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ABSTRACT AND KEY TERMS 

 

Background: The use of micro- or nanometric particles is in full expansion for the 

development of new technologies. These particles may exhibit variable toxicity levels 

depending on their physicochemical characteristics. We focused our attention on 

macrophages, the main target cells of the respiratory system responsible for the phagocytosis 

of the particles. The quantification of the amount of phagocytosed particles seems to be a 

major element for a better knowledge of toxicity mechanisms. 

The aim of this study was to develop a quantitative evaluation of uptake using both flow 

cytometry and confocal microscopy to distinguish entirely engulfed fluorescent microsized 

particles from those just adherent to the cell membrane and to compare these data to in vitro 

toxicity assessments. 

Methods: Fluorescent particles of variable and well-characterized sizes and surface coatings 

were incubated with macrophages (RAW 264.7 cell line). Analyses were performed using 

confocal microscopy and flow cytometry. The biological toxicity of the particles was 

evaluated (LDH release, TNF-α and ROS production). 

Results and conclusion: Confocal imaging allowed visualization of entirely engulfed beads. 

The amount of phagocytic cells was greater for carboxylate 2 µm beads (49±11%) than for 

amine 1 µm beads (18±5%). Similarly, Side Scatter (SSC) geometric means, reflecting 

cellular complexity, were 446±7 and 139±12 respectively. These results confirm that the 

phagocytosis level highly depends on the size and surface chemical groups of the particles. 

Only TNF-α and global ROS production varied significantly after 24h of incubation. There 

was no effect on LDH and H2O2 production. 

Key terms: Phagocytosis quantification, macrophages, fluorescent microsized particles, flow 

cytometry, confocal microscopy, in vitro toxicity evaluations. 
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INTRODUCTION 

The toxicological assessment of fine and ultrafine particles (and particularly 

nanoparticles) represent a considerable current issue for environmental science, biosciences or 

nanomedicine (Oberdorster et al. 2005; Sayes et al. 2007; Warheit et al. 2004). In order to 

better understand the toxicity of particles it seems of high interest to determine the number of 

internalized particles into the cells after exposure (Clift et al. 2008; Haberzettl et al. 2007). 

Different particle entry pathways exist in the human body: skin, gastro-intestinal tract, 

respiratory tract or by injection. We particularly focus our attention on the respiratory way 

and its main target cells: the macrophages (MA). These cells are major performers of 

phagocytosis, a highly conserved complex process, classically defined as the internalization 

and destruction of particles greater than 0.5 µm in size. It is a receptor-mediated and actin-

driven process. Phagocytic uptake involves actin dynamics including polymerization, 

bundling, contraction, severing and depolymerization of actin filaments (Aderem and 

Underhill 1999; Fenteany and Glogauer 2004; Niedergang and Chavrier 2004, 2005; Ravetch 

and Aderem 2007). The physicochemical characteristics of particles may also influence the 

phagocytic process (Serda et al. 2009) and they have also been shown to be involved in the 

mechanisms of toxicity (Clift et al. 2008; Fubini 1998; Fubini et al. 2004).  

It appears of great interest to quantify the phagocytic process, and compare these data to 

the toxicity of particles regarding their physicochemical characteristics. Preliminary results 

have shown that it is impossible to accurately quantify phagocytosis using two dimension 

(2D) images acquired from cell smears where internalized particles can hardly be 

distinguished from particles placed at the outer surface of the plasma membrane. 

 

In this context, our work aimed at developing a simple, direct, cost effective, reproducible 

and easy to perform phagocytosis quantification technique on an in vitro MA cell line (RAW 
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264.7). The MA were incubated with microsized model particles which are fluorescent beads 

whose physicochemical characteristics (i.e. size and chemical coating) and observations are 

more easily controlled (Champion et al. 2008; Hasegawa et al. 2008; Jones et al. 2002). 

Preliminary confocal observations allowed to distinguish the localization of particles 

without an accurate quantification of the phagocytic process. 

To perform a phagocytosis quantification, we adapted an existing analysis using a trypan 

blue (TB) quenching in flow cytometry (FCM) (Hed et al. 1987; Nuutila and Lilius 2005; 

Thiele et al. 2001; Van Amersfoort and Van Strijp 1994). In addition to its principal function 

as an exclusion dye of dead cells, TB is known for its ability to "turn off" the green 

fluorescence emitted by the beads outside the cells. This process allowed us to distinguish 

internalized beads from those just adhering to the plasma membrane. This approach has been 

improved by combining Side Scatter measurement with fluorescent mean intensity of beads 

without and with TB.  

Due to the role played by actin filaments for the initiation phase of the phagocytic 

process, we used different actin polymerization inhibitors such as Cytochalasin-D (Cyt-D) 

(Haberzettl et al. 2007; Kanno et al. 2007; Moller et al. 2002), Latrunculine-A (Lat) (de 

Oliveira and Mantovani 1988; DeFife et al. 1999; Oliveira et al. 1996, 1997), Jasplakinolide 

(Jasp) (Odaka et al. 2000) to block cytoskeleton rearrangements and thus phagocytosis. Cells 

were also fixed with paraformaldehyde (PFA) to prevent phagocytosis.  

Moreover, the toxicity of particles was evaluated using different parameters: Tumor 

Necrosis Factor alpha (TNF-α) production (to assess the inflammatory response), Lactate 

Dehydrogenase (LDH) release (reflecting integrity of the cell membrane) and the production 

of total Reactive Oxygen Species (ROS), especially H2O2 (Bruch et al. 2004; Catelas et al. 

1999; Donaldson et al. 2002; Sayes et al. 2007). This part aimed at assessing if the two types 

of beads (1 µm amine or 2 µm carboxylate) led to different levels of toxicity.  
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Following this methodology we looked for a relationship between toxicity response and 

the level of phagocytosis determined by confocal microscopy and FCM analysis. 



MATERIAL AND METHODS 

In vitro model 

Macrophage cell culture 

The RAW 264.7 cell line was provided by ATCC Cell Biology Collection (Promochem 

LGC) and derives from mice peritoneal macrophages (MA) transformed by the AMLV virus 

(Abelson Murine Leukemia Virus). Cells were cultured in DMEM medium (Dulbecco's 

Modified Eagle's Medium, Gibco) complemented with 10% of fetal calf serum (FCS, Gibco), 

1% penicillin-streptomycin (penicillin 10 000 units/mL, streptomycin 10 mg/mL, Sigma) and 

incubated at 37°C under a 5% carbon dioxide humidified atmosphere.  

 

Fluorescent polymer particles (beads) 

 P beads: fluorescent polystyrene particles of 2 µm in diameter with carboxylate 

coating (Fluoresbrite®YGcarboxylate microspheres, Polyscience). These particles 

have an excitation peak at 441 nm, and an emission peak at 486 nm (green 

fluorescence) with a large spectrum.  

 I beads: fluorescent polystyrene particles of 1 µm in diameter with amine coating 

(YGFluoSpheres®amine-modified microspheres, Invitrogen). These particles have an 

excitation peak at 505 nm, and an emission peak at 515 nm (green fluorescence). 
 

Bead exposure conditions 

For the two types of beads, an arbitrary ratio of 10 beads for one cell (10/1¢) has been 

defined on the basis of the MA size comparatively to bead sizes.  

Moreover in order to work with similar surface area for the two types of beads, we used 

the ratio 40 I beads/1¢ (surface of P beads being four times more important than surface of I 

beads). 
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Actin inhibitors and blocking of phagocytosis  

Three actin inhibitors were used: Cyt-D (Sigma), Lat (VWR), Jasp (VWR). They were 

directly added to cell cultures and incubated at 37°C for 60 minutes, before addition of beads. 

These molecules remained in the culture medium throughout all the experiments. The 

concentrations used (5 µM Cyt-D, 0.1 µM Lat and 1 µM Jasp) were defined depending on 

literature data or preliminary assays.  

To block completely the phagocytic process cells were fixed in a 4% PFA solution 

(Sigma) for 10 minutes before adding P or I beads (Moon et al. 2007).  

 

Confocal microscopy phagocytosis assay 

Exposure conditions 

Cells were grown in 6 well plates (1 million cells in 4 mL) containing coverslips and 

beads were incubated for 16 hours. 

 

Actin cytoskeleton fluorescent labeling  

After the particle exposure, the coverslips were fixed in wells with 4% PFA for 10 

minutes (except for the cells already fixed). The wells were washed with Phosphate Buffered 

Saline (PBS, VWR) to remove beads that did not adhere to the cell membrane or were not 

internalized. Then actin cytoskeleton was labeled with AlexaFluor®594 phalloidin 

(Invitrogen; diluted 1:40 in PBS) for 20 minutes and rinsed with PBS. Thereafter cell nuclei 

were stained with 10 µM of Hoechst 33342 solution (Sigma), during 15 minutes and rinsed 

with PBS.  
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Analysis 

Microscopic analyses were performed on a confocal microscope TCS-SP2 AOBS (Leica®). 

Images were obtained from the fluorescence emitted by the beads (ex: 488 nm; em: 499-540 

nm), AlexaFluor®594 phalloidin (ex: 543 nm; em: 615-693 nm) and Hoechst (ex: 350 nm; 

em: 408-443 nm). Confocal microscopy allowed to make stacks of images. Indeed, for a given 

area of analysis, it was possible to acquire images in different planes of the Z axis (depth of 

field), to obtain a series of images to achieve XY projections and XZ and YZ section stacks of 

the selected area of interest. 

 

Quantification of phagocytosis by flow cytometry  

FCM exposure conditions and trypan blue quenching 

Cells were prepared in 25 cm2 culture flasks (2 millions cells in 4 mL). A control flask 

without particles was used to assess the autofluorescence of cells. Some flasks were directly 

exposed to beads, others were pre-treated with actin inhibitors or PFA before adding P or I 

beads.  

After 90 minutes or 24h of exposure, culture medium was removed, cells were harvested 

with a scraper and aliquots containing 500 000 cells were centrifuged (10 minutes, 1500 rpm). 

Cells were resuspended either in 500 µL of DMEM or in 250 µL of DMEM + 250 µL of TB 

(0.4%, Sigma).  

Cytotoxicity was also assessed by adding 1 mg/mL of propidium iodide (Sigma) in the 

tubes without TB (Jacobs and Pipho 1983; Riccardi and Nicoletti 2006; Steinkamp et al. 

2000) This evaluation allows to quantify the percentage of dead cells. An exclusion window 

was made on propidium iodide negative cells to analyze only living cells and quantify the 

dynamic process of phagocytosis. 
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Cytometric analysis  

Each condition was analyzed twice on 10 000 cells. Acquisitions and analyses were 

performed using a cytometer analyzer-cell-sorter FACS Diva™ (BD Biosciences, CA) 

equipped with the software Cell Quest™ Pro.  

The fluorochromes used were excited through an Enterprise II Argon Laser (wavelength set at 

488 nm). The fluorescence emitted by P or I beads after excitation at 488 nm was collected 

through a band pass filter 530/30 nm (FL1 channel) and the fluorescence emitted by 

excitation of propidium iodide at 488nm was collected through a band pass filter 695/40 nm 

(FL3 channel). For each acquisition, the size level of detection corresponding to the Forward 

Scatter (FSC) was set above the size of cellular debris to detect only well preserved cells.  

Three FCM parameters were quantified for each sample:  

- the average Side Scatter (SSC), morphological parameter reflecting granularity and 

intracellular complexity, in relation to the presence of both adherent and phagocytosed 

beads, and quantified by the geometric mean (Y Geo Mean). 

- the total Mean Fluorescence Intensity (MFI) corresponding to the total fluorescence 

emitted by the P or I beads (internalized and adhered) that we called total MFI. These 

values were obtained for the condition without TB on FL1 channel. 

- the percentage of cells with internalized P or I beads that we called “percentage of 

phagocytic cells” detected on the FL3 channel after TB quenching.  

 

Toxicity assessment 

For each experiment, cells were prepared in 96-well plates (100 000 cells/well for TNF-α 

and LDH assays, and 300 000 cells/well for ROS and H2O2 parameters) in 25 µL of complete 

DMEM. Suspensions of beads in a volume of 75 µL of DMEM were added to the culture and 

incubated for 90 min or 24h at 37°C in a 5% CO2 atmosphere.  
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TNF-α production  

After incubation with beads, released TNF-α was assessed in the supernatant using a 

commercial ELISA Kit (Quantikine® Mouse TNF-α Immunoassay, R&D Systems) according 

to the manufacturer’s instructions. The optical density of each well was determined using a 

microplate reader (Multiskan RC, Thermolabsystems) set to 450 nm. A standard curve was 

established and results were expressed in pg/mL of TNF-α.    

 

LDH release  

The activity of the lactate dehydrogenase (LDH) released from cells with damaged 

membranes was assessed using the CytoTox-ONE™ Homogeneous Membrane Integrity 

Assay (Promega) according to the manufacturer’s instructions. Detection was performed on a 

fluorometer (Fluoroskan Ascent, Thermolabsystems), using excitation/emission wavelengths 

at 530/590 nm. The activity of the released LDH was reported to that of total cellular LDH 

(measured after control cells lysis) and was expressed as a percent of the control. 

 

Oxydative stress 

Total ROS: a large array of ROS activity can be assessed with the OxiSelect™ ROS 

Assay Kit (Cell Biolabs). The assay employs the conversion of a non fluorescent substrate, 2’, 

7’-Dichlorodihydrofluorescin diacetate (DCFH-DA), which can easily diffuse through cell 

membranes, into a fluorogenic molecule DCF (2’, 7’-Dichlorodihydrofluorescein) which is 

highly fluorescent and proportional to total ROS level. DCF production was detected using a 

Fluoroskan Ascent fluorometer (Thermolabsystems) using excitation and emission 

wavelengths of 480 nm and 530 nm respectively and expressed as nM per hour.  
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Specific Hydrogen Peroxide (H2O2): after incubation, the cells were stimulated to release 

the hydrogen peroxide produced by addition of 100 ng/ml phorbol-12-myristate-13-acetate 

(PMA, Sigma). The release of H2O2 was measured as described by De la Harpe (De la Harpe 

and Nathan 1985). Briefly, KRPG buffer containing a mixture of scopoletin (30 µM), NaN3 

(1 mM) and horseradish peroxidase (1 unit pupurogallin/ml HPO) was added to the cells. The 

horseradish peroxidase catalyzed the oxidation of the fluorescent scopoletin which was 

measured over a period of 90 min (Fluoroskan Ascent, Thermolabsystems) using 

excitation/emission wavelengths at 355/460 nm. Results are given as arbitrary units of the 

fluorescence. 

 

Statistical analysis 

Analysis and graphics were performed on Prism 5.0 software (GraphPad, San Diego, 

CA). Significance was established with ANOVA test (p<0.05). 



RESULTS 

Confocal microscopy phagocytosis assay  

We first verified that the beads were internalized using confocal microscopy imaging 

(Fig. 1). Figure 1A and 1B confirm that the phalloidin labeling was highly efficient to label 

actin cytoskeleton (red), beads were easily viewable (green) and Hoechst specifically labeled 

the nuclei (blue).  

Thanks to the XZ and YZ sections of confocal stacks illustrated in Figure 1 (C-a) and (D-

a), we demonstrated that beads were internalized beyond question. Indeed beads were 

surrounded by the phalloidin labeling of actin. On the contrary in Figure 1 (C-b) and (D-b), 

beads observed at the intersection of the white lines were just on the external side of the cell 

membrane showing the first step of internalization. Therefore, confocal microscopy allowed 

us to discriminate beads position (inside/outside).  

The same types of results were seen with I beads (data not shown). 

 

FCM phagocytosis quantification assay 

The first parameter evaluated in FCM was the Side Scatter (SSC) reflecting 

morphological cellular complexity (Y Geo Mean). Figure 2 illustrates SSC cytograms 

(representative of three independent experiments) obtained for cells incubated alone or in 

presence of P or I beads. The SSC parameter dramatically increased for cells in contact with P 

beads (446±7 vs. 140±18 for cells alone) (Fig. 2A), whereas it didn’t vary significantly for 

cells in contact with I beads (139±12 vs. 140±18). To verify that beads were internalized by 

phagocytosis, we used different inhibitors of this process (Cyt-D, Lat, Jasp) and studied the 

impact on the SSC parameter as shown by Fig. 2B. For cells in contact with P beads, Cyt-D 

and Lat led to a discrete decrease of the SSC parameter (446±7 vs. 245±2 and 243±2). In 

presence of Jasp or PFA the SSC parameter was significantly reduced (446±7 vs. 64±2 and 
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40±2). The same types of results were seen for cells in contact with I beads, Jasp and PFA 

induced a decrease of the SSC parameter (respectively 139±12 vs. 56±2 and 38±3) though 

with Cyt-D and Lat there was no effect on the SSC parameter (139±12 vs. 143±1 and 127±3).  

In an attempt to quantify the phagocytic process we adapted to our model an existing 

analysis using trypan blue (TB) quenching to differentiate internalized beads from those just 

adhering to the cell membrane surface. First, cells were incubated without TB and the total 

Mean Fluorescence Intensity (MFI) reporting the fluorescence emitted by both ingested and 

membrane-associated (not-yet-ingested) beads was measured. Free beads have been 

eliminated by washing steps and were not counted as part of the MFI values. MFI measured 

for I beads was significantly lower than that measured for P beads (respectively 390±44 and 

782±63) for the same ratio of beads (10/1¢). MFI decreased significantly for P beads in 

presence of Cyt-D (782±63 vs. 564±56) but was still equivalent for I beads (352±21). The 

MFI decreased sharply for both types of beads in presence of PFA (782±63 vs. 75±5 and 

390±44 vs. 96±5). For the analysis with TB, the percentage of phagocytic cells was more 

important after incubation with P beads than with I beads (49±11% and 18±5% of phagocytic 

cells respectively). Treatment with Cyt-D resulted in a decrease in the percentage of 

phagocytic cells (16±3% vs. 49±11% for P beads and 10±1% vs. 18±5% for I beads). 

According to these data ranges, figure 3 illustrates the results of one among the four 

independent experiments. Figure 3A shows results without TB (total MFI) and figure 3B 

presents values after TB quenching. 

The effect of these inhibitors and that of Lat and Jasp are summarized in Figure 4. For P 

beads, Cyt-D and Jasp induced a decrease of the percentage of phagocytic cells close to 50%, 

whereas Lat seemed to have no impact. For I beads, all inhibitors seemed to have no effects. 

Finally, whatever the beads employed, a PFA fixation significantly reduced the percentage of 

phagocytic cells < 2±0.6% (p<0.0001) (Figure 3B).  
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Moreover, we verified that the inhibitors (Cyt-D, Lat and Jasp) were not toxic at the 

concentrations used: the amount of dead cells determined by propidium iodide incorporation 

was found between 8 and 15% (data not shown). Therefore these inhibitors did not appear to 

be cytotoxic under these experimental conditions.  

 

Toxicity assessment 

The four toxicological parameters evaluated in this study are presented on Figure 5.  

Fig 5A clearly shows that the only significant variation in TNF-α concentration was 

observed when P beads were incubated for 24h with MA. There was no effect when cells 

were incubated with I beads, neither for 90 min nor for 24h, even for the 40 I beads for one 

cell ratio. These data could be correlated with the quantification of phagocytosis summarized 

in Table 1. P beads were more phagocytosed after 24h of incubation (74±5 vs. 49±11) and 

globally more phagocytosed than I beads (18±5 or 45±6). I beads at a 40/1¢ ratio for 24h were 

as phagocytosed as P beads at a 10/1¢ ratio after a 24h contact. 

No effect was observed concerning the percentage of released LDH showed on Fig 5B. 

All values were at the same level than the negative control cells alone compared to the 

positive control (lysed cells) which was significantly different. 

The DCF production (nM/h) reflecting the amount of global ROS generated (Fig 5C) 

indicates a significant enhancement after a 24h incubation for the two types of beads. 

Correlated with Table 1, these data indicate that ROS generation is linked to the amount of 

phagocytosis, and incubation time (24h).  

Finally H2O2 production did not show significant differences among the different conditions 

of exposure (Fig 5D). After a 24h exposure ROS are generated probably due to H2O2 which 

are likely the source of other organo-peroxydes or lead to formation of hydroxides (Fig 5C). 



DISCUSSION 

This study aimed at observing and quantifying phagocytosis using confocal microscopy 

coupled to FCM. Using these approaches we were able to distinguish entirely engulfed 

fluorescent micro-sized particles from those just adhering to the cell membrane and FCM 

appeared as a powerful tool to perform a multiparametric analysis of this cellular process. 

Confocal microscopic experiments were very useful to visualize bead internalization. 

This complementary approach confirms the efficiency of the actin labeling with phalloidin 

which leads to a precise localization of beads throughout cells. A limit to this technique is that 

we could not quantify beads on images. Image analyzing techniques could be adapted to this 

type of acquisition but the area analyzed would be limited. Another technique allowing to 

quantify the physical process of internalization is necessary. This is the reason why we 

developed FCM in this study.  

 The multiparametric FCM approach we developed was shown to be a powerful tool for 

the quantification of phagocytosis. This technique allows to analyze an important number of 

cells without requiring the physical observation of events. Different steps have been necessary 

to validate this approach especially the use of different phagocytosis inhibitors. FCM also 

confirmed the effectiveness of the "TB quenching" for quantifying phagocytosis. The results 

obtained after TB quenching are in good agreement with the dynamics of the phagocytic 

process and validated the use of TB quenching for quantification in FCM. We have jointly 

observed that green fluorescence shut down by TB was detected on the FL3 channel (red 

fluorescence). Indeed, the TB was excited at 488 nm and emitted in the red spectrum. This red 

fluorescence quenching could be allowed by a process similar to FRET (fluorescence 

resonance energy transfer) (Haas 2005; He et al. 2004).  

SSC parameter reflects cellular complexity inside cells but also at the membrane surface, 

it appears to be a good indicator of cellular dynamics during the process of bead 
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internalization. SSC values increased with the amount of internalized beads (P beads). 

Moreover, we observed SSC changes after treating cells with actin inhibitors used as controls.  

This FCM technique allowed us to observe significant differences between the two types 

of beads which size and coating were different (P beads had a diameter of 2 µm and 

carboxylate surface groups while I beads had a diameter of 1 µm and amine surface groups). 

We observed that with P beads the SSC parameter was strongly increased compared to control 

cells, we quantified 60% of phagocytic cells and the effect of actin inhibitors was important. 

This suggests that P beads are highly phagocytosed, much more than a same ratio of I beads 

(10/1¢) for which SSC values were equivalent to that of the control cells, only 20% of 

phagocytic cells were observed and for which the inhibitors had no effect.  

We have shown that Cyt-D, Jasp and Lat did not completely block the internalization of 

the beads (inhibition of the phagocytosis of P beads up to 50% and no effect on I beads), 

suggesting that other internalization pathways may be involved and particularly a non actin-

driven process (Aderem and Underhill 1999; Castellano et al. 2001; Etienne-Manneville and 

Hall 2002; Gratton et al. 2008; Haberzettl et al. 2007; Lanzetti 2007; Niedergang and 

Chavrier 2004, 2005; Yeung and Grinstein 2007). It would be interesting to explore other 

pathways such as energy-dependent phagocytosis, clathrin-mediated endocytosis, caveolae-

mediated endocytosis or macropinocytosis (Gratton et al. 2008). Finally, the study of 

membrane receptors such as the Scavenger Receptors (SR) MARCO (Macrophage Receptor 

with collagenous structure) and the complement receptor 3 (CR3) implicated in these 

pathways could also bring further information (Arredouani et al. 2004, 2005; Groves et al. 

2008; Hamilton et al. 2006; Kanno et al. 2007; May et al. 2000; Palecanda and Kobzik 2001; 

Sulahian et al. 2008). 

Taken together, these results underline the importance of the physicochemical properties 

of the particles for the phagocytic process (size and surface groups) (Ahsan et al. 2002). 
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Further investigations are needed to determine if these two parameters have the same 

influence or if one prevails and which one (using beads of different size with the same surface 

groups or conversely beads of same size but carrying different surface groups like 

carboxylate, amine and polyethylene glycol). 

Similarly, these characteristics could have a major impact on the biological toxicity. 

Toxicological evaluations show that in a global manner, ROS and LDH productions do not 

depend on the size and chemical composition of beads. Generation of global ROS seems more 

dependant of time incubation and amount of internalized beads. On the contrary, these 

parameters play a significant role in TNF-α inflammatory response: carboxylate 2 µm beads 

(P beads) dramatically increase TNF-α production (Wilson et al. 2007), whereas amine 1 µm 

beads (I beads) seem to have no impact (10/1 and 40/1 ratio). These results fit adequately 

since we demonstrated that P beads were more phagocytosed than I beads (10/1 ratio) but as 

much phagocytosed as I beads for a 40/1 ratio reflecting equivalence in surface area. Thus 

relationship between surface chemistry and TNF-α production is clear.  

 

Conclusion 

We established a multiparametric method of analysis of phagocytosis coupling flow 

cytometry to confocal microscopy. This approach allowed to highlight that physicochemical 

characteristics of beads (size, surface area and surface coating) were key factors of the 

internalization process and that they also have an impact on toxicity. 
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FIGURE CAPTIONS  

Figure 1: Confocal microscopy images of MA incubated with beads (10/1¢ ratio) for 16 

hours. A-B) XY projection stack mean of the interest area with phalloidin and Hoechst 

labeled MA in contact with P beads. C-D) XZ and YZ section stacks with observed beads at 

the intersection of the white lines (a: bead inside, b: bead outside).   

 

Figure 2: SSC parameter analyzed for MA alone or after a 90 minutes incubation with P or I 

beads (10/1¢ ratio) (A), and in presence of inhibitors of phagocytosis (Cyt-D, Lat and Jasp) or 

after PFA fixation (B). The value indicated on each cytogram corresponds to the Y Geo Mean 

which represents cellular complexity (representative of three independent experiments). 

 

Figure 3: FCM analysis of cells without (A) or with trypan blue (B) after a 90 minutes 

incubation with P and I beads (10/1¢ ratio) in presence or absence of Cyt-D and PFA. A) 

Total MFI is represented on the FL1 channel (green fluorescence of all beads). B) FL1 

channel detects the green fluorescence of beads internalized by MA. After TB quenching non 

internalized beads emit a red fluorescence that can be detected on the FL3 channel allowing to 

distinguish phagocytic (FL1+/FL3-) from non phagocytic (FL3+) cells (illustration 

representative of four independent experiments).   

 

Figure 4: Effects of inhibitors of phagocytosis (Cyt-D, Lat and Jasp) and PFA fixation on the 

MA in contact with P or I beads (10/1¢ ratio) analyzed in FCM after 90 min of exposure. The 

percentage of phagocytic cells is normalized with the control (n=4, *p<0.0001). 
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Figure 5: Toxicity assessment for the different conditions : 10/1¢ ratio for P and I beads (after 

90 min or 24h contact with RAW 264.7 cells) and 40/1¢ ratio for I beads (after 24h contact) in 

terms of inflammation assessed by TNF-α production (pg/ml) (A), cell damage measured by 

the amount of LDH released (B), total ROS (C) and H2O2 specific production (D) (n=3, 

*p<0.0001).  
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Figure 1: Confocal microscopy images of MA incubated with beads (10/1¢ ratio) for 16 

hours. A-B) XY projection stack mean of the interest area with phalloidin and Hoechst 

labeled MA in contact with P beads. C-D) XZ and YZ section stacks with observed beads at 

the intersection of the white lines (a: bead inside, b: bead outside).   

 

 



 

 

Figure 2: SSC parameter analyzed for MA alone or after a 90 minutes incubation with P or I 

beads (10/1¢ ratio) (A), and in presence of inhibitors of phagocytosis (Cyt-D, Lat and Jasp) or 

after PFA fixation (B). The value indicated on each cytogram corresponds to the Y Geo Mean 

which represents cellular complexity (representative of three independent experiments). 



 

 

Figure 3: FCM analysis of cells without (A) or with trypan blue (B) after a 90 minutes 

incubation with P and I beads (10/1¢ ratio) in presence or absence of Cyt-D and PFA. A) 

Total MFI is represented on the FL1 channel (green fluorescence of all beads). B) FL1 

channel detects the green fluorescence of beads internalized by MA. After TB quenching non 

internalized beads emit a red fluorescence that can be detected on the FL3 channel allowing to 

distinguish phagocytic (FL1+/FL3-) from non phagocytic (FL3+) cells (illustration 

representative of four independent experiments).   



 

 

Figure 4: Effects of inhibitors of phagocytosis (Cyt-D, Lat and Jasp) and PFA fixation on the 

MA in contact with P or I beads (10/1¢ ratio) analyzed in FCM after 90 min of exposure. The 

percentage of phagocytic cells is normalized with the control (n=4, *p<0.0001). 



 

Figure 5: Toxicity assessment for the different conditions : 10/1¢ ratio for P and I beads (after 

90 min or 24h contact with RAW 264.7 cells) and 40/1¢ ratio for I beads (after 24h contact) in 

terms of inflammation assessed by TNF-α production (pg/ml) (A), cell damage measured by 

the amount of LDH released (B), total ROS (C) and H2O2 specific production (D) (n=3, 

*p<0.0001).  



 

 

Table 1: Summary data of quantification parameters obtained in FCM (SSC, total MFI and 

percentage of phagocytic cells) for the different exposure conditions : 10/1¢ ratio for P and I 

beads after a 90 min or 24h contacts with RAW 264.7 cells and 40/1¢ ratio for I beads after a 

24h contact. 
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