of the

Helmholtz free energy

Gh(ρ,−A) := sup
εp,β

{ρ · εp − A · β −W h(εp,β)} (16)

This transformation may result in a nondifferentiable function Gh under the

hypothesis that W h is convex. Indeed, differentiability of Gh corresponds to

strict convexity of W h, which is not true for the Cam-Clay model presented

in the next sections. Accordingly, the subdifferential concept (which we use

for the dissipation potential in the following sections) should be applied to

Gh in order to obtain the inverse relations. These inverse relations will not

be needed in our presentation of the MCC model. Thus, we write below the

inverse relations, under the differentiability hypothesis, for completeness and

also for the purpose of comparing to references.

According to (16), in the differentiable case,

(ρ,−A) = ∇W h(εp,β) ⇔ (εp,β) = ∇Gh(ρ,−A)

⇔ Gh(ρ,−A) +W h(εp,β) = ρ · εp − A · β (17)

The variable ρ was introduced above as the conjugate of εp in the duality

transformation (16); however, taking into account (8), (9) and (17), it holds

that (cf.: Collins and Houlsby, 1997, p. 1980; Nguyen, 2006, p. 83)

κ = σ − ρ ρ = ∇εpW h(εp,β) (18)

Thus, ρ has the meaning of a back-stress.
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We choose (εe, εp,β) and (σ,ρ,A) as the dual pair of variables. An alternative

choice may be the pair (ε, εp,β) and (σ,κ,A) as adopted, for instance, in

Collins and Houlsby (1997).

Consequently, we consider the following definition for the Helmholtz potential

W (εe, εp,β) := W e(εe) +W h(εp,β) (19)

The complete Gibbs free energy, which is conjugated to the energy potential

given by (7), is now defined as

G(σ,ρ,A) := sup
εe,εp,β

[σ · εe + ρ · εp − A · β −W (εe, εp,β)] (20)

Thus, taking into account (17) and (14)

G(σ,ρ,A) = Ge(σ) +Gh(ρ,−A) (21)

and the corresponding state equations are

εe = ∇Ge(σ) εp = ∇ρG
h(ρ,−A) β = ∇(−A)G

h(ρ,−A) (22)

Then, ε = εe + εp and κ = σ − ρ appear as subsidiary equations.

2.2 Evolution equations and dissipation potentials

Because there is no characteristic time in inviscid plasticity, an appropriate

dissipation potential for this case

D = D(α̇,α) (23)

must be positively homogeneous with degree one, with respect to α̇ = (dp, β̇);

that is, D(cα̇,α) = cD(α̇,α) ∀ c > 0. Thus, the value of the dissipation
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function for α̇ = 0 and any α can only be zero or infinity; we rule out the

latter case.

In addition, the dissipation potential is assumed to be convex, lower semicon-

tinuous and positive for all α̇ 6= 0.

For the material models addressed here, it is necessary to consider non-differentiable

dissipation potentials, although they are supposed to be within the class of

functions endowed with sub-differentiability (Rockafellar, 1970; Hiriart-Urruty

and Lemaréchal, 1993a).

Then, A and α̇ are related by the constitutive evolution relation if and only

if they fulfill the following inclusion

A ∈ ∂α̇D(α̇,α) (24)

where ∂α̇D(α̇,α) denotes the partial subdifferential of D with respect to α̇.

The above inclusion is equivalent, by definition, to the following variational

inequality

D(α̇∗,α) −D(α̇,α) > A · (α̇∗ − α̇) ∀ α̇∗ (25)

This choice for the evolution equation automatically satisfies the second law

constraint (11).

We note that the generalized strain-like internal variable α is a passive pa-

rameter in this relation.

There is another hypothesis, regarding the coincidence of the internal forces

in (24), (9) and (10), that is implicitly adopted here. This issue is discussed by

Houlsby and Puzrin (2006) and resolved by restricting the class of materials

envisaged or, alternatively, by accepting Ziegler’s principle.

10
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In the following, we focus on the inverse of the evolution equation (24), which

is classically known as the (direct) plastic flow law. We show that it has the

following form

α̇ ∈ NP (A,α) := ∂IP (α)(A) (26)

where P (α) is the domain of plastic admissibility of the generalized internal

force A, NP (A,α) is the cone of normals to P (α) at σ, the indicator func-

tion of P (α) is defined as IP (α)(A) := 0 if A ∈ P (α) and +∞ otherwise,

and ∂IP (α)(A) is the subdifferential set defined by the following variational

inequality

IP (α)(A
∗) − IP (α)(A) > (A∗ − A) · α̇ ∀ A

∗ (27)

This is equivalent to

A ∈ P (α) (28)

A · α̇ 6 A
∗ · α̇ ∀ A

∗ ∈ P (α) (29)

In fact, functions like D(α̇,α), that are convex, closed, non-negative and pos-

itively homogeneous of degree one in α̇ (i.e. functions called gauges), are as-

sociated, through a bijective relation, with sets P (α) in the dual space of the

variable A that are closed, convex and contain the origin (Rockafellar, 1970,

p. 128; Hiriart-Urruty and Lemaréchal, 1993a, p. 218). This is a well known

duality relation in convex analysis. In the present constitutive relationship,

this means that if we assume that inelastic processes have no characteristic

time then an admissibility domain for the dissipative forces necessarily exists.

There are formulas implementing the bijective relation between D(α̇,α) and

P (α). Initially, we know that the dissipation potential is the support function

of the admissibility domain (Rockafellar, 1970, p. 112; Aubin and Ekeland,
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1984, p. 204), that is

D(α̇,α) = sup
A

{A · α̇ | A ∈ P (α)} (30)

This allows the computation of the dissipation function if the plastic admissi-

bility function is given.

Furthermore, the indicator function IP (α)(A) is the conjugate, in a Fenchel

transformation, of the dissipation function D(α̇,α). Then, a fundamental the-

orem in convex analysis (Rockafellar, 1970, p. 218; Aubin and Ekeland, 1984,

p. 202) states that (24), (25), (26), (27) and the equation

D(α̇,α) + IP (α)(A) = A · α̇ (31)

are all equivalent expressions of the same relation between α̇ and A, i.e. these

are equivalent evolution equations.

Let us introduce the following representation for the plastic admissibility set

P (α) = {A | f(A,α) 6 0} (32)

where f is the plastic admissibility function that is assumed to be regular

for the sake of simplicity. Then, the flow law is expressed in the usual form

(Rockafellar, 1970, p. 222)

α̇ = λ̇∇Af(A,α) (33)

λ̇ f(A,α) = 0 f(A,α) 6 0 λ̇ > 0 (34)

If the dissipation function is given, we may compute its polar function as

follows:

Φ(A,α) = sup
α̇6=0

A · α̇
D(α̇,α)

(35)
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and therefore determine the plastic admissibility set using the following plastic

admissibility function

f 0(A,α) = Φ(A,α) − 1 6 0 (36)

Notice that the same convex set P (α) can be represented by different plas-

tic admissibility functions (some of them being non-convex). However, there

is always a unique canonical representation, in the form (36), in terms of

the gauge function Φ(A,α) associated with P (α) (Rockafellar, 1970, p. 79;

Hiriart-Urruty and Lemaréchal, 1993a, p. 203).

Alternatively, if we suppose that a prescribed set is given P (α), which is closed,

convex and contains the origin, then its gauge function (Rockafellar, 1970,

p. 28), also known as the Minkowski function (Kamenjarzh, 1996, p. 147), is

obtained by the formula

Φ(A,α) = inf{ζ > 0 | A ∈ ζP (α)} (37)

This results in a function that is non-negative, closed, convex, positively ho-

mogeneous of degree one and with value zero at the origin A = 0. If the

origin of the generalized stress space is strictly interior to the set P (α) then

Φ(A,α) is always positive, except at the origin. In the case of the MCC model

the origin is exactly on the boundary of the plastic admissible domain.

3 Modified Cam-Clay model

This section is concerned with the energy and dissipation potentials associated

with the Modified Cam-Clay model of Roscoe and Burland (1968). We adopt,
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in the first part of this section, the assumptions of Collins and Houlsby (1997)

and Houlsby and Puzrin (2006).

In Subsection 3.3, we comment on the non-associativity of the MCC equa-

tions and justify a re-interpretation of the variables and parameters in the

dissipation potential. This leads to the mixed approach proposed in Section

4.

3.1 MCC state equations

Let us introduce the notation

σm :=
1

3
trσ S = σdev := σ − σm1 (38)

εv := trε εdev := ε − 1

3
(trε)1 dv := trd (39)

for the following variables: the mean stress σm, the deviatoric part of stress S,

the volumetric strain εv, the deviatoric part of strain εdev and the volumetric

strain rate dv.

We adopt in this paper the basic isotropic elastic potentials (40) and (41),

as given by Houlsby and Puzrin (2006, p. 189). This allows us to present

and discuss the essential features of the Modified Cam-Clay model without

going through more cumbersome expressions. In this simplified elastic model

the bulk modulus results proportional to pressure and the shear modulus

is assumed constant (different from the more usual assumption of constant

Poisson ratio). However, it is known that in order to improve the adequacy

of the ideal model to actual soil behavior more sophisticated elastic equations

should be adopted. A thorough discussion of this issue is given by Houlsby and

Puzrin (2006) in Chapter 9, which also contains non-linear elastic relationships
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more closely representing real soils. It is worth mentioning that some other

elastic relations adopted for MCC in the literature are not derived from an

energy potential and this may lead to non-reversible responses.

Let the Helmholtz free energy be given by

W e(ε − εp) = G‖εdev − (εp)dev‖2 + κ̃p0 exp
(

−εv − εp
v

κ̃

)

(40)

W h(εp) =
1

2
(λ̃− κ̃)px0 exp

(

− εp
v

λ̃− κ̃

)

(41)

where the shear modulus G is assumed to be constant, p0 and px0 are reference

values of hydrostatic pressure, λ̃ is the virgin compression index and κ̃ is the

swell-recompression index.

The corresponding state equations are (cf.: Hjiaj, 1999, p. 61; de Borst and

Groen, 2000, p. 33; Vaunat et al., 2000, p. 126; Ulm and Coussy, 2003, p. 293,

Houlsby and Puzrin, 2006, p. 189).

S = ∇εdevW e = 2G

[

εdev − (εp)dev
]

(42)

σm = ∇εv
W e = −p0 exp

(

−εv − εp
v

κ̃

)

(43)

ρ = ∇εpW h = −ρ1 (44)

with

ρ :=
1

2
px0 exp

(

− εp
v

λ̃− κ̃

)

(45)

Thus

κ = σ + ρ1 (46)
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3.2 MCC evolution equations

The dissipation function that characterizes MCC constitutive behavior, given

by

D(dp, εp
v) = ρ(εp

v)

√

2M2

3
‖dp dev‖2 + (dp

v)2 (47)

was first found by Houlsby (1981). We take this potential as the starting point

for the definition of the evolution equations. In fact, this dissipation function

leads to the widely known MCC elastic domains in the form of ellipses in the

stress space, as proven in the following.

It is worth identifying the main features in (47). The following analysis shows

that the MCC dissipation potential is, in a way, a simple quadratic proposal.

Indeed, according to (47):

(1) Shear plastic strain rate components are weighted by a nondimensional

material parameter M , when compared to the volumetric plastic strain

rate.

(2) The positively homogeneous function expressing the dependence of the

dissipation with respect to the plastic strain rate dp is the Euclidean

norm of the mean and weighted shear strain rate components

‖dp‖∗ :=
√

a−1‖dp dev‖2 + (dp
v)2 (48)

where

a :=
3

2M2
(49)

The function (48) belongs to the class of gauge functions, therefore it is

admissible as a dissipation potential. In particular, it is a norm for strain

rate tensors, whose polar function is then its dual norm, computed in

16
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Appendix A (cf. de Saxcé, 1995, p. 4)

‖κ‖∗∗ :=
√

a‖κdev‖2 + (κm)2 (50)

(3) The dissipation is proportional to a strength parameter that only de-

pends on the volumetric part of the kinematical internal variable. This

is a crucial assumption of this model, which is founded on experimental

evidence (Wood, 1990, p. 89). In the present framework, the role of the

strength parameter is played by the (scalar) back stress ρ.

Obtaining the plastic admissibility domain is just a matter of applying the

tools of convex analysis. Indeed, the polar function of the dissipation potential,

computed in Appendix A, is

Φ̂(κ, εp
v) = [ρ(εp

v)]
−1‖κ‖∗∗ = [ρ(εp

v)]
−1
√

a‖κdev‖2 + (κm)2 (51)

As a result, the corresponding canonical representation of the plastic admis-

sibility domain P (εp
v) is given by the condition

f 0(κ, εp
v) := [ρ(εp

v)]
−1
√

a‖κdev‖2 + (κm)2 − 1 6 0 (52)

However, for the sake of convenience, we adopt the following equivalent plastic

admissibility constraint

f̃(κ, εp
v) := ‖κ‖∗∗ − ρ(εp

v) =
√

a‖κdev‖2 + (κm)2 − ρ(εp
v) 6 0 (53)

The evolution equations are obtained by computing derivatives of the plastic

function. This gives

dp dev = λ̇
a

‖κ‖∗∗
κdev dp

v = λ̇
κm

‖κ‖∗∗
(54)
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We note that the above equations imply ‖dp‖∗ = λ̇.

Finally, we rewrite the plastic admissibility constraint in terms of the true

stress by substituting, in view of (46), κdev = S and κm = σm + ρ.

f̂(σ, εp
v) := ‖σ+ρ(εp

v)1‖∗∗−ρ(εp
v) =

√

a‖S‖2 + [σm + ρ(εp
v)]

2−ρ(εp
v) 6 0 (55)

Accordingly, the flow equations are

dp dev = λ̇
a

R̂
S dp

v = λ̇
σm + ρ

R̂
(56)

λ̇f̂(σ, εp
v) = 0 f̂(σ, εp

v) 6 0 λ̇ > 0 (57)

where

R̂ :=
√

a‖S‖2 + [σm + ρ(εp
v)]

2 (58)

3.3 Non-associativity of the MCC model

In the previous presentation of the dissipation potential and corresponding

evolution equations, we considered the statical internal variable ρ as a pas-

sive parameter, which is a function, given by a state law, of the kinematical

hardening variable εp
v. However, ρ is first considered as an independent state

variable and afterwards linked to εp
v by the gradients of the Helmholtz and

Gibbs energy potentials. Therefore, there is no need, in the framework of the

above development, to include a complementary evolution equation for the

dual hardening variable because this is already taken into account by the

second flow law (56).

We now change from the previous approach, discussed above, with respect

to the role of ρ in the dissipation potential and the evolution equations. This
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will allow some variational formulations for the constitutive equations of MCC

materials to be obtained where the participation of the kinematical and stat-

ical variables is clearly understood. To this aim, it is convenient to formally

identify the strain-like hardening internal variable by an independent symbol,

β, which is the dual of ρ, and later introduce an additional constraint β = εp
v.

Then, the dual pair of generalized stress and strain rate is denoted

Σ := (σ, ρ) D
p := (dp, β̇) (59)

with scalar product Σ ·Dp := σ · dp + ρβ̇.

Accordingly, there is a fixed plastic admissibility domain P in the space of the

generalized stress; in the present notation

Σ = (σ, ρ) ∈ P ⇔

f(σ, ρ) := ‖σ + ρ1‖∗∗ − ρ =
√

a‖S‖2 + (σm + ρ)2 − ρ 6 0 (60)

The associated flow law (56) cannot be extended as a complete associated flow

law in terms of generalized stress, and at the same time, have the hardening

strength ρ associated with a flux variable β̇ that is identical to the volumetric

plastic strain rate dp
v. This is proven in the following.

Computing the gradients of the plastic function defined in (60), we get

∇Sf =
a

R
S ∇σm

f =
σm + ρ

R
∇ρf =

σm + ρ

R
− 1 (61)

where, for simplicity, it is denoted

R := ‖σ + ρ1‖∗∗ =
√

a‖S‖2 + (σm + ρ)2 (62)

The first two components of the generalized gradient (61) give the correct
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associated fluxes that correspond to true stress components, i.e.

dp dev = λ̇
a

R
S dp

v = λ̇
σm + ρ

R
(63)

λ̇f(σ, ρ) = 0 f(σ, ρ) 6 0 λ̇ > 0 (64)

in accordance to (56) and (57). Equivalently

dp =
λ̇

R

[

aS +
σm + ρ

3
1

]

(65)

We note, for future use, that the two equations in (63), or (65), imply that

‖dp‖∗ = λ̇ (66)

Now it is clear, from (61) and (63), that an associated flow for the strain-like

hardening variable β̇ cannot be adopted because λ̇∇ρf = λ̇(σm+ρ

R
− 1) 6= dp

v.

In summary, we propose the introduction of the dual pair of generalized stress

and strain rate (59) and justify the necessity of developing a broader for-

mal structure for the evolution equations in order to accommodate the non-

associated hardening flow law of an MCC material. This structure is the sub-

ject of the next section.

4 A mixed approach to MCC

We introduce now the mixed dissipation function

D̃(Σ ,Dp) = D̃(σ, ρ,dp, β̇)

:= ρ‖dp‖∗ + IP (σ, ρ) + IK(dp, β̇)

= ρ
√

a−1‖dp dev‖2 + (dp
v)2 + IP (σ, ρ) + IK(dp, β̇) (67)
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where the indicator function IP (σ, ρ) equals 0 if ‖σ + ρ1‖∗∗ 6 ρ and +∞

otherwise, and the indicator function IK(dp, β̇) equals 0 if β̇ = dp
v and +∞

otherwise.

In other words, the functions IP and IK include, by exact penalty in the dissi-

pation potential (47), respectively: the plastic admissibility constraint for the

generalized stress and the kinematical admissibility constraint for the gener-

alized flux.

We prove in the following proposition that the mixed dissipation (67) gives an

implicit potential form of the MCC flow law. This result was first found by de

Saxcé (1995, p. 4).

Proposition 1. The set of MCC evolution equations (63), together with β̇ = dp
v,

is equivalent to

(dp, β̇) ∈ ∂(σ,ρ)D̃(σ, ρ,dp, β̇) (68)

Proof. The subdifferential of a sum can be computed by adding the two sep-

arate contributions if one of the terms is a differentiable function (Hiriart-

Urruty and Lemaréchal, 1993a, p. 261); thus,

∂(σ,ρ)D̃(σ, ρ,dp, β̇) = ∇(σ,ρ) (ρ‖dp‖∗) + ∂(σ,ρ)IP (σ, ρ)

= (0, ‖dp‖∗) + ∂(σ,ρ)IP (σ, ρ) (69)

Then (dp, β̇) ∈ ∂(σ,ρ)D̃(σ, ρ,dp, β̇) is equivalent to

dp dev = λ̇
a

R
S dp

v = λ̇
σm + ρ

R
β̇ = ‖dp‖∗ + λ̇

(

σm + ρ

R
− 1

)

(70)

λ̇f(σ, ρ) = 0 f(σ, ρ) 6 0 λ̇ > 0 (71)

21



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

The first two equations in (70) are equivalent to (63). The third one, taking

into account (66), gives

β̇ = λ̇+ λ̇
(

σm + ρ

R
− 1

)

= λ̇
σm + ρ

R
= dp

v (72)

This completes the proof.

In the following, we verify that the mixed dissipation potential (67) belongs

to the class of functions called bipotentials by de Saxcé (1992). The function

D̃(Σ ,Dp) complies with the definition of bipotentials if it is bi-convex, i.e.

separately convex in Σ and D
p, and satisfies the following condition

D̃(Σ ,Dp) > Σ ·Dp ∀ (Σ ,Dp) (73)

In fact, considering (67), the non-strict convexity with respect to Σ holds

because the mixed dissipation is the sum of a linear function in Σ with an

indicator function, which is also non-strictly convex. It is also non-strictly

convex with respect to D
p for similar reasons.

It only remains to prove the variational inequality below to verify that D̃(Σ ,Dp)

is a bipotential.

D̃(σ, ρ,dp, β̇) > σ · dp + ρβ̇ ∀ (σ, ρ,dp, β̇) (74)

Proof. The inequality is trivially valid whenever any indicator function in

(67) equals +∞. Thus, we have to consider the above condition when the

admissibility constraints are fulfilled. Therefore, we must prove that

ρ‖dp‖∗ > (σ + ρ1 ) · dp ∀ (σ, ρ,dp) | ‖σ + ρ1‖∗∗ 6 ρ (75)

We now use the fundamental inequality (A.5) for the dual norms ‖κ‖∗∗ and
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‖dp‖∗ and the constraint above to get

(σ + ρ1 ) · dp
6 ‖σ + ρ1‖∗∗‖dp‖∗ 6 ρ‖dp‖∗ (76)

This is (75) and the proof is complete.

The equivalence of the following relations holds true as a consequence of the

verification that the function D̃(Σ ,Dp) is a bipotential (de Saxcé, 1992; see

also Zouain et al., 2007, p. 4396).

D̃(Σ ,Dp) = Σ · Dp ⇔ D
p ∈ ∂ΣD̃(Σ ,Dp) ⇔ Σ ∈ ∂D

pD̃(Σ ,Dp)

(77)

Moreover, since the second relation above is the flow law (68) of the MCC ma-

terial, we conclude that (77) displays three equivalent forms of the constitutive

relation identifying this flow law.

In summary, we use the mixed dissipation D̃(Σ ,Dp), defined in (67), to char-

acterize the MCC flow law in the following manner: a generalized stress Σ

and a generalized plastic strain rate D
p are related by the flow law, and we

denote this by

(Σ ,Dp) ∈ F (78)

if and only if this pair is extremal for the bipotential, i.e. this pair satisfies

one of the equivalent conditions (77).

In general, as discussed by de Saxcé and coworkers (de Saxcé, 1992, 1995;

de Saxcé and Bousshine, 1998; see also Bodovillé, 2001), implicit standard

materials (ISM) are characterized by evolution equations of this kind.
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4.1 The dissipation gap potential

We introduce the concept of potential dissipation excess, which is represented

by the dissipation gap function

ψ(Σ ,Dp) := D̃(Σ ,Dp) −Σ ·Dp (79)

For an arbitrary choice of (Σ ,Dp) the dissipation gap function gives the differ-

ence between the available power for dissipation and actual dissipated power

of the arguments.

The dissipation gap function of the MCC material is, in unabridged notation,

ψ(σ, ρ,dp, β̇) := ρ
√

a−1‖dp dev‖2 + (dp
v)2−σ ·dp−ρβ̇+IP (σ, ρ)+IK(dp, β̇)

(80)

The following proposition gives the relation of this dissipation gap function to

the flow law.

Proposition 2. Let ψ be given by (79) and F defined in (78), or (77), then

ψ0 := inf
Σ ,Dp

ψ(Σ ,Dp) (81)

is finite and nonnegative. Further,

(1) If ψ0 = 0 then

(Σ ,Dp) ∈ F ⇔ (Σ ,Dp) ∈ arg inf
Σ ,Dp

ψ(Σ ,Dp) (82)

(2) If ψ0 > 0 then F is empty.

The symbol arg inf above denotes the set of solutions to the minimization
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problem.

Proof. The dissipation gap function ψ(Σ ∗,Dp∗) is proper (Rockafellar, 1970)

and nonnegative for all (Σ ∗,Dp∗), as a consequence of the definition of the

bipotential. Further, if (Σ ,Dp) ∈ F then using (77), it follows that ψ(Σ ,Dp) =

0, which leads directly to the thesis.

It is worth noting that we consider in Proposition 2 that F is eventually empty

because this is possible for functions that only comply with the hypothesis of

the theorem. However, if F is empty, the proposed model for the flow law is not

applicable. This situation is detected by the presence of a positive minimum

value ψ0.

In the particular case of the MCC model, the set of stresses and fluxes related

by the flow law is not empty because (Σ ,Dp) = (0, 0), at least, belongs to F.

Thus, according to the proposition above, F coincides, for MCC, with the set

of solutions of the optimization problem (81).

We will show in the next sections that a proposition analogous to the one

stated above, for a material point, describes the behavior of the whole body

with respect to the occurrence of plastic collapse.

5 Plastic collapse of MCC soils

Plastic collapse is a phenomenon characterized by (incipient) unbounded plas-

tic deformation in a process where loadings and the stress distribution remain

constant in time. As an example, this concept is identified in the case of the

drained triaxial compression test of a MCC soil.
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Then, we consider a precise definition of this critical state, taking into account

the particular features introduced when considering non-associated plasticity.

Afterwards, we present a non-standard mixed minimization principle and its

relationship with plastic collapse solutions.

5.1 Triaxial compression test and plastic collapse
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Fig. 1. Equivalent shear stress q versus axial strain εz in a simulated triaxial com-

pression test with cell pressure p0 = 0.2 MPa. Curve (a) corresponds to a lightly over-

consolidated soil with OCR = 1.25 and (b) refers to a heavily overconsolidated soil

with OCR = 5. Both are exact solutions for a MCC material with G = 11.54 MPa,

M = 1.05, λ̃ = 0.032 and κ̃ = 0.013.

The influence of non-associated yield laws in the plastic collapse phenomenon

can be recognized in the response of a MCC soil to a simulated triaxial com-

pression test. For this purpose we consider a cylinder of MCC material under

constant confining pressure p0 = 0.2MPa and subjected to a displacement-
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Fig. 2. Volumetric strain εv versus axial strain εz in a simulated triaxial compression

test with cell pressure p0 = 0.2 MPa and same material as in Figure 1. Curve (a)

corresponds to a lightly overconsolidated soil with OCR = 1.25 and (b) refers to a

heavily overconsolidated soil with OCR = 5.

driven loading program imposing an additional variable axial compression q,

i.e. σz = −p0 − q and σr = σθ = −p0 (r, θ and z are cylindrical coordinates).

In Figures 1 and 2, we present exact solutions (computed from closed form

solutions) for a MCC material with constant shear modulus G = 11.54MPa,

and with M = 1.05, λ̃ = 0.032 and κ̃ = 0.013. This example was solved by

de Borst and Groen (2000, p. 34) for a MCC material model with constant

Poisson ratio ν = 0.2 and same values of M , λ̃ and κ̃ (see also Wood, 1990,

p. 123).

We compare the incremental responses of two samples having different over-

consolidation ratios OCR := 2ρ0/p0 (ρ0 is the initial value of the hardening

variable): (a) a lightly overconsolidated soil with OCR = 1.25 and (b) a heavily

overconsolidated soil, with OCR = 5. Two facts are worth noting:
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(1) It is apparent in Figure 1 that, irrespective of the initial conditions and

the loading path, there is a critical load qc = 3Mp0/(3−M) = 0.323MPa

(Zouain et al., 2007, p. 4393) producing plastic collapse, i.e. unbounded

deformation under constant loadings and stress distribution. This is a

critical state in soil mechanics. In this case the collapse load depends on

the confining pressure p0, not only on material constants.

(2) When the heavily overconsolidated soil (b) is sheared (see Figure 1) the

load q is amplified up to a peak value of qpeak = 0.05MPa and then

decreases asymptotically to the collapse load qc. Consequently, the col-

lapse load cannot be called limit load (in the classical sense) for this

non-associated elastoplastic material. Indeed, there is no load greater or

equal than all loading values effectively sustained by the system in any

loading path, under constant confining pressure, initiating at arbitrary

maximum past isotropic consolidation pressure (cf. Wood, 1990, p. 188).

(3) Figure 2 shows that plastic collapse occurs under constant volume defor-

mation. This is predicted since during the collapse phenomenon: (i) the

volumetric elastic strain rate is zero because stresses are constant and (ii)

hardening must remain frozen and therefore the volumetric plastic strain

rate must be zero because it is associated to hardening evolution in the

MCC material.

5.2 Additional notation

In the following the symbol D denotes the linear deformation operator map-

ping velocities (displacements) into compatible strain rates (respective strains).

The internal power associated with a stress field σ and a velocity distribution
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w is denoted

〈σ,Dw〉 :=
∫

B
σ · Dw dB (83)

Likewise, the external power of a load system F is

〈F ,w〉 :=
∫

B
b · w dB +

∫

Γτ

τ · w dΓ (84)

where b and τ are volume and surface load densities and Γτ is part of the

boundary Γ where traction is prescribed (null displacements are imposed in Γu,

with Γ = Γτ

⋃

Γu and Γτ

⋂

Γu empty). The set of stress fields in equilibrium

with a given load system F is defined as

S(F ) := {σ | 〈σ,Dw〉 = 〈F ,w〉 ∀ w} (85)

where the virtual velocity w varies in the linear space of admissible velocities.

5.3 The plastic collapse equations

When the body undergoes plastic collapse the stress and the internal ther-

modynamic forces remain constant. In view of the elastic state equations, a

constant stress field induces an elastic deformation distribution that is also

constant in time. This, in turn, means that the strain rate field is at the same

time compatible and purely plastic.

Likewise, according to the state equation relative to internal variables, inter-

nal hardening forces that are constant during plastic collapse imply that the

kinematical internal variables are also constant, that is, β̇ = 0 at all points in

the body (cf. Polizzotto et al., 1991).

This description of plastic collapse is implemented in the following. The com-

putation of the critical factor α that amplifies a prescribed load system F so
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as to produce unbounded purely plastic deformation, when superposed to a

fixed (non-amplified) load F 0, can be formulated as

PC - The plastic collapse problem. Find (α,σ, ρ, v) such that

σ ∈ S(F 0 + αF ) (86)

〈F ,v〉 = 1 (87)

D̃(σ, ρ,Dv, 0) = σ · Dv in B (88)

α > 0 (89)

Condition (87) is only included in order to select one normalized velocity

distribution, which rules out all its scalar multiples that would be solutions

otherwise.

The system (86-89) represents general conditions for plastic collapse that are

applicable (with minor changes in notation) to any material behavior derived

from a bipotential. In addition to these conditions, MCC materials also obey

some particular equations that we consider in the following.

For MCC materials, the fact that the internal variable rate β̇ is zero implies

that

dp
v = 0 (90)

Thus, plastic collapse for MCC materials takes place under conditions of con-

stant volume deformation. A condition of plastic collapse under constant vol-

ume deformation is known in soil mechanics as a critical state (Schofield and

Wroth, 1968; Roscoe and Burland, 1968; Wood, 1990, p. 139; Houlsby and

Puzrin, 2006, p. 187).
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From the condition β̇ = dp
v = 0 and the evolution equation (70) we get

ρ = −σm if λ̇ > 0 (91)

We note that this relation only applies to material points having effective

plastic deformation during collapse.

Finally, we introduce the additional constraint (90) in the mixed dissipation

potential, to conclude that for MCC materials undergoing plastic collapse

D̃(σ, ρ,Dv, 0) =



























√

2
3
Mρ‖Dv‖ if trDv = 0, f(σ, ρ) 6 0

+∞ otherwise

(92)

5.4 Variational plastic collapse analysis

We propose a minimization principle and then explain how it is used to analyze

the existence of collapse solutions (α,σ, ρ,v) to the plastic collapse problem

PC, defined by (86-89).

In order to obtain the variational formulation given below, we impose (88) in

the form of a minimization principle as given in (79), but now we attach (86),

(87) and (89) as constraints.

MP - A minimization principle

Υ = inf
α,σ,ρ,v

{

Ψ(σ, ρ,Dv, 0) | σ ∈ S(F 0 + αF ); 〈F ,v〉 = 1; α > 0
}

(93)

where Ψ :=
∫

B ψdB.

The first remark on this variational formulation is the following lemma, whose

proof is straightforward.
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Lemma. The infimum Υ of the minimization principle MP is finite and non-

negative if the feasible set is nonempty, otherwise it is +∞.

By using D :=
∫

B D̃dB and the constraints in (93), we get

Ψ(σ, ρ,Dv, 0) = D(σ, ρ,Dv, 0) − 〈σ,Dv〉 = D(σ, ρ,Dv, 0) − 〈F 0,v〉 − α

(94)

Thus, the minimization principle (93) can be rewritten as

Υ = inf
α,σ,ρ,v

{

D(σ, ρ,Dv, 0) − 〈F 0,v〉 − α |

σ ∈ S(F 0 + αF ); 〈F ,v〉 = 1; α > 0
}

(95)

The main results in the present variational analysis of plastic collapse can be

summarized as follows: (i) MP has always a solution for Υ, finite or +∞, and

(ii) finding this solution can give the answer to whether or not solutions to

the PC exist. This is precisely stated below.

Proposition 3. The plastic collapse problem PC and the minimization principle

MP are related by the following implications:

(1) If there exists a solution (α,σ, ρ,v) of PC, then this set is a minimizer

for MP and corresponds to Υ = 0.

(2) If MP has a minimizer (α,σ, ρ,v) such that Υ = 0, then this set is a

solution for PC.

Proof.

(1) Collapse solutions satisfy all constraints in MP and give Υ = 0 since

ψ = 0 in B.
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(2) Υ = 0 implies ψ = 0 in B and this, together with the constraints of MP,

is the set of equations in PC.

In other words, if we solve the minimization problem MP, analytically or

numerically, we can conclude that:

(1) If Υ = 0 then the computed minimal solution describes the plastic col-

lapse for the obtained amplification factor α.

(2) If Υ > 0 then the body does not collapse for any loading of the form

F 0 + αF .

The proposition above applies to material models derived from a bipotential,

including those with associated flow laws, and not only for the MCC.

The minimization problem MP, given by (93) or (95), has convex constraints

but its objective function is only bi-convex, and not necessarily jointly con-

vex in its arguments. It encompasses the complexities inherent to non-convex

optimization.

The expression of the minimization principle MP for soils consisting of MCC

material is obtained by introducing (92) in (95); this gives

Υ = inf
α,σ,ρ,v

{

∫

B

√

2
3
Mρ‖Dv‖dB − 〈F 0,v〉 − α |

σ ∈ S(F 0 + αF ), 〈F ,v〉 = 1, α > 0,

trDv = 0 in B,
√

3
2M2‖S‖2 + (σm + ρ)2

6 ρ in B
}

(96)

The minimization principle (96) was also obtained in Zouain et al. (2007,

p. 4390), but using a different development. Here, the starting point is an

extension of the classical dissipation function to a mixed dissipation potential.
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Moreover, now we have a variational formulation for the evolution equations

that allows an easy transition to the global formulation in plastic collapse

analysis. An example of the application of (96) and Proposition 3 is studied

in Zouain et al. (2007, pp. 4390-4394).

6 Conclusions

In this paper we proposed a mixed variational formulation (81) for the evo-

lution relations of MCC materials that matches all features of the most com-

monly used Cam-Clay model in soil mechanics.

It was shown in Section 4 that interpreting the known dissipation potential

given by Houlsby (1981) as a mixed function, and adding penalty terms to

exactly enforce plastic and kinematic admissibility, leads to the bi-convex po-

tential D̃(σ, ρ,dp, β̇), in (67), giving implicit potential flow laws like those

proposed by de Saxcé (1995). In this way, the bipotential for the evolution

equations is interpreted as a dissipation potential. Moreover, it is obtained

from a classical dissipation function by the simple consideration of statical

and kinematic constraints.

The concept of excess of dissipation was introduced by defining the gap po-

tential ψ(σ, ρ,dp, β̇) in (79). It was proven, in Proposition 2, that the set F of

stress and plastic strain rates related by the flow law coincides with the set of

minimizers of the dissipation gap function.

Since the hardening evolution relation of MCC is not associated, the plastic

collapse analysis of a soil obeying this constitutive behavior cannot be embed-

ded in classical limit analysis theory. For example, a maximum load amplifier
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does not necessarily exist and the well known lower and upper bounding prin-

ciples are not valid.

However, we have shown, in Proposition 3, that there is a mixed minimization

principle associated with the analysis of the critical state of plastic collapse of

an MCC soil. This global variational formulation was directly deduced from

the constitutive variational formulation of the flow law.
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A The polar of the dissipation function

Let us first justify (50). The dual norm corresponding to the norm for strain

rates defined in (48) is defined by (Rockafellar, 1970, p. 128; Horn and Johnson,

1985, p. 277)

‖κ‖∗∗ := sup
d6=0

κ · d
‖d‖∗

(A.1)

The above problem can be solved by a change of variables:

κ̂ : =
√
aκdev +

1

3
√

3
(trκ)1 (A.2)

d̂ : =
1√
a
ddev +

1√
3
(trd)1 (A.3)

Then κ · d = κ̂ · d̂, ‖d‖∗ = ‖d̂‖ and

‖κ‖∗∗ = sup
d̂6=0

κ̂ · d̂
‖d̂‖

= ‖κ̂‖ =
√

a‖κdev‖2 + (1
3
trκ)2 (A.4)
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where we applied the fact that the Euclidean norm is its own dual (Horn and

Johnson, 1985, p. 277). This proves (50).

The fundamental inequality characterizing dual norms

‖κ‖∗∗ ‖d‖∗ > κ · d ∀ (κ,d) (A.5)

is a consequence of the definition (A.1).

Finally

(1) The polar of

D(dp, εp
v) = ρ(εp

v)‖dp‖∗ (A.6)

with respect to dp, is

Φ̂(κ, εp
v) = [ρ(εp

v)]
−1‖κ‖∗∗ (A.7)

This is proven by an additional change of variables.

(2) The polar of

D̃(σ, ρ,dp, β̇) = ρ‖dp‖∗ + IP (σ, ρ) + IK(dp, β̇) (A.8)

with respect to (dp, β̇), is

Φ̃(σ, ρ) = ρ−1‖σ + ρ1‖∗∗ (A.9)

Proving this requires using the constraints imposed by exact penalty and

the same changes of variables.
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Hiriart-Urruty, J.-B., Lemaréchal, C., 1993b. Convex Analysis and Minimiza-

tion Algorithms II. Springer-Verlag, Berlin.

Hjiaj, M., 1999. Sur la classe des matériaux standard implicites: Concept,

aspects discrétisés et estimation de l’erreur a posteriori . Ph.D. Thesis,

Docteur en Sciences Appliquées, Faculté Polytechnique de Mons.
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