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21, 80125 - Naples, Italy
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Abstract

The theory of non-uniform flexure and torsion of Saint-Venant’s beam
with arbitrary multiply connected cross section is revisited in a coordinate-
free form to provide a computationally convenient context. Numerical im-
plementations, by Matlab, are performed to evaluate the maximum elastic
shear stresses in beams with rectangular cross sections for different Pois-

son’s ratios. The deviations between the maximum and mean stresses are
then diagrammed to adjust the results provided by Jourawski’s method.

Key words: Saint-Venant’s beam, elastic shear stresses, rectangular
cross section.

1. Introduction

In (Truesdell , 1976, page 124) it is stated that Saint-Venant’s work,
for penetration of concept, for assessment of a key problem, and for skill in
solving it, stands as one of the supreme monuments of mechanics. Neverthe-
less, the exact solution of the problem of finding the elastic shear stress field
in a Saint-Venant’s beam with cross section of arbitrary shape is lacking.
Saint-Venant himself studied in detail and solved torsion and flexure prob-
lems for circular, elliptic, equilater triangle and rectangular cross sections by
providing numerical examples and graphs (De Saint Venant , 1856a,b). In the
case of rectangular sections, Saint-Venant provided a solution in terms of
a rapidly converging series. Grashof in 1878 discussed the case of a cross
section whose boundary consists of two vertical sides and two hyperbolas.
Further, the cases of cardioid, epitrochoidal, Booth’s lemniscate, Bernoulli’s
lemniscate, confocal ellipses, eccentric circles cross sections may be dealt with
as applications of conformal mappings (Muskhelishvili , 1949; Sokolnikoff ,
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1956). For a triangle of arbitrary geometry Saint-Venant’s solution, in
terms of shear stresses, is not known. Seth dealt with the flexure of a beam
whose cross section is a right-angled isosceles triangle in 1934, and then, in
1936, he discussed the flexure solutions only for three particular cases: for a
shear force perpendicular to the axis of symmetry of an isosceles triangle, for
a shear force parallel to the hypotenuse of a right-angled triangle and for any
triangular cross section and for any direction of the shear force if Poisson’s
ratio is equal to 0.5. However Saint-Venant’s solutions for cross sections
occupied by multiply connected domains or of arbitrary shape are not avail-
able, but it occurs to make recourse to numerical or alternative calculus meth-
ods (see e.g. Di Paola et al., 2008). A simple strategy employed by engineers
is the method invented by Jourawski (1856) and Rankine (1858), subse-
quently developed by Grashof (1878), based on equilibrium considerations.
In the first part of the paper, we reformulate the problem of non-uniform flex-
ure and torsion of Saint-Venant’s beam with a arbitrary cross section in
a coordinate-free form. We obtain the elastic shear stress field, at the points
of the cross sections, elastically compatible with the linearized displacement
field, assigned to within an unknown scalar warping function. By imposing
that the elastic shear stresses, expressed as sum of a geometrical term plus
the gradient of the warping, fulfill the differential and boundary Cauchy’s
equations of equilibrium, a Poisson-Neumann’s problem or equivalently
a Laplace-Neumann’s one for the warping is formulated. Two analogies
with elastostatics show that these problems admit an unique solution, to
within a constant, for any datum (Romano , 2002). For particular positions
and geometries of the holes of multiply connected cross sections or in the case
of pure torsion the evaluation of the elastic shear stresses may be alterna-
tively carried out formulating a Poisson-Dirichlet’s problem. The second
part of the paper concerns the evaluation, by Matlab, of the elastic shear
stresses, to within the shear modulus, on rectangular cross sections of nine
Saint-Venant’s beams subject to non-uniform flexure, shear force directed
along the height and for seven Poisson’s ratios. Moreover we evaluate, by
polynomial approximation, the component of the elastic shear stresses along
the height at the points of the middle line parallel to the base of each rectan-
gle and, then, we compare the maximum value with the mean one provided
by Jourawski’s formula. Subsequently, for chosen Poisson’s ratios, we
provide the corrective coefficient which must be multiplied by Jourawski’s
mean value to get the maximum shear stress as a function of the ratio be-
tween base and height of the rectangle.

2



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

2. Formulation of the problems of flexure and torsion

Let Ω be a two-dimensional multiply connected domain, occupied by the
cross section of Saint-Venant’s beam, and assume that the boundary ∂Ω
is made of several closed contours ∂Ωo, ∂Ω1, ∂Ω2, . . . , ∂Ωn ; the first of these
contours contains all other (see fig. 1). Hereafter we denote by r the position
vector of each point of the cross section Ω with respect to the centroid
G , z the abscissa along the beam axis, g the euclidean metric tensor, n

the unit outward normal to Ω , k the unit vector of the z-axis, { ′ } the
derivative with respect to z and R the orthogonal linear transformation
which anticlockwise rotates a two-dimensional vector field of π

2
. Let ǫz(r)

be the scalar field of the extensions of the longitudinal fibers of the beam
and d(z) := ∇ǫz be its gradient with respect to the position vector r . The
linear bending curvature vector d(z) is evaluated by imposing the rotation
equilibrium condition about the centroid G :

MG(z) =

∫

Ω

r × σz(r)k da =

∫

Ω

r× (E g(r,d(z)))k da ⇐⇒

RMG(z) := k × MG(z) = JG(E)d(z)

where MG(z) is the bending resultant moment at the z abscissa about G ,
JG(E) := E

∫

Ω
r⊗g r da is the elastic bending stiffness and σz(r) = E ǫz(r)

is the elastic normal stress field on Ω . By relation RMG(z) = JG(E)d(z)
being MG(z) an affine function, i.e. MG(z) = MG(0) − zRS , it follows
that the curvature vector d(z) is an affine function: d(z) = d0 +d′ z , where
S is the shear force. The vector d0 is the bending curvature of the cross
section at z = 0 given by the relation RMG(0) = JG(E)d0 . By observing
that JG(E)d(z) = RMG(z) = RMG(0) + z S =⇒ JG(E) (d(z))′ =
R(MG(z))′ = S we get the formula S = JG(E)d′ to evaluate the vector d′ .

2.1. Displacement, strain and stress fields

The displacement field of Saint-Venant’s beam subject to non-uniform
flexure and torsion is given by:

u(r, z) =
ν

2
(Rr ⊗g Rr − r⊗g r)d(z) −

z2

2
d0 −

z3

6
d′ + θ′ zRr

+
[

ϕ(r) + g(d0, r) z + g(d′, r)
z2

2

]

k ,

3
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Figure 1: Multiply connected cross section of the beam

in which ⊗g is the diadic product between vectors according to the met-
ric tensor g , θ′ is the torsional curvature, ν is Poisson’s ratio assumed
to be constant with respect to the longitudinal fibers of the beam and
ϕ ∈ C2(Ω ;R) is an unknown scalar field to determine by equilibrium. De-
noting by BL ( ) a bounded linear map, V a three dimensional linear space
and d the derivative, the compatible stretching Du ∈ BL (Ω ; BL (V ;V ))
associated with the displacement field u ∈ C2(Ω ;V ) is given by:

Du := sym du =
1

2
(du + duT ) .

By assuming an isotropic linear elastic behavior of the material, the Cauchy

stress T ∈ BL (Ω ; BL (V ;V )) which is elastically compatible with the dis-
placement field u writes as:

T = 2G (Du) +
2Gν

1 − 2 ν
(I1(Du)) I ,

where G is the shear modulus, I1() stands for the linear invariant of a linear
operator and I is the identity operator. Accordingly the elastic normal and
shear stress fields, evaluated at the points of the cross section of the beam,
are given by:







σz(r)= E g(r,d(z)) ,

τ (r) =
Gν

2
(Rr ⊗g Rr− r ⊗g r)d′ +Gθ′ Rr +G∇ϕ(r) ,

where ∇ is the gradient operator. The determination of the elastic shear
stresses is subordinated to the evaluation of the gradient of the unknown
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function ϕ ∈ C2(Ω ;R) . To this end, the fulfillment of the differential and
boundary Cauchy’s conditions of equilibrium







div τ (r) = −σ′(r) = −E g(d′, r) , ∀ r ∈ Ω ,
∫

c

g(Rτ ) = 0 , ∀ c ⊂ ∂Ω ,

leads to the formulation of the following Poisson-Neumann problem














∆2ϕ =
1

G
(div τ β − α) , in Ω ,

∫

c

g(R(G∇ϕ− τ β)) = 0 , ∀ c ⊂ ∂Ω ,

for the function ϕ ∈ C2(Ω ;R) , in which:










































































∆2 := div∇

τ β(r) := −
Gν

2
(Rr⊗g Rr− r ⊗g r)d′ −Gθ′ Rr ,

α(r) := 2G (1 + ν) g(d′, r) ,

div ((Rr⊗g Rr)d′) = −g(r,d′) ,

div ((r ⊗g r)d′) = 3 g(r,d′) ,

div (Rr) = 0 ,

div τ β(r) = 2Gν g(d′, r) ,

div τ β(r) − α(r) = −2G g(d′, r) .

Remark 2.1. Let us note that a metric tensor g ∈ BL (V 2 ;R) induces
a linear isomorphism g♭ ∈ BL (V ;V ∗) between the space V and its dual
V ∗ . Indeed to any vector a ∈ V we may associate uniquely the covector
g♭a ∈ V ∗ defined by 〈g♭a,b〉 = g(a,b) ∀b ∈ V , where 〈·, · 〉 is the
duality pairing between vectors and covectors. By performing the natural
identification BL (V 2 ;R) = BL (V ;V ∗) we denote by the symbol ga the
covector g♭a ∈ V ∗ associated with the vector a ∈ V (see e.g. Abraham et
al. , 2002). The boundary condition of equilibrium
∫

c

g(Rτ ) :=

∫ s2

s1

g(Rτ , t) ds =

∫ s2

s1

g(Rτ ,Rn) ds =

∫ s2

s1

g(τ ,n) ds = 0

5
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states that the integral of the covector g(Rτ ) , over every curve c drawn
on the boundary of the domain Ω , vanishes. This assertion is equivalent to
require that the relation g(τ (r),n(r)) = 0 , at each point of ∂Ω , holds. The
reader is referenced to (Romano , 2009) for an exhaustive exposition about
integration on manifolds.

Remark 2.2. The Poisson-Neumann problem formulated in subsection
2.1 may be transformed in the following Laplace-Neumann problem:







∆2ψ = 0 , in Ω ,
∫

c

g(R(∇ψ(r) −
G

4
∇

(

g(d′, r)g(r, r)
)

) − τ β(r)) = 0 , ∀ c ⊂ ∂Ω ,

where ψ(r) := Gϕ(r) +
G

4
g(d′, r) g(r, r) , r ∈ Ω . Indeed, observing that

g(d′, r) =
1

8
∆2(g(d′, r) g(r, r)) ,

the known term of Poisson’s equation: ∆2ϕ =
1

G
(div τ β − α) , may be

rewritten as:

1

G
(div τ β(r) − α(r)) = −2 g(d′, r) = −

1

4
∆2(g(d′, r) g(r, r)) ,

so that the result follows.

Remark 2.3. The condition for existence and uniqueness, to within a con-
stant, of the solution ψ ∈ C2(Ω ;R) of the Laplace-Neumann problem is
that the integral of the normal derivative of the function ψ , over the bound-
ary ∂Ω , vanishes. This result may be motivated by making recourse to an
analogy with an elastostatic problem (Romano , 2002). This condition is
satisfied in the case of the Laplace-Neumann problem:







∆2ψ = 0 , in Ω ,
∫

c

g(R(∇ψ(r) −
G

4
∇

(

g(d′, r)g(r, r)
)

) − τ β(r)) = 0 , ∀ c ⊂ ∂Ω .

It suffices to show that:
∮

∂Ω
g(R

(

G
4
∇(g(d′, r) g(r, r))

)

+ τ β(r)) = 0 . The
result can be obtained by making recourse to the divergence theorem, taking

6
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into account the formulas:










div τ β(r) = 2Gν g(d′, r) ;

∇(g(d′, r) g(r, r))) = (d′ ⊗g r)r + 2 (r⊗g r)d′ ,

∆2(g(d′, r) g(r, r)) = 8 g(d′, r) ,

and observing that the first moment of area
∫

Ω
r da , with respect to the

centroid G , is equal to zero.

2.2. The stress function

An alternative methodology for determining the elastic shear stresses con-
sists in transforming the differential equation of equilibrium:

div τ (r) = −α(r) ,

with α(r) := −2G (1 + ν) g(d′, r) in the equivalent condition:

div (τ (r) + τα(r)) = rot (R(τ (r) + τ α(r))) = 0 ,

where τ α(r) := 1
3
E (r ⊗g r)d′ and div τ α(r) = rot (Rτα(r)) = α(r) .

Two cases have to be distinguished and precisely whether the cross sec-
tions of the beam are simply or multiply connected. In the former case, the
differential equation of equilibrium expressed by the vanishing of the curl
of the vector field R(τ (r) + τα(r)) is an integrability condition, namely it
implies the existence of a potential F ∈ C2(Ω ;R) :

R(τ (r) + τα(r)) = ∇F (r) ,

or equivalently: τ (r) = Rτα(r) − R∇F (r) . The evaluation of the function
F ∈ C2(Ω ;R) , to within a constant, may be obtained by imposing the
differential condition of compatibility and the boundary one of equilibrium.
To this end, to get the differential condition of compatibility

rot τ (r) = −β(r) ,

we take into account the relation τ (r) + τ β(r) = G∇ϕ(r) (see subsection
2.1) and evaluate the curl, with β(r) := rot τ β(r) = −2Gθ′+2Gν g(Rd′, r)
and being rot∇ϕ(r) = 0 . Moreover, the boundary condition of equilibrium
∫

c
g(Rτ ) = 0 imposes that:

∫

c

g(∇F − τα) = 0 , ∀ c ⊂ ∂Ω ,

7
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so that integrating on the contour of the section of the beam we get:

F (s) = F (s0) +

∫ s

s0

g(τα, t) ds .

Accordingly, the function F ∈ C2(Ω ;R) may be obtained as a solution of
Poisson-Dirichlet’s problem:







∆2F = div τα + β ,

F (s) =

∫ s

s0

g(τα, t) ds ,

with the assumption that F (s0) = 0 , being F ∈ C2(Ω ;R) defined to within
a constant. The last problem admits solution for any datum. This result
may be motivated by an analogy with an elastostatic problem (Romano ,
2002). In the latter case, the integrability of the field R(τ (r) + τα(r)) is
ensured if rot (R(τ (r)+τα(r))) = 0 and on all internal contours of the cross
section of the beam the following conditions

0 =

∮

∂Ωi

g(R(τα(r))) =

∮

∂Ωi

g(R(τα(r)), t(r)) ds =

∮

∂Ωi

g(τα(r),n(r)) ds

=

∫

Ωi

div τα(r) da =

∫

Ωi

α(r) da

are fulfilled. A noteworthy example in which the previous integrability con-
ditions are met is the case of torsion, where d′ = 0 and hence τα(r) = 0 .

It follows that the expression of the elastic shear stress field in Saint-

Venant’s beam subject to torsion becomes:

τ (r) = −R∇F (r) .

In the case of torsion the potential F ∈ C2(Ω ;R) was introduced by Prandtl
(1903) and it is said to be Prandtl stress function. This function may be
found as solution of the following Poisson-Dirichlet problem:











∆2F (r) = −2Gθ′ on Ω ,

F (r) = 0 on ∂Ω0 ,

F (r) = ki on ∂Ωi , ki ∈ R , i = 0, 1, 2, . . . , n .

8
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Setting SG(Ωi) :=
∫

Ωi
r da and A(Ωi) :=

∫

Ωi
da , the evaluation of the n

constants ki ∈ R may be obtained by imposing the integrability conditions:

∮

∂Ωi

g(τ (r), t(r)) ds = −2Gν g(RSG(Ωi),d
′) − 2Gθ′A(Ωi) i = 1, 2, . . . , n ,

deduced integrating along the internal contours of the holes, of the cross
section, the compatibility condition (see subsection 2.1):

τ (r) + τ β(r) = G∇ϕ(r)

and assuming that d′ = 0 . Then, let us set: F (r) = Fo(r) +
∑n

i=1 ki Fi(r) ,
where:

• Fo(r) is the solution of Poisson-Dirichlet’s problem with homoge-
neous boundary conditions:

{

∆2Fo(r) = −2Gθ′ on Ω ,

F0(r) = 0 on ∂Ω ,

• Fi(r) , i = 0, 1, 2, . . . , n are the solutions of n Laplace-Dirichlet’s
problems:











∆2Fi(r) = 0 on Ω ,

Fi(r) = 0 on ∂Ω0 ,

Fi(r) = δij on ∂Ωj , j = 0, 1, 2, . . . , n ,

where δij is Kronecker’s notation.

A straightforward computation shows that, being:

−

∮

∂Ωi

g(R∇F (r), t(r)) ds= −

∮

∂Ωi

g(∇F (r),n(r)) ds

= −

∮

∂Ωi

g(∇Fo(r),n(r)) ds

−
n

∑

j=1

(
∮

∂Ωj

g(∇Fj(r),n(r)) ds

)

kj ;

9
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the compatibility equations
∮

∂Ωi

g(τ (r), t(r)) ds = −2Gθ′A(Ωi) , i = 1, 2, . . . , n

for the elastic shear stress field τ (r) = −R∇F (r) provide a non homogeneous
algebraic linear system in the unknowns ki , i = 0, 1, 2, . . . , n :

n
∑

j=1

(
∮

∂Ωj

g(∇Fj(r),n(r)) ds

)

kj = 2Gθ′A(Ωi) −

∮

∂Ωi

g(∇Fo(r),n(r)) ds .

Remark 2.4. Poisson-Dirichlet’s problem:


















∆2F (r) =
2G (1 + 4 ν)

3
g(Rd′, r) − 2Gθ′ on Ω ,

F (r) = 0 on ∂Ω0 ,

F (r) = ki on ∂Ωi , ki ∈ R , i = 0, 1, 2, . . . , n

admits a unique solution F ∈ C2(Ω ;R) for any datum. This result may be
motivated by an analogy with an elastostatic problem (Romano , 2002).

3. Jourawski method

Let us consider a subdomain Ω∗ of the cross section Ω of Saint-Venant’s
beam (fig. 2). The flux q∗ of the shear stresses through the closed curve
∂Ω∗ is defined by:

q∗ :=

∫

∂Ω∗

g(Rτ ) .

By the equilibrium differential equation: div τ (r) = −E g(d′, r) and the
divergence theorem we get the expression:

q∗ =

∫

∂Ω∗

g(Rτ ) =

∫

Ω∗

div τ da = −E g(d′,S∗
G) ,

in which S∗
G :=

∫

Ω∗
r da is the first moment of area of Ω∗ with respect to

the centroid of the section Ω . The mean value of the component along the
unit normal n , outward to the domain Ω∗ , of the elastic shear stresses τ

is given by:

τn :=
q∗

l(∂Ω∗)
,

where l(∂Ω∗) is the length of the curve ∂Ω∗ . Accordingly the Jourawski

formula writes as: τn = −E
g(d′,S∗

G)

l(∂Ω∗)
= −2G (1 + ν)

g(d′,S∗
G)

l(∂Ω∗)
.

10



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

Figure 2: Cross section of the beam

4. Numerical results

Let us consider a rectangular cross section of Saint-Venant’s beam,
whose edges are B (base) and H (height), and assume that the derivative
d′ of the extension gradient d has components { 0 ; 1 } in a fixed set of g-
orthonormal cartesian axes {G, x, y } (see fig. 3). By formula S = JG(E)d′

in section 2 it follows that the shear force is given by

S = E
BH3

12
d′ .

We evaluate the elastic shear stress field for rectangular cross sections, whose

Figure 3: Rectangular cross section

ratio between base and height B
H

∈ { 1
8
; 1

6
; 1

4
; 1

2
; 1 ; 2 ; 4 ; 6 ; 8 } and Pois-

son ratio ν ∈ { 0 ; 0.1 ; 0.2 ; 0.25 ; 0.3 ; 0.4 ; 0.4999 } , by Matlab version 7.6

(R2008a). To this end, setting u(r) := −
ϕ(r)

2
, the Poisson-Neumann

11
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problem (see subsection 2.1) to solve is the following:






∆2u(r) = g(r,d′) ,

dnu(r) =
1

4
ν [g(Rr,d′)g(Rr,n) − g(r,d′)g(r,n)] ,

and the expression of the elastic shear stress field writes as (subsection 2.1):

τ (r) = −2G∇u(r) − τ β(r) , with τ β(r) = −
Gν

2
(Rr ⊗g Rr − r ⊗g r)d′ ,

given that the torsional curvature θ′ is equal to zero. In components, be-
ing |r| = { x ; y } and |Rr| = {−y ; x } , the Poisson equation ∆2u(r) =
g(r,d′) becomes ∆2u(r) = y . Moreover, taking into account the compo-
nents reported in table 1 of the normal unit vector outward to the rectangu-
lar domain and of the points located on its boundary, Neumann’s condition

Table 1:
Side |n| |r|
P1P2 0 − 1 x − H

2

P2P3 1 0 B
2

y

P3P4 0 1 x H
2

P4P1 −1 0 −B
2

y

dnu(r) =
1

4
ν [g(Rr,d′)g(Rr,n) − g(r,d′)g(r,n)] specializes as:

• side P1P2 =⇒ dnu(r) = −
1

4
ν (x2 −

H2

4
) ,

• sides P2P3 and P4P1 =⇒ dnu(r) = −
1

4
ν B y ,

• side P3P4 =⇒ dnu(r) =
1

4
ν (x2 −

H2

4
) .

Accordingly, being |r⊗g r| =

∣

∣

∣

∣

∣

x2 xy

xy y2

∣

∣

∣

∣

∣

and |Rr⊗g Rr| =

∣

∣

∣

∣

∣

y2 −xy

−xy x2

∣

∣

∣

∣

∣

, the

components of the elastic shear stresses, to within G , are given by:














τxz(x, y, z)

G
= −ν x y − 2

∂u

∂x
(x, y) ,

τyz(x, y, z)

G
=
ν

2
(x2 − y2) − 2

∂u

∂y
(x, y) .
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We evaluate, by polynomial approximation, the component τy of the elastic
shear stresses, to within the shear modulus, along the line RS (see fig. 3)
and then we report in table 2 the ratios c between the obtained maximum

values and Jourawski’s ones τy

G
=

2 (1+ν) S∗

Gy

B
= (1+ν)

4
H2 (see section 3),

as a function of Poisson’s ratio and B
H

. Then, interpolating the numer-

Table 2: Coefficient c vs. B

H
and ν

B
H

ν = 0 ν = 0.1 ν = 0.2 ν = 0.25 ν = 0.3 ν = 0.4 ν = 0.4999
1
8

1 1.0009 1.0017 1.0020 1.0025 1.0005 1.0034
1
6

1 1.0016 1.0030 1.0036 1.0042 1.0050 1.0059
1
4

1 1.0038 1.0069 1.0084 1.0096 1.0115 1.0136
1
2

1 1.0058 1.0272 1.0333 1.0373 1.0461 1.0537
1 1 1.0556 1.1020 1.1261 1.1412 1.1749 1.1899
2 1 1.1782 1.3273 1.3964 1.5600 1.7598 1.9323
4 1 1.4415 1.8093 1.9882 2.1205 2.3877 2.6179
6 1 1.7069 2.2964 2.5555 2.7948 3.2227 3.5932
8 1 1.9891 3.0704 3.1763 3.5079 4.1040 4.6187

ical results by the power law c = ξ (B
H

)
η

+ ζ , with B
H

∈ ]0 ; 8] and ξ , η

and ζ provided in table 3, we get the diagrams in figure 4. The results in

Table 3: ξ , η and ζ vs. ν

ν = 0 ν = 0.1 ν = 0.2 ν = 0.25 ν = 0.3 ν = 0.4 ν = 0.4999
ξ 1 0.08781 0.11420 0.19240 0.24920 0.32830 0.39450
η 0 1.17500 1.38700 1.17700 1.11900 1.08800 1.07300
ζ 0 0.98240 0.99530 0.96550 0.95430 0.93740 0.92300

figure 4 are in agreement with ones reported in (Timoshenko and Goodier ,
1951) where Poisson’s ratio is equal to 0.25 and B

H
∈ { 0.5 ; 1 ; 2 ; 4 } . In

figures 5, 6 and 7 the elastic shear stress fields are plotted with reference
to B

H
∈ { 1

8
; 1 ; 8 } and ν = 0.3 . In figures 8 and 9 the ratio ||τ(r)||

G
and

the warping function ϕ(r) = −2 u(r) for a square cross section with Pois-

son’s ratio ν = 0.3 are respectively diagrammed. In figures 10, 11,
12, 13, 14, 15, 16 we plot τy

G
and τy

G
along the line RS for B

H
= 8 and

ν ∈ { 0 ; 0.1 ; 0.2 ; 0.25 ; 0.3 ; 0.4 ; 0.4999 } .

13
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Figure 4: Corrective coefficient c

5. Conclusions

• The presentation concerning the evaluation of the elastic shear stresses
in Saint-Venant’s beam subject to non-uniform flexure and torsion,
with arbitrary cross section, is nontraditional since it makes no refer-
ence to coordinate systems. The elastic shear stresses are expressed
in terms of the derivative of the extension gradient d′ of the longitu-
dinal fibers of the beam, whose determination requires the solution of
the two-dimensional algebraic linear problem: S = JG(E)d′ , and of a
scalar function fulfilling a boundary value problem of potential theory.
This general treatment is particularly convenient whereas the form of
the boundary of the cross section of Saint-Venant’s beam suggests
the use of curvilinear coordinates instead of Cartesian ones, e.g. the
cases of circular and elliptic sections may be advantageously dealt with
by introducing polar coordinate systems.

• It is shown that for arbitrary multiply connected cross sections the
evaluation of the elastic shear stress of Saint-Venant requires the
solution of a Poisson-Neumann problem or, equivalently, a Laplace-
Neumann one. The Poisson-Neumann problem may be transformed
in a Poisson-Dirichlet one if the domain occupied by the cross sec-

14
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Figure 5: Shear stress field - B/H=1/8 and ν = 0.3

tion is simply connected or in the general case of pure torsion. This
is often more convenient to determine exact solutions. In the gen-
eral case is not possible to perform such a transformation since the
solution of a Poisson-Dirichlet problem could be a multi-valued
function. In the wake of Prandtl the torsion and the flexure of
Saint-Venant’s beam are also treated in detail and the compatibil-
ity conditions are discussed. The existence of a stress function is proven
in a tricky manner by rewriting the equilibrium differential equation of
Cauchy: div τ = −α as the vanishing of the curl of a suitable vector
field: rot (R(τ + τα)) = 0 .

• The intrinsic theory provides a computationally convenient context to
perform numerical implementations in a program code whereas exact
solutions are not available. With reference to beams with rectangu-
lar cross sections and shear force directed along the height, we have
shown that the maximum norm of the elastic shear stress field is ob-
tained at the end points of the middle line RS parallel to the base of
each rectangle (see e.g. fig. 5, 6, 7 and 8). Then, by analyzing the
results in table 2, we deduce that Jourawski’s method provides an
exact estimate of the maximum elastic shear stress if Poisson’s ratio
is equal to zero and a subestimate of it as more significant as higher
is the ratio between base and height of the rectangle and Poisson’s
ratio. We evaluate a corrective coefficient which must be multiplied by

15
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Figure 6: Shear stress field - B/H=1 and ν = 0.3

Jourawski’s mean stress, on the line RS , to get the maximum norm
of Saint-Venant’s elastic shear stress. The obtained numerical re-
sults are in agreement with ones available in the literature provided by
De Saint Venant (1856a,b); Timoshenko and Goodier (1951).
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Figure 9: Warping function

Figure 10: Saint-Venant vs. Jourawski - ν = 0

Figure 11: Saint-Venant vs. Jourawski - ν = 0.1
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Figure 12: Saint-Venant vs. Jourawski - ν = 0.2

Figure 13: Saint-Venant vs. Jourawski - ν = 0.25

Figure 14: Saint-Venant vs. Jourawski - ν = 0.3
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Figure 15: Saint-Venant vs. Jourawski - ν = 0.4

Figure 16: Saint-Venant vs. Jourawski - ν = 0.4999
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