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ABSTRACT: This work arises from an industrial need for EDF (the French electric power company) to study the dynamics

of complex structures, for which (noisy) measurements are used in an effort to alleviate the presence of Finite Element model

uncertainties. Our work aims at formulating and implementing a strategy allowing optimal estimation of the structure dynamics

and model parameters from available, imperfect, modelling and experimental information. One of the motivations of this work

is to consider evolving model parameters. This introduces additional difficulties in the identification strategy, especially when

evolution laws are a priori unknown. In the present work we propose a strategy to tackle with the above mentioned problem

based in combining both the modified Error in Constitutive Relation (mECR) technique and the Unscented Kalman Filter (UKF).

A numerical example of a reinforced concrete beam is presented to show how this strategy gives particularly good results to both

locate and identify model errors such as structural damage and boundary conditions misspecification. Furthermore, we illustrate

how this approach is adapted for the case of evolving damage with no prior knowledge of the evolution law.
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1 MOTIVATION AND GENERAL PURPOSE

This work arises from an industrial need for EDF (the French

electric power company) to study the dynamics of complex

structures, for which (noisy) measurements are used in an effort

to alleviate the presence of Finite Element model uncertainties.

Our work aims at formulating and implementing a strategy

allowing optimal estimation of the structure dynamics and

model parameters from available, imperfect, modelling and

experimental information. One of the motivations of this work

is to consider evolving model parameters (e.g. damage). This

introduces additional difficulties in the identification strategy,

especially when evolution laws are a priori unknown.

In the approach presented herein, we propose to take

advantage of the interesting properties of both the modified

Error in Constitutive Relation (mECR) and the Unscented

Kalman filter (UKF) resulting into a coupled coupled mECR-

UKF structural identification strategy. Thus, we propose to

tackle the identification problem, for which a priori knowledge

of modelling errors is not available, in a two-step strategy:

1. In the first step, the mECR method is used to spatially

localize the regions of the structure where the assumed model

is least consistent with available measurements.

2. The second step consists in introducing the mECR cost

functions in a state-space formulation to be solved by means

of the Unscented Kalman Filter.

Therefore, this paper first introduces both the mECR and

the UKF methods to finally propose to solve the updating

problem by coupling both techniques. A numerical example

of a reinforced concrete beam is presented in which we seek

to localize and identify simultaneously structural damage and

imperfect boundary conditions modelling.

2 A MODIFIED ERROR IN CONSTITUTIVE RELATION

OVERVIEW

The Error in Constitutive Relation (ECR) concept is at the

root of energy-based cost functionals that allow to evaluate

the discrepancy between a mathematical model describing the

behavior of a given mechanical structure and a set of available

measurements for this same structure. It was first introduced by

Ladevèze in [1] as a means to a posteriori evaluate the accuracy

of a finite element (FE) solution. Quickly thereafter, other

developments of this approach were aimed at achieving model

updating based on frequencies and eigenmodes in the free-

vibration problem [2], and later extended to the forced-vibration

case [3, 4]. More recent studies investigated the application of

ECR in time-domain formulations [5–7].

Since then, the method has proved its ability to update the

mass, damping and stiffness properties of mechanical static and

dynamic models. In particular, works in this area have shown

interesting properties of the ECR method which are particularly

relevant in our approach:

• Excellent ability to locate structural parts where modelling is

defective [8].

• Robustness of the method against high measurement noise [5].

• Good convexity properties of the cost functions [9].

2.1 Modified Error in Constitutive Relation formulation

Consider a structure within a domain Ω during a time interval

[0,T ] and the following constitutive relations in the frequency

domain:
{

σ = Kε + iωCε

Γ =−ρω2u
(1)
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where K and C are the elasticity and damping tensors, u,ε
denote the displacement and linearized strain tensor, and Γ,σ
are the inertial forces and stress.

The ECR formulation presented in this paper is based on the

so-called Drucker error which can be written as:

ξ 2
Ωω(u,v,w)

=

∫

Ω

γ
2

tr[(K +Tω2C)(ε(v)− ε(u))⋆(ε(v)− ε(u))]

+
1− γ

2
ρω2(u−w)⋆(u−w)dΩ

where ⋆ denotes the complex conjugate and the related

kinematic and dynamic admissible fields are chosen as follows:










uc = u

σd = Kε(v)+ jωCε(v)

Γd =−ρω2w

(2)

Thus, the discretization of the above-mentioned problem in

a FE framework leads to the following modified ECR cost

function [4]:

e2
Ωω ({u},{v},{w}) = γ

2
{u− v}T [K+Tω2C]{u− v}

+
1− γ

2
{u−w}T ω2[M]{u−w}

+
r

1− r
{Πu− ũ}T [Gr]{Πu− ũ} (3)

where [M],[C] and [K] are, respectively, the mass, damping

and stiffness matrix of the FE model, {ũ} denotes a discrete

set of measured displacements, Π the projection operator onto

the observation space and [Gr] a symmetric positive-definite

weighting matrix. Since the choice of [Gr] is not a critical issue,

it is often chosen to be energy consistent. Here, we consider:

[Gr] =
γ
2

(

[Kr]+Tω2[Cr]
)

+
1− γ

2
ω2[Mr] (4)

where “r” stands for the Guyan matrix reduction onto the set of

observed DOFs.

When working in a frequency range [ωmin,ωmax] and

assuming that the structure is divided into a set of substructures

Ωs ⊂ Ω, the normalized modified ECR cost function is finally

given by

e2
N =

∫ ωmax

ωmin

η(ω)

(

∑
Ωs⊂Ω

e2
Ωsω({u},{v},{w})

D2
ω ({u})

)

dω (5)

where η(ω) is a weighting function such that
∫ ωmax

ωmin

η(ω)dω = 1 η(ω)≥ 0 (6)

and D2
ω({u}) is a reference normalizing energy value defined by

D2
ω ({u})

=
γ
2
{u}T [K+Tω2C]{u}+ 1− γ

2
{u}T ω2[M]{u} (7)

For a given measurement set {ũ} at a certain frequency, the

admissible kinematic and dynamic admissible fields minimizing

the functional (3) can be obtained by solving a system of linear

equations [4].

2.2 Modified Error in Constitutive Relation updating problem

Based on the previously-mentioned properties of the ECR

method, the updating problem arises into a two step algorithm.

The first step consists in locating the regions of the structure

where the value of e2
N (representing the relative quality of the

model with respect to the measurements in a certain frequency

range) is above a user-defined threshold. This analysis allows us

to choose a subset θ of the set Θ of model parameters that enter

the definition of structural matrices [M], [C], [K], corresponding

to those structural areas where e2
N reveals inadequate modelling.

Thus, the updating problem can be formulated as

Find θ̂ ∈ Θ minimising e2
N(θ ) (8)

In general, this leads to a nonlinear optimization problem

and, in our approach, we propose to solve the above-mentioned

updating problem (8) by means of the Unscented Kalman Filter.

3 THE UNSCENTED KALMAN FILTER FOR SOLVING

THE MECR PROBLEM

The Kalman Filter (KF), introduced in the early 60’s by Kalman

[10], provides a recursive solution method for the linear optimal

filtering problem in the presence of measurement and state

uncertainties. It consists of a prediction-correction algorithm

where the updated estimate is computed from the previous

estimate (prediction) and it is corrected with the new input data

(correction).

Since then, several different approaches have been proposed

to address nonlinear filtering problems using variations on

the KF formalism. The most popular approach to perform

recursive nonlinear estimation is the Extended Kalman Filter

(EKF). The derivation of the EKF exploits a linearization of the

nonlinear state-space model on the assumption that deviations

from linearity are of first order. Despite its easy implementation

in a wide range of engineering problems, this assumption can

lead in some cases to inaccuracy and divergence of the algorithm

[11].

The Unscented Kalman Filter (UKF) was proposed in 1997

by Julier and Uhlmann [12, 13] as an alternative to the EKF

allowing to take into account the effect of nonlinearity in

the state-space model in a more accurate manner. The UKF

proposes to sample the probability density function of the states

by a minimal set of carefully chosen points, commonly known

as sigma points. These sample points are propagated through the

true nonlinear state-space model, and the state estimates and its

error covariance matrix are computed using the corresponding

sample statistics. The Unscented transformation thus gives a

mathematical framework for achieving second order accuracy

for any (sufficiently smooth) nonlinearity. A further advantage

of the UKF is that it does not require the actual evaluation of

derivatives of the nonlinear equations.

3.1 Unscented Kalman Filter formulation

Consider a random variable x ∈ Rn with mean x̄ and covariance

Px. Let Sx = {X,W} be the set of the so-called sigma points and

corresponding weighting factors of x, defined by
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[X]0 = x̄

[X]i = x̄+(
√

(n+λ )Px)i i = 1, · · · ,n,
[X]i = x̄− (

√

(n+λ )Px)i i = n+ 1, · · · ,2n

(9)

(where (
√

Px)i represents the ith column of the Cholesky

decomposition of matrix Px) and

Wm
0 =

λ
n+λ

Wc
0 =

λ
n+λ

+ 1−α2+β

Wm
i = Wc

i =
1

2(n+λ )
, i = 1, · · · ,2n.

(10)

where λ = α2(n+κ)− n is a scaling parameter. The constant

α determines the spread of the sigma points around x̄, while

the constant β is used to incorporate prior knowledge of the

distribution of x and κ is a secondary scaling parameter.

Thus, the Unscented transformation approaches the posterior

mean and covariance of the random variable z which undergoes

the nonlinear transformation z = f (x) by the following posterior

statistics

z̄ ≈
2n

∑
i=0

Wm
i [Z]i

Pz ≈
2n

∑
i=0

Wc
i ([Z]i − z̄)([Z]i − z̄)T

(11)

where [Z]i = f([X]i) is the transformed ith sigma point.

The UKF then consists of a straightforward application of

the Unscented transformation to the KF framework, and is

summarized now. Consider a dynamical discrete nonlinear

state-space model given by

{

xk+1 = F(xk)+υk

yk = h(xk)+ηk

(12)

where xk is the state variable vector at t = k∆t, υk is the zero-

mean process noise vector with covariance matrix Qk. yk is

the zero-mean observation vector at t = k∆t and ηk is the

observation noise vector with corresponding covariance matrix

Rk.

Then, the UKF equations applied to (12) are the following. In

order to initialize the algorithm, a prior estimation of the initial

state and covariance are given

x̂0 = E[x0]

P0 = E[(x0 − x̂0)(x0 − x̂0)
T]

(13)

The prediction step consists in propagating the sigma points

through the nonlinear state-space model (12) and estimate

the posterior mean and covariance with the statistics of the

propagated points. Consequently, the prediction step for each

time step k = 1,2, . . . is as follows:

1. Build a set of sigma points around x̂k−1

Sk−1
x = {Xk−1,Wk−1} (14)

2. Propagate the sigma points through the nonlinear dynamic

equation

[Xk]i = F([Xk−1]i) (15)

3. Calculate the posterior statistics

x̂−k =
2n

∑
i=0

W m
i [Xk]i (16)

P−
k =

2n

∑
i=0

W c
i (([Xk]i − x̂−k )([Xk]i − x̂−k )

T )+Qk (17)

4. Build the predicted state in the observation space

ŷk =
2n

∑
i=0

W m
i h([Xk]i) (18)

In an analogous way to the KF, the UKF measurement-update

equations are as follows (correction step)

5. Correction of the posterior mean

x̂k = x̂−k +Kk(yk − ŷk) (19)

6. Correction of the posterior covariance

Pk = P−
k +KkP

yy
k KT

k (20)

where

Kk = P
xy
k (Pyy

k )−1

P
xy
k =

2n

∑
i=0

W c
i (([Xk]i − x̂−k )(h([Xk]i)− ŷk)

T )

P
yy
k =

2n

∑
i=0

W c
i (((h([Xk]i)− ŷk))(h([Xk]i)− ŷk))

T )

4 SOLVING THE MECR WITHIN THE UKF FRAME-

WORK

In this section we discuss how the detailed equations of the UKF

can be used to solve an optimization problem. In particular,

the problem that we propose to solve is the updating problem

defined in (8) in order to take advantage of the good properties

of the mECR mentioned in Sec. 2.

The key idea of this approach is to reconsider the state-space

formulation proposed in (12) by changing the metrics of the

observation space. For this, the discrepancy between the model

solution and the available data is no longer measured by a least-

square distance but by a more appropriate cost function, which

in our case is chosen to be (5). In this way, we consider the

state vector as θ and the associated process equation becomes

the identity. The updating problem (8) can then be written in a

state-space formulation as
{

θ j+1 = θ j +wθ
j

ζ j = e2
N(θ j)+ν j

(21)

where wθ
j and ν j represents zero-mean Gaussian processes

playing an important role in this optimization scheme. Since the

UKF will tend to minimize the distance (ζ j − e2
N(θ j))

2 we can

interpret ζ j as a target value. Thus, for minimization purposes

we will write

ζ j = 0 ∀ j (22)
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5 NUMERICAL RESULTS

The numerical experiment we present herein consists of locating

and identifying a model misspecification by use of the coupled

method UKF and modified ECR presented in Sec. 4. The

reference FE model shown in figure 1 represents a reinforced

concrete beam clamped at its end sections and excited by a

white noise external force F . The structure has a length of

3,75m and a constant rectangular section (height 0,22m, width

0,15m), and the Young modulus, mass density and Poisson’s

ratio are respectively set to E = 20·109N/m2, ρ = 7800Kg/m3

and ϑ = 0,3.

PERFECT BC

F

PERFECT BC

Figure 1. FE reference model with homogeneous material and

perfectly clamped end sections.

Besides, the “true” beam deviates from these assumptions

in that (a) one element is damaged, with its weakened Young

modulus of the form

E = (1− δ )E0,

(with δ = 0.85) and (b) one of its end sections is imperfectly

clamped, its impedance H(ω) being

H(ω) =−ω2m+ k (23)

(with k = 107N/m and m = 33Kg).

PERFECT BC

IMPERFECT BC

DAMAGED ELEMENT

F

Figure 2. FE “true“ model containing imperfect clamping and

structural damage.

The available measurements are numerically simulated by

computing the response of the damaged beam under the given

load at a set of 7 points, playing the role of sensors, and adding

a 5% Gaussian noise to these simulated measurements.

Thus, the numerical experience consists of locating and

identifying the modelling discrepancies of the reference model

by applting the proposed ERC-UKF approach to the set of

simulated measurements.

5.1 Localizing imperfectly modelled regions

The first step of the proposed procedure consists of localizing

the regions of the structure where the FE model deviates the

most from the true structure. For this, we propose to compute

the value of e2
N proposed in (5) in the frequency range of interest

ω ∈ F = [0 Hz, 600 Hz]×2π . In our case, any frequency range

is considered to be equally relevant in F , so the weighting

function is simply taken as

η(ω) =
1

600× 2π
(24)

In Fig. 3, the solid line shows the spectrum of the e2
N over F .

The highest values of the mECR appear around the frequency

of 80Hz which is close to the eigenfrequency of the impedance

(23), tuned to be around 87,5Hz. Drops in the mECR spectrum

appear at frequencies where the dynamical response of the

structure is orthogonal to the sensors direction, so no data is

available to investigate about the quality of the model in this

direction.

Besides, the dashed line in Fig. 3, illustrates the spectrum

of the e2
N with measurements obtained on a FE model without

structural damage. It is interesting to see how the presence of

the structural damage, present in one single element of the FE

model, becomes relevant at a medium frequency range, while

the boundary condition missmodelling remains the same in the

low frequencies.

0 100 200 300 400 500 600
10

−6

10
−4

10
−2

10
0

10
2

Frequency (Hz)

FE model with imperfect boundary only

FE model with imperfect boudary and damage

Figure 3. Initial modified ECR spectrum for a FE model with

perfect clamping and lack of structural damage.

While this information improves our knowledge of the global

error of the structure in the frequency domain, the figure 4 shows

this distribution of the error over the structure for two significant

frequencies. In other words, we calculate the value of

e2
Kω ({u},{v},{w})

D2
ω ({u}) (25)

where K is the region occupied by one finite element of the

mesh. It clearly appears that the regions where the value of

equation (25) is the highest correspond to those where the model

differs the most to the reference structure. As a matter of

fact, error at low frequencies appears to be concentrated in the

element neighboring the imperfect clamping, while this error

moves to the damaged element in the middle frequencies. The
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0.50.40.20.10.
MODIFIED ECR 80

0.20.10.090.060.02
MODIFIED ECR 400

Figure 4. Comparison of the modified ECR distribution and

the related {u− v} error field at 80Hz (top) and 400Hz

(bottom).

modelling error indicator based on the modified ECR method

seems to accurately locate the model errors over the structure,

improving the knowledge of the model misspecification and

leading to a reduced updating problem by chosen a proper subset

θ of structural parameters to be updated.

5.2 The UKF-mECR method to solve the updating problem

In the mECR analysis, the part of the e2
N error introduced by the

{u− v} field is generally associated to a parameter discrepancy

of the [K] matrix, while the error introduced by the {u−w} field

is often associated to a modelling error affecting the mass matrix

[M] (see [8] for a detailed study of such heuristic rules).

In our case, similarly to the error distributions shown in

figure 4, errors associated to the [K] are mainly located at both

the element adjacent to the imperfect clamping and the element

containing structural damage. In contrast, as shown in figure

5, errors associated to [M] are not only lower in magnitude but

also appear to be concentrated at the element adjacent to the

imperfect clamping only. As a consequence, it seems to be

natural to alleviate the erroneous boundary conditions by means

of introducing an additional spring-mass element modelling the

clamping conditions. Thus, the choice of the θ parameter for

the updating problem becomes in our case:

θ = {δ6 k m}T (26)

This reduced parameter updating problem is now solved using

the coupled UKF-mECR method proposed in Sec. 4.

0.50.40.20.10.
MODIFIED ECR 80

0.20.20.10.050.
MODIFIED ECR 400

Figure 5. Comparison of the modified ECR distribution and

the related {u−w} error field at 80Hz (top) and 400Hz

(bottom).

Figure 6 shows how the UKF is capable of properly

identifying the uncertain parameters of the initial model with

satisfactory convergence.

0 5 10 15 20 25 30 35 40 45
0.4

0.6

0.8

1

1.2

1.4

Steps

identified k / actual k

identified m /actual m
identified δ

6
 / actual δ

6

Figure 6. Damage and boundary impedance parameters

identification using the mECR-UKF approach.

In a similar way, we have performed the study for the case

where the structure suffers from evolutive structural damage.

In that sens, we have considered an available sequence of

measurements {ũ}i at time ti = i∆t, where the structural damage

evolves over t. Thus, the iterations steps j from (21) are now

considered as time steps and, as a consequence, measurements

{ũ}i are recursively introduced in e2
N(θi) as the identification

process goes on. Hence, we can rewrite the the state-space
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formulation in (21) for the evolution problem as

{

θi+1 = θi +wθ
i

ζi = e2
N(θi,{ũ}i)+νi

(27)

In figure 7 we show the capability of the coupled mECR-UKF

approach to track the damage evolution over time where the

evolution law is a priori unknown.

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

1.2

Time steps

 

identified δ
6

identified k / actual k

identified m / actual m
actual δ

6

Figure 7. Evolutive damage and boundary impedance

parameters identification using the mECR-UKF approach.

6 CONCLUSIONS

In this work he have proposed a solution strategy for

identification problems associated with uncertain FE models

in structural dynamics. The proposed method is based on

combining the modified Error in Constitutive Relation (mECR)

technique and the Unscented Kalman Filter (UKF). The mECR

is first used to obtain prior information on the nature of

the model errors and reduce the set of unknown structural

parameters to be identified, taking advantage of its excellent

properties to localize model errors. The UKF is then used to

solve the updating problem, in a form where the observation

equation is formulated again in terms of the mECR cost

function.

A numerical example of a reinforced concrete beam has been

used to show how this strategy gives particularly good results

and accuracy to both locate and identify model errors such

as structural damage and boundary conditions misspecification.

The proposed formulation is particularly well suited to the

usual FE framework of structural dynamics, where the use

of the Unscented transformation avoids explicit evaluations of

Jacobian and Hessian operators.
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