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This study examines the acoustic properties of materials with complex micro-geometry containing 
partially open or dead-end (DE) porosity. One of these kinds of materials can be obtained from 
dissolving salt grains embedded in a solid metal matrix with the help of water. The solid matrix is 
obtained after the metal, in liquid form, has invaded the granular material formed by the salt 
particles at negative pressure and high temperature, and after cooling and solidification of the 
metal. Comparisons between theoretical and experimental results show that the classical Johnson-

Champoux-Allard model does not quite accurately predict the acoustic behavior. These results 
suggest that the assumptions of the Biot theory may not all be fulfilled and that cavity resonators 
and dead ends can be present in the material. The first part of the study proposes a simple model to 
account for this geometry. Based upon this model, two acoustic transfer matrices are developed: 
one for non-symmetric and one for symmetric dead-end porous elements. It is thought that this 
model can be used to study the acoustic absorption and sound transmission properties of the type of 
material previously described. In the second part, a series of simplified samples are proposed and 
tested with a three-microphone impedance tube to validate the exposed model. Finally, the third 
part compares the predictions of the exposed model to the impedance tube results on a real 
aluminum foam sample containing dead-end pores. These first results are encouraging and show 
that this simple model also provides a good prediction for these materials with more complicated 
microstructure.

I. INTRODUCTION

Air-saturated porous metals such as porous aluminum

may be used in numerous applications such as thermal

exchangers or shock absorbers in the automobile and aircraft

industries. These materials also exhibit interesting acoustic

properties. In many applications, they can withstand fairly

high temperatures, they can be used in hostile environments

(fluid projection and flames), and they are durable and stable

in time.

The metal foam obtained following the fabrication pro-

cess1 depicted in Fig. 1 is provided the motivation for the

present work. In this process, melted aluminum is poured

into a container filled with salt grains. The melting tempera-

ture of aluminum is 660 �C while that of sodium chloride

(NaCl) is 801 �C. Melted aluminum can therefore fill the in-

terstitial spaces between the solid grains. A negative pressure

suction is applied in order to facilitate the flow. The grain

size distribution can be controlled by successive sieving of

the salt grains. After the metal has cooled down, the sample

is cut and plunged into water to dissolve the sodium chloride.

Then the sample is dried, air replaces the space formerly

occupied by the solid grains, and the sample porous metal is

created. Figure 2 shows aluminum foam resulting from this

fabrication process.

At first sight, the observation of the microstructure and

characteristic size of the pores suggests that an equivalent

fluid model is well adapted to study the acoustic properties

of the resulting foam. In the past, equivalent fluid models

have been derived to describe the acoustic wave propagation

in rigid-frame open-cell porous media saturated by air.2 The

model used in the present work is that of Johnson-Cham-

poux-Allard. This phenomenological model is accurate and

has been successfully applied to sound absorbing materials

such as polyurethane foams or fibrous materials.2–4

In this article, it is experimentally shown that a classical

equivalent fluid model is not as accurate as expected for the

studied metallic foams: it appears that the requirement that

the pore be “interconnected between them and the surround-

ing medium” implicitly means that the fluid can flow in all

pores and this last condition is not fulfilled in dead ends. In

particular, a closer look at the microstructure (Fig. 2) seems

to show that some pores are only connected to the exterior

by one end. Observation using three-dimensional pictures

obtained by a micro-tomography approach confirms the pres-

ence of dead-end porosity in these metallic foams.

As summarized in Fig. 3, the hydrogeology scientist dis-

tinguishes different kinds of porosities:5,6

• Total porosity is defined as the ratio between the air vol-

ume (volume without material) and the total volume of the
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sample in a homogeneous area (representative sample).

This porosity includes closed and open porosities.
• Closed porosity (also called residual porosity) represents

the cells that are completely closed (not interconnected

with others cells). In the rigid frame approach these cells

do not influence the acoustical behavior of material.
• Open porosity (also called connected porosity) is defined

as the ratio of interconnected pores to the bulk volume of

the porous material. This is the ratio between the intercon-

nected open volume and the total volume of the sample.

The open volume includes the “mobile volume” of satura-

tion water released under the effect of complete drainage

and the “immobile volume” in the connected pore. This

open porosity includes kinematic and dead end porosities.
• Kinematic porosity (also called effective porosity or Biot

porosity) is related to the displacement of water moving in

a permeable medium. It is equivalent to the ratio of the

volume of the interstices actually traversed by moving

water and the total volume of the medium. The kinematic

porosity is the one used in the Biot model and is therefore

referred to as the “Biot porosity” for the remainder of this

paper. The kinematic porosity can be approximated by

drainage porosity, which is defined as the ratio of the vol-

ume of water drained by gravity from a saturated represen-

tative sample to the total volume of the sample.
• Dead-end porosity (that can also be referred to as “ink

bottle porosity”) is defined as the ratio of the volume of

non-moving water in closed cells to the bulk volume of the

porous material; it represents the cells that, although con-

nected to another cell and to the exterior at one end, remain

closed at the other end. Bear,7 who in 1979 worked on

interconnected pore space, stated that the porous medium

contains dead-end pores, corresponds to material which

partially contains pores or channels with only a narrow sin-

gle connection to the interconnected pore space, so that

almost no flow occurs through them. This porosity is

referred to as “DE porosity” for the remainder of this

paper.

The experimental approach of Fatt8 noted that the DE

pore volume may alter transient fluid flow or diffusion

behavior. Goodknight9 proposed identifying the DE volume

as continuously distributed equivalent sources. Goodknight

proposed analogous equations to describe non-steady-state

diffusion through fluid contained in the porous material with

DE pores (with neck opening). They proposed an additional

source term in the pressure transient equation for homogene-

ous and isotropic media. Rose10 discussed this approach and

claimed that the additional source had to be more complex:

he noted that in most similar cases with this kind of media

there was some microscopically inhomogeneous distribution

of DE porosity in the material. Rose proposed an analog sys-

tem with a network of interconnected resistors with a capaci-

tor at the mesh points. The DE pores were represented by

capacitors connected to the mesh points through high resist-

ance elements. To characterize the transient of mass equa-

tion, they proposed measuring the resistance-capacitance

time-constant of the system.

Similarly, Goodknight and Fatt11 studied the diffusion

time-lag in porous media with the DE volume. The time-lag

was found with the curve of mass transport against the time

delay in achieving steady-state transport. The non-steady

state diffusion-equation was solved for a system with the DE

pore volume. The model and experimental results showed

that the time-lag in a system containing DE pores was influ-

enced by the total pore volume and not by the resistance to

flow between the flow channels and the DE pores.

Fatt12 proposed a network study on the influence of the

DE porosity on the relative permeability for a material with

simultaneous flow of two or more fluid phases (for example:

air-water or air-water-oil). In this network study, the DE

pores are created in a classical porous media (or soil) when

several liquids flow through the media. He observed that the

non-wetting phase relative permeability (air and oil) is

strongly influenced by the fraction of the fluid trapped in the

DE pores. By contrast, the DE pores do not influence the

wetting phase relative permeability (water). He noted that

there was no experimental data on real porous material that

could verify this prediction. However, he proposed the use of

Handy’s experiment method (the two-tracer miscible) that

uses a fast diffusing and slow diffusing tracer.

Gibb13 presented a study that documented the laboratory

technique for measuring the kinematic porosity of fine-

FIG. 3. (Color online) Illustration showing different porosity levels. The ki-

nematic porosity will be referred to as the Biot porosity for the remainder of

this paper.

FIG. 1. Principle of the making of aluminum foams (Ref. 1).

FIG. 2. (Color online) Microstructure of the porous metallic foam (Ref. 1).
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grained soils. Three soil kinematic porosity measurement

methods were discussed: the tracer method, Jacob’s method,

and the seismic tomography method. Gibb chose to use the

tracer method. This approach is based on the travel time

measurement through the media. Migration or flow through

a porous media can be evaluated by means of tracers. These

techniques are difficult to use, given the problems with travel

time involved, and are not well adapted to all porous media.

This study showed important experimental errors; the kine-

matic porosity was measured equal to or greater than that

calculated for total porosity. Zwikker and Kosten6 consid-

ered cylindrical pores bearing lateral cavities in a rigid solid

and assumed qualitatively that, “Notwithstanding the appli-

cation of a pressure gradient, the air in the lateral cavity

remains largely at rest,” and that since “the pressure-gradient

only succeeds in accelerating the air in the main pore, leav-

ing the air in the side hole at rest,” only a porosity correction

should be applied. Qian14 noted that DE pores can slow the

particle transport. Therefore, to model the solute transport

they proposed the use of an advection-dispersion equation

with retardation. In the biophysical domain, Hrabe15 pro-

posed a model of effective diffusion and tortuosity in the

extracellular space of the brain. The model is based on a

volume-averaging procedure to obtain a general expression

for effective diffusion. In this neurobiological application,

the tortuosity is deduced by the square root of the ratio of the

effective and free diffusion coefficients. The study used an

approximation with a number of regular and randomized 2D

and 3D geometries. It noted that “for sufficiently long diffu-

sion times, the DE pore’s effects are similar as the case with

extra channels were added in a direction perpendicular to the

macroscopic diffusion flow.” It showed that the “addition of

DE pores alters diffusion and increases tortuosity in propor-

tion to the square root of enlarged total extracellular volume

fraction.” Chevillote et al.16 studied the sound-absorption

predictions of perforated closed-cell metallic foams. They

chose a microstructure-based model approach, and they com-

pared the model with the experimental results. The porous

media used in their study included DE pores created by per-

forating solids incorporating gas inclusions (closed porosity).

They observed that these kinds of DE pores could have sig-

nificant effects on the media acoustic behavior. The calcula-

tions showed that large pores increase the tortuosity;

consequently, increasing the cellule diameter improves the

normal sound absorption maximum peak value, and its fre-

quency shifts toward lower frequencies. Furthermore, it

showed that the local geometry parameters governing the

pore/perforation relative position do not have significant

effects on the sound-absorption behavior.

To model the acoustic behavior of this kind of porous

material, it is, therefore, important to take into account the

effect of the DE pores. This complex geometry is not taken

into account in the classical equivalent fluid models.2 Based

on a simple approach, a new model is proposed to account

for the presence of DE porosity in the material as along with

the complexity of pore shapes. It includes two new parame-

ters in addition to the five parameters (Biot porosity, tortuos-

ity, static flow resistivity, viscous, and thermal characteristic

lengths) of the classical Johnson-Champoux-Allard model.

The new parameters are: the DE porosity, /DE, and an aver-

age length of the DE pores, lDE. Comparison of the results

provided by the modified model with experimental results

seems to yield a better match. In order to validate the present

model, a comparison between theoretical and experimental

results was carried out on a “simplified sample” (a sample

with well-controlled microstructural parameters) and on a

porous metallic foam that is likely to incorporate dead end

pores. Sections of the present article were presented at a

conference.17

II. MODEL FOR DEAD-END POROSITY

A. Simple model at the microscopic scale

As mentioned in Sec. I, DE porosity is known in geo-

physics5 and its effects have been observed on some porous

materials in acoustics.5–18 However, to our knowledge, no

refined model of acoustic wave propagation in media with

this micro-structural feature has been published.

Figure 2 also reveals the presence of narrow channels

between the cavities. These very narrow constrictions are

thought to be the cause of rotational flow with nonzero vor-

ticity; however, this phenomenon is not studied here.

The presence of DE porosity in the studied materials is

initially modeled at the microscopic level in terms of acous-

tic admittances, and then a homogenized version of a micro-

scopic relationship between admittances is proposed. First, a

circular duct of constant cross section, S, is considered, as

shown in Fig. 4. This duct is acoustically characterized by its

characteristic impedance, Z. The right end of the duct is con-

nected to two auxiliary ducts, 1 and 2, of their respective

characteristic impedances, Z1 and Z2, in the configuration of

a Y-shaped junction. The two branches after the crossroad

are also of constant section, S1 and S2, respectively.

This problem is a classical academic problem19 and,

assuming a left-to-right propagation from the principal

branch to the secondary branches, the following relationship

exists between admittances,

Y ¼ Y1 þ Y2; (1)
where Y, Y1, and Y2 are, respectively, the acoustic admittan-

ces of the main branch and of branches 1 and 2, related to

the characteristic impedance of each branch through the fol-

lowing relations,

Y ¼ S

Z
; Y1 ¼

S1

Z1

; Y2 ¼
S2

Z2

: (2)

The characteristic impedances Z, Z1, and Z2 normalized by

the sections are referred to as “acoustic impedances.”19

FIG. 4. Y-shaped junction between three branches in a porous medium.
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It is now considered that one of the branches (branch 1,

for example) is closed (see Fig. 5). The previous relation (1)

remains valid with the difference that Y now represents a

local admittance at the end of the main branch while Y1 cor-

responds to the local admittance at the entrance of branch 1.

If branch 1 has a constant cross section and if the closing

wall is rigid and perpendicular to the branch axis, the admit-

tance, Y1, is given by,

Y1 ¼
S1

�j ZC cotanðklÞ ; (3)

where ZC is the characteristic impedance of air, k is the

wavenumber, l is the length of branch 1, and j is the unit

imaginary complex number (a time dependence in exp(jxt)

has been chosen, with x being the angular frequency).

B. Model at the macroscopic scale and average length
of the dead ends

It is assumed that, at the frequencies considered, the

wavelengths are much greater than the characteristic sizes of

the microstructure. The behavior described at the micro-

scopic scale can then be homogenized,

�Y ¼ �Y1 þ �Y2; (4)

where �Y , �Y1 and �Y2 represent the averaged quantities associ-

ated with Y, Y1, and Y2, respectively, in a homogenization

volume in the porous medium. In addition, it is assumed that

in the studied materials, the cross sections of all branches are

statistically uniform so that they do not play a role in Eq. (4).

This last equation can be easily interpreted. For a linear

propagation, the acoustic behavior of a material containing

DE pores is given by the sum of two contributions: �Y2 associ-

ated with the fully open pores and �Y1 associated with the par-

tially open pores (DE pores). The volume proportion of the

DE pores will be denoted as /DE (for /Dead End) while the

porosity of the fully opened pores will be denoted as /B (for

/Biot). These two porosities are related to the total open po-

rosity through the relation,

/ ¼ /B þ /DE: (5)

A pore can be considered “fully opened” if, when con-

sidering a slab of material at the laboratory scale, one can

find a path connecting the front and the rear surface of the

slab; the pore being connected to the exterior by both ends.

A “partially opened” or “DE” pore would be one with only

one end connected to either the front or the rear surface of

the slab. It is important to make a distinction between the

“opened porosity,” /, and the porosity of the “connected

effective pores,” /B (the former will always be greater than

or equal to the latter). Among the open pores, some can be

closed at one end.

The �Y2 contribution is that of the pore that verifies the

assumptions of the Johnson-Champoux-Allard model. It can

be expressed as,

�Y2 ¼
1
�ZB
; (6)

where �ZB is the characteristic impedance of the classical

model, defined only for fully opened pores of porosity,

/B.

From Eq. (3), one can define for �Y1 an average value,

integrated over a homogenization volume, VDE, of dead end

pores

�Y1 ¼
j

ZC

ððð
VDE

tanðklÞdVððð
VDE

dV

: (7)

If the additional assumption, kl � 1 is made, Eq. (7)

becomes, to the first order

�Y1 �
jk

ZC

ððð
VDE

ldVððð
VDE

dV
: (8)

This assumption is valid for DE pores that are much shorter

than any acoustic wavelength. This allows us to define an av-

erage length of the DE pores by,

lDE ¼

ððð
VDE

ldVððð
VDE

dV
: (9)

The admittance (8) is finally expressed as,

�Y1 �
jklDE

ZC
: (10)

1. Remarks

(a) The homogenization process is implied in Eq. (4), which

is proposed without demonstration. By writing Eq. (4),

we assume that the effects of each dead end can be added

up (superposed), resulting in a global contribution to the

admittance if there are enough dead ends per unit volume

of the homogenized porous aggregate. It is believed that

the superposition of the effects of the dead ends is valid

since we consider the wave propagation in the linear re-

gime. The validity of Eq. (4) will be studied in future

work.

(b) To illustrate this approach, an example of a material with

simple geometries is proposed (see Fig. 6); in this mate-

rial, it is clear that lDE¼ d. With definition (9), this result

is easily retrieved,

FIG. 5. Y-shaped junction in a porous medium with one branch closed.
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lDE¼

ððð
VDE

ldVððð
VDE

dV
¼VdþVdþ���þVd

VþVþ���þV
¼ nVd

nV
¼ d: (11)

(c) In the framework of the effective fluid approach of

Biot,20,21 the following length could be defined (instead

of that of Eq. (9)):

leff
DE ¼

ððð
V

ldVððð
V

dV

; (12)

where V is a homogenization volume of the bulk material

involving the porous aggregate (solidþ fluid).

C. Accounting for dissipations in dead-end pores

The previous equations for �Y1were established from a

simple modeling of a DE pore at the microscopic scale as a

closed duct. To account for viscous and thermal dissipations

in the DE pores at the macroscopic scale, it suffices to replace

ZC and k by those provided by the Johnson-Champoux-Allard

model applied to the volume fraction of DE pores,

ZC ! �ZDE and k! �kDE; (13a)

while, when applied to the volume fraction of the kinematic

pores (the Biot porosity), one should use

ZC ! �ZB and k! �kB: (13b)

Other remarks can be made about the model:

(a) Equation (4) indicates that the sole contribution, �Y2,

would correspond to a simple porosity correction. The

additional contribution, �Y1, accounts for the standing

wave fields created in the DE pores.

(b) The principle of the model of acoustic wave propagation

in porous materials including DE pores can be summar-

ized with the schematic shown in Fig. 7.

(c) The assumptions of the proposed model are the same as

those of the classical model. One additional assumption

has been added on the length of the DE pores.

(d) This model does not account for the presence of narrow

constrictions in the material that are thought to be re-

sponsible for local flows with vorticity, even at low aver-

age flow velocity.

D. Recall of the Johnson-Champoux-Allard model

This section recalls the main results of the Johnson-

Champoux-Allard model.2,4,22 This model is based on five

macroscopic parameters: porosity, /, static airflow resistiv-

ity, r, tortuosity, a1, viscous characteristic length, K, and

thermal characteristic length, K0. In the rigid-frame approxi-

mation, the solid matrix (skeleton) is considered to be much

heavier and more rigid than the saturating air. As pointed out

by Panneton,23 several approaches (effective or equivalent

approaches) can be used to describe the complex density and

bulk modulus of the slab. The approach used here consists of

considering the slab of porous material in the rigid frame

approximation as a slab of equivalent fluid with the follow-

ing density, qeq(x), and bulk modulus, K eq(x):

qeq xð Þ ¼
a1qf

/
1� j

xc

x
F xð Þ

� �
; (14)

Keq xð Þ ¼ 1

/
cP0

c� c� 1ð Þ 1� j
8g

B2xK02qf

G B2x
� �!�1

;

(15)

with

xc ¼
r/

qf a1
; (16)

where g is the dynamic viscosity, B2 is the Prandtl number, c is

the constant pressure and volume specific heat ratio (sometimes

referred to as the adiabatic constant), and P0 is the atmospheric

static pressure. The parameter, xc, is Biot’s cutoff angular fre-

quency separating Biot’s high and low frequency ranges.

The functions, F(x) and G(B2x), are the correction

functions introduced, respectively, by Johnson et al.22 and

by Champoux and Allard.4 They are given by,

F xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j

4gqf a2
1

/2r2K2
x

s
; (17)

and

G B2x
� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j

qf K
02B2x

16g

s
: (18)

FIG. 6. (Color online) Example of a material with simple geometries, used

to illustrate the lDE formulation.
FIG. 7. Principle of the model incorporating DE pores.
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All of the necessary parameters for the acoustic charac-

terization of porous layers are easily deduced with the help

of qeq(x) and of Keq(x). In particular, the characteristic im-

pedance and wave number of are given by,

�ZðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qeqðxÞKeqðxÞ

q
and �kðxÞ ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qeqðxÞ
KeqðxÞ

s
: (19)

It is worth mentioning that these expressions (qeq, Keq,
�Z, and �k) can be applied to the open pores and to the DE

pores with special attention on the choice of the macroscopic

properties (notably /¼/DE for the DE domain, and /¼/B

for the Biot domain).

1. Remarks

The DE geometry complexities are taken into account

via its DE equivalent parameters (Z, k). Consequently, the

present model can account for different kinds of DE pores:

(a) Pores without constriction (straight pores).

(b) Ink-bottle pores or Helmholtz resonators.

(c) Complex pores with cells and constrictions.

E. Correction of the Johnson-Champoux-Allard model
to include dead-end pores

The correction that includes the effect of DE pores is

implemented through the use of Eq. (4)–(6) and (10) in order

to calculate �Yð/Þ. Following Fig. 7, the Johnson-Champoux-

Allard model is first applied on a material of porosity, /B, to

determine �Y2ð/BÞ and then a second time in order to

determine �Y1ð/DEÞ. In the second application of the model, a

slab of thickness, lDE, and of porosity, /DE, must be consid-

ered. The acoustical properties of the material containing DE

pores are finally deduced from �Yð/Þ, given by Eq. (4).

F. Transfer matrix method

In acoustics, the transfer matrix method is a powerful

method to optimize and predict sound absorption and sound

transmission of single layer and multilayer sound absorbing

materials.2 In the following text, transfer matrices will be devel-

oped for the studied rigid-frame porous aggregate containing

DE porosity for non-symmetric and symmetric configurations.

1. Non-symmetric configuration

A vertically periodic unit cell of a non-symmetric po-

rous medium with DE porosity is shown in Fig. 8. Here, the

porous medium separates two fluid domains. The cell is di-

vided into two porous elements in parallel. The first element

(element DE) is the one representing the DE porosity (non-

symmetric element). The second one is the BIOT element

containing pores that are opened on both ends only (symmet-

ric element), with the whole being non-symmetric. Each ele-

ment has equivalent macroscopic properties averaged over a

representative homogeneous volume. To link acoustic pres-

sures and velocities on both faces of the material, a transfer

matrix relation can be developed.

For the DE element, the transfer matrix relation is given

by,

Pa

Ua

� �
¼ T½ �DE P0a

�U0a

� �
; (20)

with

T½ �DE¼
tde
11 tde

12

tde
21 tde

22

" #
¼

cosð�kDElDEÞ j �ZDE sinð�kDElDEÞ
j

�ZDE
sinð�kDElDEÞ cosð�kDElDEÞ

2
4

3
5;

(21)
where the prime symbol is assigned to an output port

variable and the averaged length and equivalent fluid proper-

ties are obtained from Eqs. (9) and (19), respectively. Here,

the minus sign is added to take into account the fact that

velocity is defined following the inward normal to the

element. Since the elements are in parallel, it is preferred to

work with admittances as presented in Sec. II A. Conse-

quently, Eq. (20) can be rewritten in terms of an admittance

matrix as

Ua

U0a

� �
¼ Y½ �DE Pa

P0a

� �
; (22)

with

Y½ �DE¼
yde

11 yde
12

yde
21 yde

22

" #
¼

tde
22

tde
12

� 1

tde
12

� 1

tde
12

tde
11

tde
12

2
6664

3
7775: (23)

Since, at the end of the DE pore, the velocity vanishes

(U0a¼ 0), the previous transfer matrix yields,

P0a ¼ �
yde

21

yde
22

Pa: (24)

For the BIOT element, the transfer matrix relation is given by

Pb

Ub

� �
¼ T½ �B P0b

�U0b

� �
; (25)

with

T½ �B¼
tb
11 tb

12

tb
21 tb

22

" #
¼

cosð�kBlÞ j �ZB sinð�kBlÞ
j
�ZB

sinð�kBlÞ cosð�kBlÞ

2
4

3
5; (26)

where the equivalent fluid properties are, respectively,

obtained from Eqs. (9) and (19) and correspond to the porous
FIG. 8. (Color online) Principle of the model including the non-symmetric

DE element.
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material without DE pores. The corresponding admittance

matrix is given by

Ub

U0b

� �
¼ Y½ �B Pb

P0b

� �
; (27)

with

Y½ �B¼
yb

11 yb
12

yb
21 yb

22

" #
¼

tb
22

tb
12

� 1

tb
12

� 1

tb
12

tb
11

tb
12

2
6664

3
7775: (28)

Invoking continuity of pressure (P¼Pa¼Pb) and conti-

nuity of flow rate (SU¼ S(UaþUb)) at the air-element inter-

faces, Eqs. (22), (24), and (28) yield,

U ¼ yb
11 þ yde

11 �
yde

12

� �2

yde
22

 !
Pþ yb

12P0b

U0b ¼ yb
12Pþ yb

22P0b

8><
>: : (29)

Here, it is worth mentioning that Ua and Ub are the mac-

roscopic fluid velocity in the fluid domain in front of each

element, respectively. They are related to the velocity in the

pores by Ua¼/DEua and Ub¼/Bub. Consequently, this

yields, at the macroscopic scale, the continuity of velocity:

U¼/DEuaþ/Bub.

By solving Eq. (29) for P and U, the non-symmetric ma-

trix system can be written as,

P
U

� �
¼ T½ �NS P0b

�U0b

� �
; (30)

with

T½ �NS¼ 1

yb
12

�yb
22 �1

yb
12

� �2�yb
22 yb

11 þ yde
11 �

yde
12

� �2

yde
22

 !
� yb

11 þ yde
11 �

yde
12

� �2

yde
22

 !
2
664

3
775: (31)

Matrix T½ �NS
is the transfer matrix of the two elements in par-

allel. The index, NS, is chosen for the non-symmetric DE ele-

ment. This system preserves the reciprocity principle since

det T½ �NS¼ 1; however, it is not of a symmetric nature (i.e.,

tns
11 6¼ tns

22). The validation of this approach will be discussed

in the experimental part of the present study.

2. Symmetric configuration

Now, the element is assumed symmetric, which means

that DE pores are seen on both faces of the equivalent ele-

ment. This type of element is shown in Fig. 9. For this case,

the previous approach is used to establish the transfer matrix

of the porous aggregate with DE porosity.

At first, it is important that the BIOT element be divided

in two along the thickness. Consequently, the sample has a

thickness that is half the total thickness (i.e., l! l/2) and the

middle is located at point b0. It is assumed that the DE and

BIOT elements have homogeneous properties along the

thickness. In this case, the porosities, /DE and /B, are the

same for the first and second halves. Note that since the DE

porosity is seen equivalently by incident waves on both faces

of the sample, the DE pore thickness is the same for the first

and second halves and is given by the averaged length, lDE.

Even if, in Fig. 9, the DE porosity seems virtually doubled,

the porosity stays as /DE.

With the previous description, the transfer matrix of the

first half is computed as was done in the previous section.

The only change is to use l/2 instead of l. In this case, the

transfer matrix relation of the first half is written as,

P
U

� �
¼ T½ �A

P0b
�U0b

� �
; (32)

where T½ �A¼ Tðl=2Þ½ �NS
is the transfer matrix of the first half of

the porous aggregate with the DE porosity on the front surface.

For the second half, a similar development is performed.

For the DE pore on the right, the following relations are

developed:

P000a

U000a

( )
¼

tde
11 tde

12

tde
21 tde

22

" #
P00a

�U00a

( )
; (33)

and

U000a

U00a

( )
¼

yde
11 yde

12

yde
21 yde

22

" #
P000a

P00a

( )
: (34)

With the boundary condition, U000a ¼ 0, the previous equation

yields

P000a ¼ �
yde

21

yde
22

P
00

a: (35)

For the second half of the BIOT element (i.e., from b0 to

b00), the following relations are developed:

FIG. 9. (Color online) Principle of the model including the symmetric DE

element.
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P0b

U0b

( )
¼

tb
11 tb

12

tb
21 tb

22

" #
P00b

�U00b

( )
; (36)

and

U0b

U00b

( )
¼

yb
11 yb

12

yb
21 yb

22

" #
P0b

P00b

( )
: (37)

Invoking the continuity of pressure and continuity of

flow rate at the air-element interfaces, and solving for P0b
and U0b, the transfer matrix relation of the second half is

written as,

P0b
U0b

� �
¼ T½ �B

P00

�U00

� �
; (38)

where [T]B is the transfer matrix of the second half of the po-

rous aggregate with the DE porosity on the rear surface. It is

given by

T½ �B¼
1

yb
12

� yb
22 þ yde

22 �
yde

12

� �2

yde
11

 !
�1

yb
12

� �2�yb
11 yb

22 þ yde
22 �

yde
12

� �2

yde
11

 !
�yb

11

2
66664

3
77775:

(39)

To form the global transfer matrix of the whole symmet-

rical porous aggregate with the DE porosity, the chain rule

on transfer matrix multiplication is used. This gives,

P
U

� �
¼ T½ �S P00

�U00

� �
; (40)

with

T½ �S¼ T½ �A T½ �B: (41)

3. Remarks

(a) This transfer matrix has the following properties: reci-

procity (i.e., det T½ �S¼ 1), symmetry of the material (i.e.,

ts11 ¼ ts22), and compatibility with other classical transfer

matrices.2

(b) This approach can be adapted to heterogeneous DE

materials with different DE parameters on each

half.

(c) If T½ �A is computed with thickness, l, instead of l/2, then

the non-symmetric matrix T½ �NS
of Sec. II F 1 is found. If

T½ �B is computed with thickness, l, instead of l/2, then a

similar non-symmetric model is found; however, this

time the DE pores are localized on the other side. In con-

clusion, the symmetric transfer matrix model encom-

passes the non-symmetric model and is, therefore, more

general.

G. Acoustical indicators

1. Sound transmission loss

From the transfer matrix approach, it is easy to study the

sound transmission of a porous material with DE porosity.

The global transfer matrix of a porous media with DE poros-

ity is, ½T�mat
. This matrix must be adapted to the particular

case under study. If a non-symmetric configuration with the

DE pores on the front face is considered, then

½T�mat ¼ ½T�NS ¼ ½TðlÞ�A. If the DE pores are on the rear face,

then ½T�mat ¼ ½TðlÞ�B. If a symmetric configuration is consid-

ered, then ½T�mat ¼ ½T�S. From the appropriate transfer ma-

trix, the sound transmission coefficient and the transmission

loss in normal incidence are given by

sj j ¼ 2

tmat
11 þ tmat

22 þ tmat
12 =Z0 þ tmat

21 Z0

				
				; (42)

and

TL ¼ �20 log10 sj jð Þ; (43)

where Z0 is the characteristic impedance of the air.

2. Sound absorption coefficient

To obtain the sound absorption coefficient from the

transfer matrix method, one first needs to define the backing

condition and use the appropriate system transfer matrix,

½T�syst
. If the porous material with DE porosity is backed by a

rigid wall, ½T�syst ¼ ½T�mat
. If the porous material with DE po-

rosity is backed by an air cavity and a rigid wall,

½T�syst ¼ ½T�mat½T�cav
, with

T½ �cav¼
cosðk0lcavÞ jZ0 sinðk0lcavÞ
j

Z0

sinðk0lcavÞ cosðk0lcavÞ

2
4

3
5; (44)

where k0 is the wave number of air, and lcav is the depth of

the cavity. Then, from the appropriate system transfer ma-

trix, the normal incidence surface impedance of the studied

configuration is given by,

ZS ¼
tsyst
11

tsyst
21

; (45)

and the normal sound absorption coefficient is given by,

aN ¼ 1� ZS � Z0

ZS þ Z0

				
				
2

: (46)

III. EXPERIMENTAL RESULTS

A. Simplified sample

To confirm the validity of the exposed model, a simpli-

fied non-symmetric sample with well-controlled parameters

was tested. The sample consists of a circular column of

8



Teflon which is perforated with regular cylindrical perfora-

tions (see Fig. 10). Some perforations are complete (they

represent the kinematic porosity), while others are incom-

plete or semi-closed (they represent the DE porosity). The

open ends are only visible on one face of the sample (face

A). The depth of the semi-closed holes is lDE¼ 25 mm, the

sample thickness is l¼ 30 mm, its diameter is 44.4 mm, the

perforation diameter is d¼ 2 mm, and the minimum perfora-

tion constriction is dmin¼ 1.8 mm (error due to the perfora-

tion process). The porosities are /B¼ 14%, /DE¼ 13.5%.

Table I summarizes the DE parameters of the tested sample.

For this kind of simple material, the Johnson-Champoux-

Allard (JCA) parameters are easily defined for both the Biot

and DE domains. The viscous and thermal lengths, the tortu-

osity and the resistivity are given, respectively, by JCA’s pa-

rameters for cylindrical pores:2 K0 ¼ d/2, K¼ dmin/2, a1¼ 1,

and r¼ 32g//d2, where g is the dynamic viscosity of air and

/ is the open porosity (use /B for the Biot domain; use /DE

for the DE domain). Since the sample thickness is large com-

pared to the perforation diameter, the sound radiation of the

perforation openings in open air is not considered here.

A three-microphone impedance tube is used to measure

the normal sound absorption coefficient and sound transmis-

sion loss of the sample coupled to an air cavity and a rigid ter-

mination. The frequency range between 200 Hz and 4200 Hz

was chosen to ensure that only plane waves exist in the tube

(the tube diameter is 44.45 mm; the cut-off frequency is

4400 Hz). The two microphones upstream of the sample are

used to measure the sound absorption by the standard imped-

ance tube measurement technique.24 Since the simplified sam-

ple is non-symmetric, the sound absorption coefficient of each

face will be measured. A third microphone, localized on the

hard wall backing (behind the backing cavity), measures the

transfer matrix and deduces the transmission loss by way of

the “three-microphones and two-cavity method.”25 For the

transmission loss measurement, the choice of surface exposi-

tion of the non-symmetrical material is not important since

the reciprocity principle applies on the transmission. The

sound pressure excitation is random noise in the linear regime.

The majority of repeatability errors occur from the way the

sample is positioned in the tube: special attention was there-

fore paid to this positioning. However, since this error is low

for these measurements, their associated error bars are not pre-

sented as graphs.

The results, which are presented in Figs. 11 and 12, cor-

respond to the configuration where face A (showing the DE

pores) is on the source side. Figure 11(a) shows the compari-

son between the experimental results and the models’ predic-

tions (present model and JCA model) of the absorption

coefficient of the simplified non-symmetric sample coupled

to a 20-mm air cavity gap and a rigid wall. The present

model with the non-symmetric transfer matrix given by

[T(l)]A is used. The first absorption peak (around 750 Hz)

represents the air cavity effect, and the second peak (around

3300 Hz) represents the semi-closed hole effect (i.e., DE po-

rosity effect) on the excitation side. Compared to the JCA

model (where only kinematic porosity is taken into account),

the present model improves the comparison with experi-

ments. In fact, the present model precisely predicts the fre-

quency position of the two peaks, although the absorption

peak values are slightly different. The comparison between

the experiments and predictions for a different air cavity gap

(lcav¼ 50 mm) is presented in Fig. 11(b). Around 3300 Hz,

the air cavity effect and the DE porosity effect are coupled

FIG. 10. (Color online) Photo of the simplified non-symmetric sample. Face

A (left) includes all pores. Face B (right) only includes effective pores (with-

out DE pores).

TABLE I. Dead-end parameters of the non-symmetric simplified sample.

Total porosity (%) /B (%) /DE (%) lDE (mm)

27.5 14 13.5 25

FIG. 11. Comparison between the experimental results and the models’ pre-

dictions of the absorption coefficient of the simplified non-symmetric sam-

ple coupled to an air cavity and a rigid wall. Face A (showing DE pores) is

on the source side. (a) 20-mm thick air cavity. (b) 50-mm thick air cavity.
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on the absorption coefficient: note that the present model

accounts for this coupling effect.

Figure 12 presents the comparison between the experi-

mental results and the models’ predictions of the transmis-

sion loss of the simplified non-symmetric sample. Here, the

presence of the DE pores significantly modifies the transmis-

sion loss: a large peak of transmission loss appears around

3300 Hz. The frequency position of this transmission loss

peak is quite dependent on the value of lDE. Good agreement

is obtained between the present model and the experimental

results.

Figures 13 and 14 present the sound absorption and

transmission loss of the same simplified non-symmetric sam-

ple, however, this time the sample is inverted in the tube.

Contrary to the previous results, the DE pores (face A) are

now facing the backing air cavity and rigid wall. Hence, the

non-symmetric matrix given by [T(l)]B is used. Figure 13

presents the comparison between the experiments and the

predictions for the absorption coefficient of the simplified

non-symmetric sample coupled to two different air cavity

gaps: lcav¼ 20 mm and lcav¼ 50 mm. The experimental and

simulated results are logically quite different compare to the

preceding part, particularly concerning the absorption peak

caused by the DE pores. For lcav¼ 20 mm, this peak almost

disappears. Only a very small peak emerges around 3300 Hz.

For lcav¼ 50 mm, three absorption peaks can be observed:

the first two correspond to the Biot pore coupled with the air

cavity effect, while the third peak corresponds to the DE

pore coupled with the air cavity effect. For the sound

absorption coefficient, the comparison between the experi-

mental results and the present model’s predictions is

satisfactory.

In Fig. 14, the simulated transmission loss in the

inverted configuration is logically equivalent to the one pre-

viously obtained in Fig. 12 due to the reciprocity of the trans-

fer matrix. Similarly, the experimental results are not very

different from those presented in Fig. 12. The slight differen-

ces may be attributed to experimental errors and to the posi-

tioning in the tube when the sample was inverted.

FIG. 12. Comparison between the experimental results and the models’ pre-

dictions of the transmission loss of the simplified non-symmetric sample.

Face A (showing DE pores) is on the source side.

FIG. 13. Comparison between the experimental results and the models’ pre-

dictions of the absorption coefficient of the simplified non-symmetric sam-

ple coupled to an air cavity and a rigid wall. Face A (showing DE pores) is

on the backing cavity side. (a) 20-mm thick air cavity. (b) 50-mm thick air

cavity.

FIG. 14. Comparison between the experimental results and the models’ pre-

dictions of the transmission loss of the simplified non-symmetric sample.

Face A (showing DE pores) is on the source side.

10



In this section, a simplified sample was presented to val-

idate the present model and to show the importance of

accounting for the DE porosity. The comparisons between

the predictions of the present model and the experimental

results are in good agreement for both the sound absorption

coefficient and the sound transmission loss. Similar results

were also obtained for a series of other simplified non-

symmetrical samples with different parameters. For the sake

of simplicity, these results were not reported here. The fol-

lowing section will test the present model with a more com-

plex and more realistic material than the simplified non-

symmetrical sample.

B. Aluminum foam sample

In this study, a number of different aluminum foams

were tested and one has been selected for presentation in this

article (see Fig. 15). The base material used was AS7 G alu-

minum. The Johnson-Champoux-Allard (JCA) parameters of

the aluminum foam have first been measured. The static air-

flow resistivity, r, and global porosity, /, have been meas-

ured by a resistivity meter and a weight differential

approach, repectively.26,27 To characterize the tortuosity,

a1, and characteristic lengths, K and K0, the ultrasound

method has been used.28–31 This method allows for the mea-

surement of the equivalent length,

Leq ¼
1

K
þ c� 1

BK0


 ��1

; (47)

where c is the adiabatic constant of gas and B2 is the Prandtl

number.

The Leq values were found to be very weak, suggesting

that the constrictions between two cells are very narrow.

This can be seen on the microstructure pictures (Fig. 2),

which also allows for the observation of the pore size. The

ratio between K0 and K was difficult to find; the typical ratio

for classical material is generally between 2 and 4. There-

fore, image analysis was used on several images to estimate

K0/K: microscope pictures of transversal and longitudinal

cross-sections of a material sample were taken with different

light incidences, in order to improve the contrast of the pic-

ture and to clearly differentiate the surface open cells with

the solid surface, and to differentiate the cell interstices with

cells. Following this procedure, the mean pore size of the

foam (dcell) and the size of the interstices (dhole) were

obtained. In a first approximation, the ratio, K0/K, was identi-

fied by the ratio, dcell/dhole.

These experimental methods to define the JCA parame-

ters introduce significant errors when applied to metallic

foams; therefore, for each JCA parameter it is important to

define a mean value, �x, and a standard deviation, rst:dev:, such

that x ¼ �x 6 rst:dev:. These errors were then included in the

models (JCA and present models). In the figures, the models’

predictions are represented with their error bars. The JCA

acoustic parameters (mean value and standard deviation) are

summarized in Table II. As will be shown, the errors on the

JCA parameters introduce notable errors on the predictions

of the transmission loss and sound absorption coefficient,

which are more significant than those obtained with imped-

ance tube measurements. To facilitate the readability of the

results, only the error bars on the predictions are presented in

the figures.

To take into account the DE porosity effect, the DE pa-

rameters (lDE and /DE) had to be determined. For lDE, a mul-

tiple of the statistical pore size was chosen: lDE¼ n dcell. To

determine n and /DE, a fitting approach on the experimental

results was used. Since it is very difficult to precisely define

lDE and /DE for these kinds of complex foams, work is in

progress to estimate them; notably, from micro-tomography,

acoustics low frequency methods, and ultrasound methods.

The DE parameters used (mean value and standard devia-

tion) are summarized in Table III. For the usual porous mate-

rials (without dead end), no simple link between microscopic

geometry and macroscopic parameters exists except for sim-

ple geometries (cylindrical pores). Similarly, in our case, for

simple cylindrical pores without constriction, the DE poros-

ity would simply be that of the DE and the lDE would be its

length. For pores with more complicated shapes (ink bottle

pores or pores with constrictions…) there is no straightfor-

ward interpretation of the microscopic/macroscopic link.

The macroscopic characterization of these two DE parame-

ters has been currently studied (for example, by ultrasonic

techniques).

For this kind of material, it is preferable to use the sym-

metric transfer matrix, [T]S, for predicting its acoustical indi-

cators. In fact, due to the random nature of the fabrication

process, the DE pores are dispersed throughout the material

in a homogeneous manner.

FIG. 15. (Color online) Photo of the surface of the tested aluminum foam.

TABLE II. Johnson-Champoux-Allard (JCA) parameters of the aluminum

foam sample.

JCA parameters K (lm) K0 (lm) a1 r (Pa s/m2) / (%)

Mean value 101 352 2.25 19 713 64.5

Standard deviation 4 14 0.05 300 3

TABLE III. Dead-end parameters of the aluminum foam sample (fitting and

experimental approaches).

Total porosity (%) /B (%) /DE (%) lDE (mm)

64.5 6 3 � 55 � 7.5 � 7dcell
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1. Remark

At this stage of the research, we have chosen to use the

same JCA parameters, measured on the global aluminum

foams (see preceding text), for both the DE element (KDE,
K0DE, a1DE, and rDE) and the Biot kinematic element (KB,
KB, a1B, and rB). The choice of these parameters will have

to be studied more precisely in the future.

As in the previous section, the impedance tube with the

two-microphone technique is used to measure the sound

absorption and the three-microphone technique is used to

measure the sound transmission loss.

Figure 16 presents the comparison between the experi-

mental results and the models’ predictions ([T]S symmetric

approach and JCA model) of the absorption coefficient of

the studied aluminum foam sample coupled to: (a) a rigid

wall (lcav¼ 1 mm), and (b) a 50-mm air cavity backed by a

rigid wall. One can note that the present approach and JCA

model yield comparable results in terms of sound absorption

and compare well with experiments. However, a slight shift

toward low frequencies is observed with the present symmet-

ric approach. This yields a better prediction of the absorption

peaks. This seems to show that the present approach adds the

necessary degree-of-freedom to capture the physics of the

DE pores in the material, which are not captured with the

JCA model.

Figure 17 presents the comparison between the experi-

mental results and the models’ predictions on the transmis-

sion loss of the aluminum foam sample. The comparison

between the present model and the experimental results is

encouraging. Here, it is clear that the JCA model does not

capture the effects of the DE pores, even considering the

error bars on the prediction; by contrast, the present model

with its error bars always includes the experimental curve

for the entire frequency band. The theoretical curve calcu-

lated from the JCA model in which only a porosity correc-

tion is applied shows very interesting results. Indeed, this

curve clearly demonstrates that in the frequency range

(125–3500 Hz). The effect of the dead end consists mainly

in a porosity variation, and both the JCA model with Biot po-

rosity and the present model predict the experimental results

fairly well. Above 3500 Hz, the experimental results show

that the modified JCA model fails to accurately predict the

results. Only the present model, which accounts for both the

porosity correction and dead end cavity effect seem able to

predict the experimental results.

2. Remark

We should note that it was difficult to test this metallic

foam in a classical impedance tube for higher frequencies

without changing the DE parameters of metallic foam.

Indeed, with respect to the plane wave propagation in the

classic impedance tube in order to test higher frequencies,

the sample cross-section diameter would have to be smaller.

The homogenized principle cannot be strictly applied to the

DE pores in the transversal cross-sections.

Generally, the present model improves the comparison

with experimental results for a part of all of the tested

FIG. 16. Comparison between the experimental results and the models’ pre-

dictions of the absorption coefficient of the aluminum foam sample. (a)

Hard wall backing (lcav< 1 mm). (b) Air cavity backing (lcav¼ 50 mm) on

hard wall.

FIG. 17. Comparison between the experimental results and the models’ pre-

dictions of the transmission loss of the aluminum foam sample. The frequen-

cies bandwidths are 125 and 4200 Hz for the experimental results and 125

and 5500 Hz for the model results.
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aluminum foams. However, for certain foam samples, the

proportion of the DE porosity is weak and the DE effect on

the sound absorption and sound transmission loss is low (i.e.,

modifications are on the order of the estimation errors of the

DE parameters). Moreover, more research and experiments

on a greater number of samples are necessary in order to

improve the experimental methods and to more precisely

define the two DE parameters.

IV. CONCLUSIONS

In this study, the acoustic properties of materials with

dead-end (DE) porosity were examined and, in particular, a

certain class of metallic foams. For these materials, the classi-

cal fluid model predictions such as the Johnson-Champoux-

Allard model are not as satisfying as for other materials.

From a microscopic analysis of dead end pores, a simple

model that offers a correction taking this complex micro-

geometry into account was proposed. After a homogeniza-

tion process, two acoustic transfer matrix approaches were

investigated: one for the non-symmetric DE element, and the

second for the symmetric DE element. It appears that the

symmetric matrices modeling encompasses the non-

symmetric modeling and is therefore, more general.

To validate this model, materials with well controlled pa-

rameters, and including DE pores (“simplified samples”) were

tested. With the use of an impedance tube and the two- and

three-microphone technique, the coefficients of absorption

and transmission loss were measured. It was found that the

comparison between the present model and the experimental

results is in much better agreement and the importance of

accounting for the DE porosity is noted. Measurements on

metallic foams show that an improvement on the theoretical

predictions can be obtained with this correction. Analysis of

the transmission loss shows the two effects of the two DE pa-

rameters on the acoustic indicators. However, for certain me-

tallic foams, the influence of the DE porosity introduces

modifications on the order of estimation errors on these pa-

rameters and thus, does not allow for definite conclusions.

It is important to develop new theoretical and experi-

mental research on the homogenized criterion and on the two

new macroscopic parameters, lDE and /DE (for example:

micro-tomography, ultrasonic characterization, comparison

of different / measurements, and theoretical study of these

materials in bottom-up approaches). It is also necessary to

refine the methods of the evaluation of the JCA parameters

(notably a1, K, K0) and to reduce the uncertainty of the

measurements. These new works have to be developed in

order to answer the question of whether a material with a

complex microstructure can be modeled as one with equiva-

lent dead end pores.
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