Raffaele Barretta 
email: rabarret@unina.it
  
Annalisa Barretta 
email: annalisa.barretta@unina.it
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The theory of non-uniform flexure and torsion of Saint-Venant's beam with arbitrary multiply connected cross section is revisited in a coordinatefree form to provide a computationally convenient context. Numerical implementations, by Matlab, are performed to evaluate the maximum elastic shear stresses in beams with rectangular cross sections for different Poisson's ratios. The deviations between the maximum and mean stresses are then diagrammed to adjust the results provided by Jourawski's method.

Introduction

In (Truesdell , 1976, page 124) it is stated that Saint-Venant's work, for penetration of concept, for assessment of a key problem, and for skill in solving it, stands as one of the supreme monuments of mechanics. Nevertheless, the exact solution of the problem of finding the elastic shear stress field in a Saint-Venant's beam with cross section of arbitrary shape is lacking. Saint-Venant himself studied in detail and solved torsion and flexure problems for circular, elliptic, equilater triangle and rectangular cross sections by providing numerical examples and graphs (De Saint Venant , 1856a,b). In the case of rectangular sections, Saint-Venant provided a solution in terms of a rapidly converging series. Grashof in 1878 discussed the case of a cross section whose boundary consists of two vertical sides and two hyperbolas. Further, the cases of cardioid, epitrochoidal, Booth's lemniscate, Bernoulli's lemniscate, confocal ellipses, eccentric circles cross sections may be dealt with as applications of conformal mappings [START_REF] Muskhelishvili | Some Basic Problems of the Mathematical Theory of Elasticity, third, revised and augmented[END_REF][START_REF] Sokolnikoff | Mathematical Theory of Elasticity[END_REF] 
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ARTICLE IN PRESS 1956). For a triangle of arbitrary geometry Saint-Venant's solution, in terms of shear stresses, is not known. Seth dealt with the flexure of a beam whose cross section is a right-angled isosceles triangle in 1934, and then, in 1936, he discussed the flexure solutions only for three particular cases: for a shear force perpendicular to the axis of symmetry of an isosceles triangle, for a shear force parallel to the hypotenuse of a right-angled triangle and for any triangular cross section and for any direction of the shear force if Poisson's ratio is equal to 0.5. However Saint-Venant's solutions for cross sections occupied by multiply connected domains or of arbitrary shape are not available, but it occurs to make recourse to numerical or alternative calculus methods (see e.g. Di [START_REF] De Saint | Mémoire sur la flexion des prismes, sur les glissements transversaux et longitudinaux qui l'accompagnent lorsqu[END_REF]. A simple strategy employed by engineers is the method invented by [START_REF] Jourawski | Sur la résistance d'un corps prismatique et d'une pièce composée en bois ou en tôle de fer à une force perpendiculaire à leur longueur[END_REF] and [START_REF] Rankine | Applied Mechanics[END_REF], subsequently developed by [START_REF] Grashof | Elastizität und Festigkeit[END_REF], based on equilibrium considerations. In the first part of the paper, we reformulate the problem of non-uniform flexure and torsion of Saint-Venant's beam with a arbitrary cross section in a coordinate-free form. We obtain the elastic shear stress field, at the points of the cross sections, elastically compatible with the linearized displacement field, assigned to within an unknown scalar warping function. By imposing that the elastic shear stresses, expressed as sum of a geometrical term plus the gradient of the warping, fulfill the differential and boundary Cauchy's equations of equilibrium, a Poisson-Neumann's problem or equivalently a Laplace-Neumann's one for the warping is formulated. Two analogies with elastostatics show that these problems admit an unique solution, to within a constant, for any datum [START_REF] Romano | Scienza delle Costruzioni, Tomo II[END_REF]. For particular positions and geometries of the holes of multiply connected cross sections or in the case of pure torsion the evaluation of the elastic shear stresses may be alternatively carried out formulating a Poisson-Dirichlet's problem. The second part of the paper concerns the evaluation, by Matlab, of the elastic shear stresses, to within the shear modulus, on rectangular cross sections of nine Saint-Venant's beams subject to non-uniform flexure, shear force directed along the height and for seven Poisson's ratios. Moreover we evaluate, by polynomial approximation, the component of the elastic shear stresses along the height at the points of the middle line parallel to the base of each rectangle and, then, we compare the maximum value with the mean one provided by Jourawski's formula. Subsequently, for chosen Poisson's ratios, we provide the corrective coefficient which must be multiplied by Jourawski's mean value to get the maximum shear stress as a function of the ratio between base and height of the rectangle.
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Formulation of the problems of flexure and torsion

Let Ω be a two-dimensional multiply connected domain, occupied by the cross section of Saint-Venant's beam, and assume that the boundary ∂Ω is made of several closed contours ∂Ω o , ∂Ω 1 , ∂Ω 2 , . . . , ∂Ω n ; the first of these contours contains all other (see fig. 1). Hereafter we denote by r the position vector of each point of the cross section Ω with respect to the centroid G , z the abscissa along the beam axis, g the euclidean metric tensor, n the unit outward normal to Ω , k the unit vector of the z-axis, { ′ } the derivative with respect to z and R the orthogonal linear transformation which anticlockwise rotates a two-dimensional vector field of π 2 . Let ǫ z (r) be the scalar field of the extensions of the longitudinal fibers of the beam and d(z) := ∇ǫ z be its gradient with respect to the position vector r . The linear bending curvature vector d(z) is evaluated by imposing the rotation equilibrium condition about the centroid G :

M G (z) = Ω r × σ z (r) k da = Ω r × (E g(r, d(z))) k da ⇐⇒ RM G (z) := k × M G (z) = J G (E) d(z)
where M G (z) is the bending resultant moment at the z abscissa about G , J G (E) := E Ω r ⊗ g r da is the elastic bending stiffness and σ z (r) = E ǫ z (r) is the elastic normal stress field on Ω . By relation RM G (z) = J G (E) d(z) being M G (z) an affine function, i.e. M G (z) = M G (0)z RS , it follows that the curvature vector d(z) is an affine function: d(z) = d 0 + d ′ z , where S is the shear force. The vector d 0 is the bending curvature of the cross section at z = 0 given by the relation

RM G (0) = J G (E) d 0 . By observing that J G (E) d(z) = RM G (z) = RM G (0) + z S =⇒ J G (E) (d(z)) ′ = R(M G (z)) ′ = S we get the formula S = J G (E) d ′ to evaluate the vector d ′ .

Displacement, strain and stress fields

The displacement field of Saint-Venant's beam subject to non-uniform flexure and torsion is given by: in which ⊗ g is the diadic product between vectors according to the metric tensor g , θ ′ is the torsional curvature, ν is Poisson's ratio assumed to be constant with respect to the longitudinal fibers of the beam and ϕ ∈ C 2 (Ω ; R) is an unknown scalar field to determine by equilibrium. Denoting by BL ( ) a bounded linear map, V a three dimensional linear space and d the derivative, the compatible stretching Du ∈ BL (Ω ; BL (V ; V )) associated with the displacement field u ∈ C 2 (Ω ; V ) is given by:

u(r, z) = ν 2 (Rr ⊗ g Rr -r ⊗ g r) d(z) - z 2 2 d 0 - z 3 6 d ′ + θ ′ z Rr + ϕ(r) + g(d 0 , r) z + g(d ′ , r) z 2 2 k , M A N U S C R I P T A C C E P T E D ARTICLE IN PRESS
Du := sym du = 1 2 (du + du T ) .
By assuming an isotropic linear elastic behavior of the material, the Cauchy stress T ∈ BL (Ω ; BL (V ; V )) which is elastically compatible with the displacement field u writes as:

T = 2 G (Du) + 2 G ν 1 -2 ν (I 1 (Du)) I ,
where G is the shear modulus, I 1 () stands for the linear invariant of a linear operator and I is the identity operator. Accordingly the elastic normal and shear stress fields, evaluated at the points of the cross section of the beam, are given by:

   σ z (r) = E g(r, d(z)) , τ (r) = G ν 2 (Rr ⊗ g Rr -r ⊗ g r) d ′ + G θ ′ Rr + G ∇ϕ(r) ,
where ∇ is the gradient operator. The determination of the elastic shear stresses is subordinated to the evaluation of the gradient of the unknown

M A N U S C R I P T A C C E P T E D ARTICLE IN PRESS function ϕ ∈ C 2 (Ω ; R) .
To this end, the fulfillment of the differential and boundary Cauchy's conditions of equilibrium

   div τ (r) = -σ ′ (r) = -E g(d ′ , r) , ∀ r ∈ Ω , c g(Rτ ) = 0 , ∀ c ⊂ ∂Ω ,
leads to the formulation of the following Poisson-Neumann problem

       ∆ 2 ϕ = 1 G (div τ β -α) , in Ω , c g(R(G ∇ϕ -τ β )) = 0 , ∀ c ⊂ ∂Ω , for the function ϕ ∈ C 2 (Ω ; R) , in which:                                      ∆ 2 := div ∇ τ β (r) := - G ν 2 (Rr ⊗ g Rr -r ⊗ g r) d ′ -G θ ′ Rr , α(r) := 2 G (1 + ν) g(d ′ , r) , div ((Rr ⊗ g Rr) d ′ ) = -g(r, d ′ ) , div ((r ⊗ g r) d ′ ) = 3 g(r, d ′ ) , div (Rr) = 0 , div τ β (r) = 2 G ν g(d ′ , r) , div τ β (r) -α(r) = -2 G g(d ′ , r) .
Remark 2.1. Let us note that a metric tensor g ∈ BL (V 2 ; R) induces a linear isomorphism g ♭ ∈ BL (V ; V * ) between the space V and its dual V * . Indeed to any vector a ∈ V we may associate uniquely the covector

g ♭ a ∈ V * defined by g ♭ a, b = g(a, b) ∀ b ∈ V , where •,
• is the duality pairing between vectors and covectors. By performing the natural identification BL (V 2 ; R) = BL (V ; V * ) we denote by the symbol ga the covector g ♭ a ∈ V * associated with the vector a ∈ V (see e.g. [START_REF] Abraham | Manifolds, Tensor Analysis, and Applications[END_REF]. The boundary condition of equilibrium

c g(Rτ ) := s 2 s 1 g(Rτ , t) ds = s 2 s 1 g(Rτ , Rn) ds = s 2 s 1 g(τ , n) ds = 0 M A N U S C R I P T A C C E P T E D ARTICLE IN PRESS
states that the integral of the covector g(Rτ ) , over every curve c drawn on the boundary of the domain Ω , vanishes. This assertion is equivalent to require that the relation g(τ (r), n(r)) = 0 , at each point of ∂Ω , holds. The reader is referenced to [START_REF] Romano | Continuum Mechanics on Manifolds[END_REF] for an exhaustive exposition about integration on manifolds.

Remark 2.2. The Poisson-Neumann problem formulated in subsection 2.1 may be transformed in the following Laplace-Neumann problem:

   ∆ 2 ψ = 0 , in Ω , c g(R(∇ψ(r) - G 4 ∇ g(d ′ , r)g(r, r) ) -τ β (r)) = 0 , ∀ c ⊂ ∂Ω , where ψ(r) := G ϕ(r) + G 4 g(d ′ , r) g(r, r) , r ∈ Ω . Indeed, observing that g(d ′ , r) = 1 8 ∆ 2 (g(d ′ , r) g(r, r)) ,
the known term of Poisson's equation:

∆ 2 ϕ = 1 G (div τ β -α)
, may be rewritten as:

1 G (div τ β (r) -α(r)) = -2 g(d ′ , r) = - 1 4 ∆ 2 (g(d ′ , r) g(r, r)) ,
so that the result follows.

Remark 2.3. The condition for existence and uniqueness, to within a constant, of the solution ψ ∈ C 2 (Ω ; R) of the Laplace-Neumann problem is that the integral of the normal derivative of the function ψ , over the boundary ∂Ω , vanishes. This result may be motivated by making recourse to an analogy with an elastostatic problem [START_REF] Romano | Scienza delle Costruzioni, Tomo II[END_REF]. This condition is satisfied in the case of the Laplace-Neumann problem:

   ∆ 2 ψ = 0 , in Ω , c g(R(∇ψ(r) - G 4 ∇ g(d ′ , r)g(r, r) ) -τ β (r)) = 0 , ∀ c ⊂ ∂Ω .
It suffices to show that: ∂Ω g(R G 4 ∇(g(d ′ , r) g(r, r)) + τ β (r)) = 0 . The result can be obtained by making recourse to the divergence theorem, taking

M A N U S C R I P T A C C E P T E D ARTICLE IN PRESS into account the formulas:      div τ β (r) = 2 G ν g(d ′ , r) ; ∇(g(d ′ , r) g(r, r))) = (d ′ ⊗ g r)r + 2 (r ⊗ g r)d ′ , ∆ 2 (g(d ′ , r) g(r, r)) = 8 g(d ′ , r) ,
and observing that the first moment of area Ω r da , with respect to the centroid G , is equal to zero.

The stress function

An alternative methodology for determining the elastic shear stresses consists in transforming the differential equation of equilibrium:

div τ (r) = -α(r) , with α(r) := -2 G (1 + ν) g(d ′ , r) in the equivalent condition: div (τ (r) + τ α (r)) = rot (R(τ (r) + τ α (r))) = 0 , where τ α (r) := 1 3 E (r ⊗ g r) d ′ and div τ α (r) = rot (Rτ α (r)) = α(r)
. Two cases have to be distinguished and precisely whether the cross sections of the beam are simply or multiply connected. In the former case, the differential equation of equilibrium expressed by the vanishing of the curl of the vector field R(τ (r) + τ α (r)) is an integrability condition, namely it implies the existence of a potential F ∈ C 2 (Ω ; R) : R(τ (r) + τ α (r)) = ∇F (r) , or equivalently: τ (r) = Rτ α (r) -R∇F (r) . The evaluation of the function F ∈ C 2 (Ω ; R) , to within a constant, may be obtained by imposing the differential condition of compatibility and the boundary one of equilibrium. To this end, to get the differential condition of compatibility rot τ (r) = -β(r) , we take into account the relation τ (r) + τ β (r) = G ∇ϕ(r) (see subsection 2.1) and evaluate the curl, with β(r) := rot τ β (r) = -2 G θ ′ +2 G ν g(Rd ′ , r) and being rot ∇ϕ(r) = 0 . Moreover, the boundary condition of equilibrium c g(Rτ ) = 0 imposes that:

c g(∇F -τ α ) = 0 , ∀ c ⊂ ∂Ω , M A N U S C R I P T A C C E P T E D ARTICLE IN PRESS
so that integrating on the contour of the section of the beam we get:

F (s) = F (s 0 ) + s s 0 g(τ α , t) ds .
Accordingly, the function F ∈ C 2 (Ω ; R) may be obtained as a solution of Poisson-Dirichlet's problem:

   ∆ 2 F = div τ α + β , F (s) = s s 0 g(τ α , t) ds ,
with the assumption that F (s 0 ) = 0 , being F ∈ C 2 (Ω ; R) defined to within a constant. The last problem admits solution for any datum. This result may be motivated by an analogy with an elastostatic problem [START_REF] Romano | Scienza delle Costruzioni, Tomo II[END_REF]. In the latter case, the integrability of the field R(τ (r) + τ α (r)) is ensured if rot (R(τ (r) + τ α (r))) = 0 and on all internal contours of the cross section of the beam the following conditions 0 =

∂Ω i g(R(τ α (r))) = ∂Ω i g(R(τ α (r)), t(r)) ds = ∂Ω i g(τ α (r), n(r)) ds = Ω i div τ α (r) da = Ω i α(r) da
are fulfilled. A noteworthy example in which the previous integrability conditions are met is the case of torsion, where d ′ = 0 and hence τ α (r) = 0 .

It follows that the expression of the elastic shear stress field in Saint-Venant's beam subject to torsion becomes:

τ (r) = -R ∇F (r) .
In the case of torsion the potential F ∈ C 2 (Ω ; R) was introduced by [START_REF] Prandtl | Zur Torsion Von Prismatischen Stäben[END_REF] and it is said to be Prandtl stress function. This function may be found as solution of the following Poisson-Dirichlet problem:

     ∆ 2 F (r) = -2 G θ ′ on Ω , F (r) = 0 on ∂Ω 0 , F (r) = k i on ∂Ω i , k i ∈ R , i = 0, 1, 2, . . . , n .
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Setting S G (Ω i ) := Ω i r da and A(Ω i ) := Ω i da , the evaluation of the n constants k i ∈ R may be obtained by imposing the integrability conditions:

∂Ω i g(τ (r), t(r)) ds = -2 G ν g(R S G (Ω i ), d ′ ) -2 G θ ′ A(Ω i ) i = 1, 2, . . . , n ,
deduced integrating along the internal contours of the holes, of the cross section, the compatibility condition (see subsection 2.1):

τ (r) + τ β (r) = G ∇ϕ(r)
and assuming that d ′ = 0 . Then, let us set:

F (r) = F o (r) + n i=1 k i F i (r)
, where:

• F o (r) is the solution of Poisson-Dirichlet's problem with homogeneous boundary conditions:

∆ 2 F o (r) = -2 G θ ′ on Ω , F 0 (r) = 0 on ∂Ω ,
• F i (r) , i = 0, 1, 2, . . . , n are the solutions of n Laplace-Dirichlet's problems:

     ∆ 2 F i (r) = 0 on Ω , F i (r) = 0 on ∂Ω 0 , F i (r) = δ ij on ∂Ω j , j = 0, 1, 2, . . . , n ,
where δ ij is Kronecker's notation.

A straightforward computation shows that, being:

- ∂Ω i g(R ∇F (r), t(r)) ds = - ∂Ω i g(∇F (r), n(r)) ds = - ∂Ω i g(∇F o (r), n(r)) ds - n j=1 ∂Ω j g(∇F j (r), n(r)) ds k j ; M A N U S C R I P T A C C E P T E D ARTICLE IN PRESS the compatibility equations ∂Ω i g(τ (r), t(r)) ds = -2 G θ ′ A(Ω i ) , i = 1, 2, . . . , n
for the elastic shear stress field τ (r) = -R ∇F (r) provide a non homogeneous algebraic linear system in the unknowns k i , i = 0, 1, 2, . . . , n :

n j=1 ∂Ω j g(∇F j (r), n(r)) ds k j = 2 G θ ′ A(Ω i ) - ∂Ω i g(∇F o (r), n(r)) ds . Remark 2.4. Poisson-Dirichlet's problem:          ∆ 2 F (r) = 2 G (1 + 4 ν) 3 g(Rd ′ , r) -2 G θ ′ on Ω , F (r) = 0 on ∂Ω 0 , F (r) = k i on ∂Ω i , k i ∈ R , i = 0, 1, 2, . . . , n
admits a unique solution F ∈ C 2 (Ω ; R) for any datum. This result may be motivated by an analogy with an elastostatic problem [START_REF] Romano | Scienza delle Costruzioni, Tomo II[END_REF].

Jourawski method

Let us consider a subdomain Ω * of the cross section Ω of Saint-Venant's beam (fig. 2). The flux q * of the shear stresses through the closed curve ∂Ω * is defined by:

q * := ∂Ω * g(Rτ ) .
By the equilibrium differential equation: div τ (r) = -E g(d ′ , r) and the divergence theorem we get the expression:

q * = ∂Ω * g(Rτ ) = Ω * div τ da = -E g(d ′ , S * G ) ,
in which S * G := Ω * r da is the first moment of area of Ω * with respect to the centroid of the section Ω . The mean value of the component along the unit normal n , outward to the domain Ω * , of the elastic shear stresses τ is given by:

τ n := q * l(∂Ω * ) ,
where l(∂Ω * ) is the length of the curve ∂Ω * . Accordingly the Jourawski formula writes as: 

τ n = -E g(d ′ , S * G ) l(∂Ω * ) = -2 G (1 + ν) g(d ′ , S * G ) l(∂Ω * ) . M A N U S C R I P T A C C E P T E D ARTICLE IN PRESS

Numerical results

Let us consider a rectangular cross section of Saint-Venant's beam, whose edges are B (base) and H (height), and assume that the derivative d ′ of the extension gradient d has components { 0 ; 1 } in a fixed set of gorthonormal cartesian axes { G, x, y } (see fig. 3). By formula S = J G (E) d ′ in section 2 it follows that the shear force is given by

S = E B H 3 12 d ′ .
We evaluate the elastic shear stress field for rectangular cross sections, whose ratio between base and height B H ∈ { 1 8 ; 1 6 ; 1 4 ; 1 2 ; 1 ; 2 ; 4 ; 6 ; 8 } and Poisson ratio ν ∈ { 0 ; 0.1 ; 0.2 ; 0.25 ; 0.3 ; 0.4 ; 0.4999 } , by Matlab version 7.6 (R2008a). To this end, setting u(r

) := - ϕ(r) 2 , the Poisson-Neumann M A N U S C R I P T A C C E P T E D ARTICLE IN PRESS
problem (see subsection 2.1) to solve is the following:

   ∆ 2 u(r) = g(r, d ′ ) , d n u(r) = 1 4 ν [g(Rr, d ′ )g(Rr, n) -g(r, d ′ )g(r, n)] ,
and the expression of the elastic shear stress field writes as (subsection 2.1):

τ (r) = -2 G ∇u(r) -τ β (r) , with τ β (r) = - G ν 2 (Rr ⊗ g Rr -r ⊗ g r) d ′ ,
given that the torsional curvature θ ′ is equal to zero. In components, be-

ing |r| = { x ; y } and |Rr| = { -y ; x } , the Poisson equation ∆ 2 u(r) = g(r, d ′ ) becomes ∆ 2 u(r) = y .
Moreover, taking into account the components reported in table 1 of the normal unit vector outward to the rectangular domain and of the points located on its boundary, Neumann's condition

Table 1:

Side |n| |r| P 1 P 2 0 -1 x -H 2 P 2 P 3 1 0 B 2 y P 3 P 4 0 1 x H 2 P 4 P 1 -1 0 -B 2 y d n u(r) = 1 4 ν [g(Rr, d ′ )g(Rr, n) -g(r, d ′ )g(r, n)
] specializes as:

• side P 1 P 2 =⇒ d n u(r) = - 1 4 ν (x 2 - H 2 4 ) ,
• sides P 2 P 3 and

P 4 P 1 =⇒ d n u(r) = - 1 4 ν B y , • side P 3 P 4 =⇒ d n u(r) = 1 4 ν (x 2 - H 2 4 ) .
Accordingly, being |r ⊗ g r| = x 2 xy xy y 2 and |Rr ⊗ g Rr| = y 2 -xy -xy x 2 , the components of the elastic shear stresses, to within G , are given by:

       τ xz (x, y, z) G = -ν x y -2 ∂u ∂x (x, y) , τ yz (x, y, z) G = ν 2 (x 2 -y 2 ) -2 ∂u ∂y (x, y) . M A N U S C R I P T A C C E P T E D ARTICLE IN PRESS
We evaluate, by polynomial approximation, the component τ y of the elastic shear stresses, to within the shear modulus, along the line RS (see fig. 3) and then we report in table 2 the ratios c between the obtained maximum values and Jourawski's

ones τy G = 2 (1+ν) S * Gy B = (1+ν) 4
H 2 (see section 3), as a function of Poisson's ratio and B H . Then, interpolating the numer- In figures 10,11,12,13,14,15,16 we plot τy G and τy G along the line RS for B H = 8 and ν ∈ { 0 ; 0.1 ; 0.2 ; 0.25 ; 0.3 ; 0.4 ; 0.4999 } . tion is simply connected or in the general case of pure torsion. This is often more convenient to determine exact solutions. In the general case is not possible to perform such a transformation since the solution of a Poisson-Dirichlet problem could be a multi-valued function. In the wake of Prandtl the torsion and the flexure of Saint-Venant's beam are also treated in detail and the compatibility conditions are discussed. The existence of a stress function is proven in a tricky manner by rewriting the equilibrium differential equation of Cauchy: div τ = -α as the vanishing of the curl of a suitable vector field: rot (R(τ + τ α )) = 0 .
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• The intrinsic theory provides a computationally convenient context to perform numerical implementations in a program code whereas exact solutions are not available. With reference to beams with rectangular cross sections and shear force directed along the height, we have shown that the maximum norm of the elastic shear stress field is obtained at the end points of the middle line RS parallel to the base of each rectangle (see e.g. fig. 5, 6, 7 and 8). Then, by analyzing the results in table 2, we deduce that Jourawski's method provides an exact estimate of the maximum elastic shear stress if Poisson's ratio is equal to zero and a subestimate of it as more significant as higher is the ratio between base and height of the rectangle and Poisson's ratio. We evaluate a corrective coefficient which must be multiplied by 
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Table 2 :

 2 Coefficient c vs. B H and ν

	B H 1 8 1 6 1 4 1 2 1	ν = 0 ν = 0.1 ν = 0.2 ν = 0.25 ν = 0.3 ν = 0.4 ν = 0.4999 1 1.0009 1.0017 1.0020 1.0025 1.0005 1.0034 1 1.0016 1.0030 1.0036 1.0042 1.0050 1.0059 1 1.0038 1.0069 1.0084 1.0096 1.0115 1.0136 1 1.0058 1.0272 1.0333 1.0373 1.0461 1.0537 1 1.0556 1.1020 1.1261 1.1412 1.1749 1.1899
	2	1	1.1782 1.3273	1.3964	1.5600 1.7598	1.9323
	4	1	1.4415 1.8093	1.9882	2.1205 2.3877	2.6179
	6	1	1.7069 2.2964	2.5555	2.7948 3.2227	3.5932
	8	1	1.9891 3.0704	3.1763	3.5079 4.1040	4.6187
	ical results by the power law c = ξ ( B H ) and ζ provided in table 3, we get the diagrams in figure 4. The results in η + ζ , with B H ∈ ]0 ; 8] and ξ , η

Table 3 :

 3 ξ , η and ζ vs. ν
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