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R. Panneton3 
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This study examines the acoustic properties of materials with complex micro-geometry 

containing partially open or dead-end porosity. One of these kinds of materials can be 

obtained from dissolving salt grains embedded in a solid metal matrix with the help of water. 

The solid matrix is obtained after the metal in liquid form has invaded the granular material 

formed by the salt particles at negative pressure and high temperature, and after cooling and 

solidification of the metal. Comparisons between theoretical and experimental results show 

that the classical Johnson-Champoux-Allard model does not quite accurately predict the 

acoustic behavior. These results suggest that the assumptions of the Biot theory may not be all 

fulfilled and that Helmholtz-type resonators and dead ends can be present in the material. The 

first part of the study proposes a simple model to account for this geometry. Based on this 

model, two acoustic transfer matrices are developed: one for non symmetric and one for 

symmetric dead-end porous elements. This model can be used to study the acoustic absorption 

and sound transmission properties of the type of material described above. In the second part, 

a series of simplified samples are proposed and tested with a three-microphone impedance 

tube to validate the exposed model. Finally, the third part compares predictions of the exposed 

model to impedance tube results on a real aluminum foam sample containing dead-end pores. 
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I. INTRODUCTION 

Air-saturated porous metals such as porous aluminum may be used in numerous 

applications such as thermal exchangers or shock absorbers in the automobile and aircraft 

industries. These materials also exhibit interesting acoustic properties. In many applications, 

they can withstand fairly high temperatures, they can be used in hostile environments (fluid 

projection, flames) and they are durable and stable in time.  

The metal foam obtained following the fabrication process1  depicted in Figure 1 is behind 

the motivation of the exposed work. In this process, melted aluminum is poured in a container 

filled with salt grains. The melting temperature of aluminum is 660°C while that of the 

sodium chloride (NaCl) is 801°C. Melted aluminum can therefore fill the interstitial spaces 

between the solid grains. A negative pressure suction is applied in order to facilitate the flow. 

The grain size distribution can be controlled by successive sieving of the salt grains. After the 

metal has cooled down, the sample is cut and plunged in water to dissolve the sodium 

chloride. Then the sample is dried, air replaces the space formerly occupied by the solid 

grains and the sample porous metal is created. Figure 2 shows an aluminum foam resulting 

from this fabrication process. 

 

 
 

Figure 1: Principle of the making of aluminum foams1. 

 

At first sight, the observation of the microstructure and characteristic size of the pores 

suggest that an equivalent fluid model is well adapted to study the acoustic properties of the 

resulting foam. In the past, equivalent fluid models have been derived to describe the acoustic 
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wave propagation in rigid-frame open-cell porous media saturated by air.2 The model used in 

the exposed work is that of Johnson-Champoux-Allard. This phenomenological model is 

accurate and has been applied successfully to sound absorbing materials such as polyurethane 

foams or fibrous materials2-4. 

In this article, it is experimentally shown that a classical equivalent fluid model is not as 

accurate as expected for the studied metallic foams: it appears that not all the assumptions of 

the classical model are fulfilled. In particular, a closer look at the microstructure (Figure 2) 

seems to show that some pores are connected to the exterior by one end only. Observation 

using three-dimensional pictures obtained by a micro-tomography approach confirms the 

presence of dead-end porosity in these metallic foams.  

 

Cells 

Pore 
opening 

 
 

Figure 2: Microstructure of the porous metallic foam1.  

 

As summarized in Figure 3, the hydrogeology scientist distinguishes different kinds of 

porosities:5,6 

- Total porosity is defined as the ratio between the air volume (volume without material) 

and the total volume of the sample in a homogeneous area (representative sample). This 

porosity includes closed and open porosities. 

- Closed porosity (also called residual porosity) represents the cells that are completely 

closed (not interconnected with others cells). In the rigid frame approach these cells do not 

influence the acoustical behavior of material.  
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- Open porosity (also called effective porosity or connected porosity) is defined as the ratio 

of interconnected pores to the bulk volume of the porous material. This is the ratio between 

the “mobile volume” of saturation water released under the effect of a complete drainage and 

the total volume of the sample. This porosity includes kinematic and dead end porosities. 

- Kinematic porosity, is related to the displacement of water moving in a permeable 

medium. It is equivalent to the ratio of the volume of the interstices truly traversed by moving 

water and the total volume of the medium. The kinematic porosity is the one used in the Biot 

model and is therefore referred to as the "Biot porosity" in the remaining of this paper. 

- Dead-end porosity (that can also be referred to as "ink bottle porosity") is defined as the 

ratio of the volume of non moving water in closed cells to the bulk volume of the porous 

material; it represents the cells that, although connected to another cell and to the exterior at 

one end, remain closed at the other end. Bear,7 who in 1979 worked on interconnected pore 

space, stated that the porous medium contains dead-end pores, corresponds to material which 

partially contains pores or channels with only a narrow single connection to the 

interconnected pore space, so that almost no flow occurs through them.  

 

 
 
Figure 3: Illustration showing different porosity levels. 

 
Gibb8 presented a study which documents the laboratory technique for measuring effective 

porosity of fine-grained soils. This approach is based on the travel time measurement though 

the media. Migration or flow through a porous media can be evaluated by means of tracers. 

These techniques are difficult to use and are not well adapted to all porous media. Zwikker 

and Kosten6 noticed the effect of dead-end porosity on the acoustic properties of material, but 

Total porosity 

open porosity closed porosity 

kinematic 
porosity 

dead-end 
porosity 
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they did not offer a theoretical description of this phenomenon. Previous studies9-11 noticed 

that the presence of dead-end pores seems to modify the permeability, tortuosity and flow 

resistivity. More recently, Chevillote et al.12 studied the sound-absorption predictions of 

perforated closed-cell metallic foams. They chose a microstructure-based model approach, 

and they compared the model with the experimental results. The porous media used in their 

study included dead-end pores created by perforating solids incorporating gas inclusions 

(closed porosity). They observed that the dead-end pores could have significant effects on the 

media acoustic behavior.  

To model the acoustic behavior of this kind of porous material, it is therefore important to 

take into account the effect of dead-end pores. This complex geometry is not taken into 

account in the classical equivalent fluid models2. Based on a simple approach, a new model is 

proposed to account for the presence of dead-end porosity in the material as well as the 

complexity of pore shapes. It includes two new parameters in addition to the five parameters 

(Biot porosity, tortuosity, static flow resistivity, viscous and thermal characteristic lengths) of 

the classical Johnson-Champoux-Allard model. The new parameters are: the dead-end 

porosity φDE and an average length of the dead-end pores lDE. Comparison of the results 

provided by the modified model with experimental results seems to give a better match. In 

order to validate the present model, a comparison between theoretical and experimental 

results was carried out on a "simplified sample" (sample with well-controlled microstructural 

parameters) and on a porous metallic foam that is likely to incorporate dead end pores. 

Sections of the present article were presented at a conference.13 

II. MODEL FOR DEAD-END POROSITY 

A. Simple model at the microscopic scale 

As mentioned above, dead-end porosity is known in geophysics4 and its effects has been 

observed on some porous materials in acoustics.4,9-12,14 However, to our knowledge no refined 

model of acoustic wave propagation in media with this micro-structural feature has been 

published.  



 

 6 

Figure 2 also reveals the presence of narrow channels between the cavities. These very 

narrow constrictions are thought to be the cause of rotational flow with nonzero vorticity; 

however, this phenomenon is not studied here. 

The presence of dead-end porosity in the studied materials is initially modeled at the 

microscopic level in terms of acoustic admittances, and then a homogenized version of a 

microscopic relationship between admittances is proposed. First of all, a circular duct of 

constant cross section S is considered as shown in Figure 4. This duct is acoustically 

characterized by its characteristic impedance Z. The right end of the duct is connected to two 

auxiliary ducts 1 and 2 of respective characteristic impedances Z1 and Z2, in the configuration 

of a Y-shape junction. The two branches after the crossroad are also of constant section S1 and 

S2, respectively. 

 
 
 
 
 
 
 
 
 
 

Figure 4: Y-shape junction between three branches in a porous medium. 
 
 

This problem is a classical academic problem15 and, assuming a left-to-right propagation 

from the principal branch to the secondary branches, the following relationship exists between 

admittances:  

1 2Y Y Y= + ,    (1)     

where Y, Y1 and Y2 are respectively the acoustic admittances of the main branch and of 

branches 1 and 2, related to the characteristic impedance of each branch through the following 

relations:  

S
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Z
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The characteristic impedances Z, Z1 and Z2 normalized by the sections are referred to as 

"acoustic impedances."15   

It is now considered that one of the branches – branch 1 for example – is closed (see 

Figure 5). The previous relation (1) remains valid with the difference that Y now represents a 

local admittance at the end of the main branch while Y1 corresponds to the local admittance at 

the entrance of branch 1.  

 
 
 
 
 
  
 
 

Figure 5: Y-shape junction in a porous medium with one branch closed. 
 

If branch 1 has a constant cross section and if the closing wall is rigid and perpendicular to 

the branch axis, the admittance Y1 is given by: 

1
1 ( )C

S
Y

j Z cotan kl
=

−
,   (3) 

where ZC is the characteristic impedance of air, k the wavenumber, l the length of branch 1 

and j the unit imaginary complex number (a time dependence in exp(jωt) has been chosen, ω 

being the angular frequency). 

B. Model at the macroscopic scale and average length of the dead 
ends 

It is assumed that, at the considered frequencies, the wavelengths are much greater than the 

characteristic sizes of the microstructure. The behavior described at the microscopic scale can 

then be homogenized: 

1 2Y Y Y= + ,    (4) 

where Y , 1Y  et 2Y  represent the averaged quantities associated with Y, Y1 et Y2, respectively, 

in a homogenization volume in the porous medium. In addition, it is assumed that in the 

2Y  

1Y  
Y  
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studied materials, the cross sections of all branches are statistically uniform so that they do 

not play a role in equation (4). 

This last equation can be easily interpreted. For a linear propagation, the acoustic behavior 

of a material containing dead-end pores is given by the sum of two contributions: 2Y  

associated with the fully open pores and 1Y  associated with the partially open pores (dead-end 

pores). The volume proportion of the dead-end pores will be noted φDE (for φDead End) while 

the porosity of the fully opened pores will be noted φB (for φBiot). These two porosities are 

related to the total open porosity through the relation: 

B DEφ φ φ= + .    (5) 

A pore can be considered "fully opened" if, when considering a slab of material at the 

laboratory scale, one can find a path connecting the front and the rear surface of the slab, the 

pore being connected to the exterior by both ends. A "partially opened" or "dead-end" pore 

would be one with only one end connected to either the front or the rear surface of the slab. It 

is important to make a distinction between the "opened porosity" φ and the porosity of the 

"connected effective pores" φB (the former will always be greater than or equal to the latter). 

Among the open pores, some can be closed at one end. 

The 2Y  contribution is that of the pore that verifies the assumptions of the Johnson-

Champoux-Allard model. It can be expressed as: 

BZ
Y

1
2 = ,    (6) 

where BZ  is the characteristic impedance of the classical model, defined only for fully opened 

pores of porosity φB.  

From (3), one can define for 1Y  an average value, integrated over a homogenization 

volume VDE of dead end pores: 
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∫∫∫

∫∫∫
=

DE

DE

V

V

C dV

dVkl

Z

j
Y

)tan(

1 .  (7) 

If the additional assumption kl << 1 is made, equation (7) becomes, to the first order: 

∫∫∫

∫∫∫
≈

DE

DE

V

V

C dV

ldV

Z

jk
Y1 .   (8) 

This assumption is valid for dead-end pores that are much shorter than any acoustic 

wavelength. This allows us to define an average length of the dead-end pores by:   

∫∫∫

∫∫∫
=

DE

DE

V

V

DE
dV

ldV

l .   (9) 

The admittance (8) is finally expressed as: 

1
DE

C

jkl
Y

Z
≈ .    (10) 

To illustrate this approach, an example of a material with simple geometries is proposed 

(see Figure 6 in this material, it is clear that lDE = d. With definition (9), this result is easily 

retrieved: 

d
nV

nVd

VVV

VdVdVd

dV

ldV

l

DE

DE

V

V

DE ==
+++
+++==

∫∫∫

∫∫∫

...

...
.    (11) 
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Figure 6: Example of a material with simple geometries, used to illustrate the lDE formulation.  

 
Remark: 

In the framework of the effective fluid approach of Biot16,17, the following length could be 

defined (instead of that of equation 9): 

∫∫∫

∫∫∫
=

V

Veff
DE

dV

dVl

l ,   (12) 

where V is a homogenization volume of bulk material involving the porous aggregate (solid + 

fluid). 

C. Accounting for dissipations in dead-end pores 

The previous equations for 1Y were established from a simple modeling of a dead-end pore 

at the microscopic scale as a closed duct. To account for viscous and thermal dissipations in 

the dead-end pores at the macroscopic scale, it suffices to replace ZC and k by those provided 

by the Johnson-Champoux-Allard model applied to the volume fraction of dead-end pores  

C DEZ Z→    and   DEk k→ .   (13a) 

while when applied to the volume fraction of the kinematic pores (the Biot porosity), one 

should use 

C BZ Z→    and   Bk k→ .   (13b) 
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Other remarks can be made about the model: 

a) Equation (4) indicates that the sole contribution 2Y  would correspond to a simple 

porosity correction. The additional contribution 1Y  accounts for the standing wave fields 

created in the dead-end pores. 

b) The principle of the model of acoustic wave propagation in porous materials including 

dead-end pores can be summarized with the schematic shown in Figure 7.  

c) The assumptions of the proposed model are the same as those of the classical model. 

One additional assumption has been added on the length of the dead-end pores. 

d) This model does not account for the presence of narrow constrictions in the material that 

are thought to be responsible for local flows with vorticity, even at low average flow velocity. 

D. Recall of the Johnson-Champoux-Allard model 

This section recalls the main results of the Johnson-Champoux-Allard model.2,4,18 This 

model is based on five macroscopic parameters: porosity φ, static airflow resistivity σ, 

tortuosity α∞, viscous characteristic length Λ, and thermal characteristic length Λ′. In the 

rigid-frame approximation, the solid matrix (skeleton) is considered much heavier and more 

rigid than the saturating air. As pointed out by Panneton,19 several approaches (effective or 

equivalent approaches) can be used to describe the complex density and bulk modulus of the 

slab. The approach used here consists in considering the slab of porous material in the rigid 

frame approximation as a slab of equivalent fluid with the following density ρeq(ω) and bulk 

modulus K eq (ω):  

( ) ( )






 −= ∞ ω
ω
ω

φ
ρα

ωρ Fj cf
eq 1 , (14) 

( )
( ) ( )

1

2
22

0

'

8
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1
−















Λ
−−−

=

ω
ρω

ηγγ

γ
φ

ω

BG
B

j

P
K

f

eq ,   (15) 

with 
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∞

=
αρ

σφω
f

c ,    (16) 

where η is the dynamic viscosity, B² the Prandtl number, γ the constant pressure and volume 

specific heat ratio (sometimes referred to as the adiabatic constant), and P0 the atmospheric 

static pressure. The parameter ωc is Biot's cut off angular frequency separating Biot's high and 

low frequency ranges. 

The functions F(ω) and G(B2ω) are the correction functions introduced respectively by 

Johnson et al18 and by Champoux and Allard.4 They are given by: 

( ) ω
σφ

αηρ
ω

222

24
1

Λ
+= ∞fjF ,  (17) 

and 

( )
η

ωρ
ω

16

'
1

22
2

B
jBG f Λ

+= . (18) 

All the necessary parameters for the acoustic characterization of porous layers are easily 

deduced with the help of ρeq(ω) and of Keq(ω). In particular, the characteristic impedance and 

wave number of are given by:   

)()()( ωωρω eqeq KZ =   and  
)(

)(
)(

ω
ωρ

ωω
eq

eq

K
k = .  (19) 

 
It is worth mentioning that these expressions (ρeq, Keq, Z , k ) can be applied to the open 

pores and to the dead-end pores with special attention on the choice of the macroscopic 

properties (notably φ=φDE for the dead-end domain, and φ=φB for the Biot domain). 

E. Correction of the Johnson-Champoux-Allard model to include 
dead-end pores 

The correction that includes the effect of dead-end pores is implemented through the use of 

equations (4), (5), (6) and (10) in order to calculate )(φY . Following Figure 7, the Johnson-

Champoux-Allard model is first applied on a material of porosity φB to determine )(2 BY φ  and 
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then a second time in order to determine )(1 DEY φ . In the second application of the model, a 

slab of thickness lDE and of porosity φDE must be considered. The acoustical properties of the 

material containing dead-end pores are finally deduced from )(φY given by equation (4).   

 
 
 
 
 
 
 
 
 
 
 

Figure 7: Principle of the model including dead-end pores. 

 

F. Transfer matrix method 

In acoustics, the transfer matrix method is a powerful method to optimize and predict 

sound absorption and sound transmission of single layer and multilayer sound absorbing 

materials2. In what follows, transfer matrices will be developed for the studied rigid-frame 

porous aggregate containing dead-end porosity for non-symmetric and symmetric 

configurations.  

F-1 Non-symmetric configuration 

A vertically periodic unit cell of a non-symmetric porous medium with dead-end porosity 

is shown in Figure 8. Here the porous medium separates two fluid domains. The cell is 

divided into two porous elements in parallel. The first element (element DE) is the one 

representing the dead-end porosity (non symmetric element). The second one is the BIOT 

element containing pores that are opened on both ends only (symmetric element), the whole 

being non-symmetric. Each element has equivalent macroscopic properties averaged over a 

representative homogeneous volume. To link acoustic pressures and velocities on both faces 

of the material, a transfer matrix relation can be developed. 

 

  Y(φ)     =    Y2(φB)   +  Y1(φDE) 

lDE 
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Figure 8: Principle of the model including non symmetric dead-end element 

 

For the DE element, the transfer matrix relation is given by:  
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with 
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where the prime symbol is assigned to an output port variable, and the averaged length and 

equivalent fluid properties are obtained from Eqs. (9) and (19), respectively. Here, the minus 

sign is added to take into account that velocity is defined following the inward normal to the 

element. Since the elements are in parallel, it is preferred to work with admittances as 

presented in Sec. II.A. Consequently, Eq. (20) can be rewritten in terms of an admittance 

matrix as 
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Since at the end of the dead-end pore the velocity vanishes (U’a = 0), the previous transfer 

matrix yields 
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y
P

22

21−=′ .    (24) 

For the BIOT element, the transfer matrix relation is given by 
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where the equivalent fluid properties are respectively obtained from Eqs. (9) and (19) and 

correspond to the porous material without dead-end pores. The corresponding admittance 

matrix is given by 
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Invoking continuity of pressure (P = Pa = Pb) and continuity of flow rate (SU =S(Ua + Ub)) 

at the air-element interfaces, Eqs.(22), (24) and (28) yield 
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2212

12
22

2

12
1111 .  (29) 

Here, it is worth mentioning that Ua and Ub are the macroscopic fluid velocity in the fluid 

domain in front of each element, respectively. They are related to the velocity in the pores by 

Ua = φDEua and Ub = φBub. Consequently, this yields, at the macroscopic scale, the continuity 

of velocity: U = φDEua + φBub. 
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Solving Eq. (29) for P and U, the non symmetric matrix system can be written as  
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Matrix [ ]NST  is the transfer matrix of the two elements in parallel. Index NS is chosen for Non 

Symmetric dead-end element. This system preserves the reciprocity principle since det[ ]NST  = 

1;  however it is not of symmetric nature (i.e. nsns tt 2211 ≠ ). The validation of this approach will 

be discussed in the experimental part of the present study. 

F-2 Symmetric configuration 

Now, the element is assumed symmetric, it means that dead-end pores are seen on both 

faces of the equivalent element. This type of element is shown in Figure 9. For this case, the 

previous approach is used to establish the transfer matrix of the porous aggregate with dead-

end porosity. 
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Figure 9: Principle of the model including symmetric dead-end element 

 
At first, it is important that the BIOT element be divided in two along the thickness. 

Consequently, the sample has a thickness half the total thickness (i.e. l � l /2) and the middle 

is located at point b’. It is assumed that the DE and BIOT elements have homogeneous 

properties along the thickness. In this case, porosities φDE and φB are the same for the first and 

second halves. Note that since the dead-end porosity is seen equivalently by incident waves 

on both faces of the sample, the dead-end pore thickness is the same for the first and second 
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halves and is given by the averaged length lDE. Even if in Figure 9 dead-end porosity seems 

virtually doubled, the porosity stays φDE. 

With the previous description, the transfer matrix of the first half is computed as done in 

the previous section. The only change is to use l/2 instead of l. In this case, the transfer matrix 

relation of the first half is written as 

[ ]

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where [ ] [ ]NS
A lTT )2/(= is the transfer matrix of the first half of the porous aggregate with 

dead-end porosity on the front surface. 

For the second half, a similar development is done. For the dead-end pore on the right, the 

following relations are developed 
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and 
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With the boundary condition 0=′′′aU , the previous equation yields 
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21 .   (35) 

For the second half of the BIOT element (i.e., from b’ to b’’ ), the following relations are 

developed 
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Invoking continuity of pressure and continuity of flow rate at the air-element interfaces, and 

solving for bP′  and bU ′ , the transfer matrix relation of the second half is written as 
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where [T]B is the transfer matrix of the second half of the porous aggregate with dead-end 

porosity on the rear surface.  It is given by 
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To form the global transfer matrix of the whole symmetrical porous aggregate with dead-

end porosity, the chain rule on transfer matrix multiplication is used. This gives 

[ ]
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with  

[ ] [ ] [ ]BA
S TTT = .   (41) 

Remarks : 

a) This transfer matrix has the following properties: reciprocity (i.e., [ ] 1det =ST ), 

symmetry of the material (i.e., ss tt 2211 = ), and compatibility with other classical transfer 

matrices.2 

b) This approach can be adapted to heterogeneous dead-end materials with different dead-

end parameters on each half. 

c) If [ ]AT  is computed with thickness l instead of l/2, then the non-symmetric matrix [ ]NST  

of paragraph F.1 is found. If [ ]BT  is computed with thickness l instead of l/2, then a similar 

non-symmetric model is found; however this time the dead-end pores are localized on the 
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other side. In conclusion, the symmetric transfer matrix model encompasses the non-

symmetric model and is therefore more general. 

G. Acoustical indicators 

G-1 Sound transmission loss 

From the transfer matrix approach, it is easy to study the sound transmission of a porous 

material with dead-end porosity. The global transfer matrix of a porous media with dead-end 

porosity is matT][ . This matrix must be adapted to the particular case under study. If a non-

symmetric configuration with dead-end pores on the front face is considered, then 

A
NSmat lTTT )]([][][ == . If the dead-end pores are on the rear face, then B

mat lTT )]([][ = . If a 

symmetric configuration is considered, then Smat TT ][][ = . From the appropriate transfer 

matrix, the sound transmission coefficient and the transmission loss in normal incidence are 

given by: 

0210122211 /

2

ZtZttt matmatmatmat +++
=τ ,  (42) 

and 
 

( )τ10log20−=TL ,    (43) 

where Z0 is the characteristic impedance of the air. 

G-2 Sound absorption coefficient 

To obtain the sound absorption coefficient from the transfer matrix method, one needs first 

to define the backing condition and use the appropriate system transfer matrix systT][ . If the 

porous material with dead-end porosity is backed by a rigid wall matsyst TT ][][ = . If the porous 

material with dead-end porosity is backed by an air cavity and a rigid wall, 

cavmatsyst TTT ][][][ =  with  
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where k0 is the wave number of air, and lcav is the depth of the cavity.  Then, from the 

appropriate system transfer matrix,  the normal incidence surface impedance of the studied 

configuration is given by:  

syst

syst

S
t

t
Z

12

11= .    (45) 

and the normal sound absorption coefficient by:  

2

0

01
ZZ

ZZ

S

S
N +

−
−=α .   (46) 

III. EXPERIMENTAL RESULTS 

A. Simplified sample 

To confirm the validity of the exposed model, a simplified non-symmetric sample with 

well-controlled parameters was tested. The sample consists of a circular column of Teflon 

which is perforated with regular cylindrical perforations (see Figure 10). Some perforations 

are complete (they represent the kinematic porosity), others are incomplete or semi-closed 

(they represent the dead-end porosity). The open ends are only visible on one face of the 

sample (Face A). The depth of the semi-closed holes is lDE = 25 mm, the sample thickness is l 

= 30 mm, its diameter is 44.4 mm, the perforation diameter is d = 2 mm, and the minimum 

perforation constriction is dmin = 1.8 mm (error due to the perforation process). The porosities 

are φB = 14 %, φDE = 13.5 %. Table 1 summarizes the dead-end parameters of the tested 

sample.  

 

 

Figure 10: Photo of simplified non-symmetric sample. Face A (left) includes all pores. Face B 
(right) only includes effective pores (without dead-end pores).  
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Total porosity 

(%) 
φB 

 (%) 
φDE  
(%) 

lDE 

(mm) 
27.5 14 13.5 25 

 

Table 1: Dead-end parameters of the non-symmetric simplified sample. 

 
For this kind of simple material, the Johnson-Champoux-Allard’s (JCA) parameters are 

easily defined for both the Biot and DE domains. The viscous and thermal lengths, the 

tortuosity and the resistivity are given respectively by JCA’s parameters for cylindrical 

pores:2 Λ’ = d / 2, Λ = dmin / 2, α∞ = 1, and σ = 32η/φd 2, where η is the dynamic viscosity of 

air and φ is the open porosity (use φB for the Biot domain; use φDE for the DE domain). Since 

the sample thickness is large compared to the perforation diameter, the sound radiation of the 

perforation openings in open air is not considered here. 

A three-microphone impedance tube is used to measure the normal sound absorption 

coefficient and sound transmission loss of the sample coupled to an air cavity and a rigid 

termination. The frequency range was chosen between 200 Hz and 4200 Hz to make sure that 

only plane waves exist in the tube (the tube diameter is 44.45 mm, the cut-off frequency is 

4400 Hz). The two microphones upstream the sample are used to measure the sound 

absorption by the standard impedance tube measurement technique20. Since the simplified 

sample is non-symmetric, the sound absorption coefficient of each face will be measured. A 

third microphone, localized on the hard wall backing (behind the backing cavity), measures 

the transfer matrix and deduces the transmission loss by way of the “three-microphones and 

two-cavity method” 21. For the transmission loss measurement, the choice of surface 

exposition of the non-symmetrical material is not important since reciprocity principle applies 

on transmission. The sound pressure excitation is random noise in linear regime. The majority 

of repeatability errors come from the way the sample is positioned in the tube: special 

attention was therefore paid to this positioning. However, as this error is low for these 

measurements, their associated error bars are not presented graphs.  
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The results which are presented on Figures 11 and 12 correspond to the configuration 

where face A (showing the dead-end pores) is on the source side. Figure 11(a) shows the 

comparison between experimental results and models’ predictions (present model and JCA 

model) of the absorption coefficient of the simplified non-symmetric sample coupled to a 20-

mm air cavity gap and a rigid wall. The present model with the non-symmetric transfer matrix 

given by [T(l)]A is used. The first absorption peak (around 750 Hz) represents the air cavity 

effect, and the second peak (around 3300 Hz) represents the semi-closed hole effect (i.e., 

dead-end porosity effect) on the excitation side. Compared to the JCA model (where only 

kinematic porosity is taken into account), the present model improves the comparison with 

experiments. In fact, the present model precisely predicts the frequency position of the two 

peaks, although the absorption peak values are slightly different. The comparison between 

experiments and predictions for a different air cavity gap (lcav = 50 mm) is presented in Figure 

11(b). Around 3300 Hz, the air cavity effect and the dead-end porosity effect are coupled on 

the absorption coefficient: note that the present model accounts for this coupling effect.  

 

(a) 
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Figure 11: Comparison between experimental results and models’ predictions of the 
absorption coefficient of the simplified non-symmetric sample coupled to an air cavity and a 
rigid wall. Face A (showing dead-end pores) is on the source side. (a) 20-mm thick air cavity. 
(b) 50-mm thick air cavity. 

 

Figure 12 presents the comparison between experimental results and models’ predictions 

of the transmission loss of the simplified non-symmetric sample. Here, the presence of the 

dead-end pores significantly modifies the transmission loss: a large peak of transmission loss 

appears around 3300 Hz. The frequency position of this transmission loss peak is quite 

dependent on the value of lDE. Good agreement is obtained between the present model and the 

experimental results. 

 

 

Figure 12: Comparison between experimental results and models’ predictions of the 
transmission loss of the simplified non-symmetric sample. Face A (showing dead-end pores) 
is on the source side. 

 

(b) 
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Figures 13 and 14 present the sound absorption and transmission loss of the same 

simplified non-symmetric sample but this time the sample is inverted in the tube. Contrary to 

the previous results, the dead-end pores (face A) are now facing the backing air cavity and 

rigid wall. Hence, the non-symmetric matrix given by [T(l)]B is used. Figure 13 presents the 

comparison between experiments and predictions for the absorption coefficient of the 

simplified non-symmetric sample coupled to two different air cavity gaps: lcav = 20 mm and 

lcav = 50 mm. The experimental and simulated results are logically quite different compare to 

the preceding part particularly concerning the absorption peak caused by the DE pores. For 

lcav = 20 mm, this peak almost disappears. Only a very small peak emerges around 3300 Hz. 

For lcav = 50 mm, three absorption peaks can be observed: the two first correspond to the Biot 

pore coupled with air cavity effect, while the third peak corresponds to the DE pore coupled 

with air cavity effect. For the sound absorption coefficient, the comparison between the 

experimental results and the present model’s predictions is satisfactory.  

 

 

(a) 

(b) 
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Figure 13: Comparison between experimental results and models’ predictions of the 
absorption coefficient of the simplified non-symmetric sample coupled to an air cavity and a 
rigid wall. Face A (showing dead-end pores) is on the backing cavity side. (a) 20-mm thick 
air cavity. (b) 50-mm thick air cavity. 

 

In Figure 14, the simulated transmission loss in the inverted configuration is logically 

equivalent to the one previously obtained in Figure 12 due to the reciprocity of the transfer 

matrix. Similarly, the experimental results are not very different from those presented in 

Figure 12. The slight differences may be attributed to experimental errors and to the 

positioning in the tube when the sample was inverted.  

 

Figure 14: Comparison between experimental results and models’ predictions of the 
transmission loss of the simplified non-symmetric sample. Face A (showing dead-end pores) 
is on the source side.  

 

In this section a simplified sample was presented to validate the present model and to show 

the importance of accounting for dead-end porosity. The comparisons between the predictions 

of the present model and the experimental results are in good agreement for both the sound 

absorption coefficient and the sound transmission loss. Similar results were also obtained for 

a series of other simplified non-symetrical samples with different parameters. For the sake of 

simplicity, these results were not reported here. The following section will test the present 

model with a more complex and more realistic material than the simplified non-symmetrical 

sample. 
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B. Aluminum foam sample 

In this study, a number of different aluminum foams were tested and one has been selected 

for presentation in this article (see Figure 15). The base material used was AS7G Aluminum. 

The Johnson-Champoux-Allard’s (JCA) parameters of the aluminum foam have been first 

measured. The static airflow resistivity σ and global porosity φ have been respectively 

measured by a resistivity-meter and a weight differential approach.22,23 To characterize the 

tortuosity α∞ and characteristic lengths Λ and Λ’ , the ultrasound method have been used24-27. 

This method allows measuring the equivalent length 

1
1 1

'eqL
B

γ
−

 −= + Λ Λ 
,   (47) 

where γ is the adiabatic constant of gas and B2 is the Prandtl number. 

The Leq values were found to be very weak, suggesting that constrictions between two cells 

are very narrow. This can be seen on the microstructure pictures (Figure 2), which also allows 

observing the pore size. The ratio between Λ’  and Λ was difficult to find; the typical ratio for 

classical material is generally between 2 and 4. Therefore, image analysis was used to 

estimate Λ’/ Λ: microscope pictures of transversal and longitudinal cross-sections of a 

material sample were taken with different light incidences. Following this procedure, the 

mean pore size of the foam (dcell) and the size of interstices (dhole) were obtained. In a first 

approximation, the ratio Λ’/ Λ was identified by the ratio dcell / dhole.  

 

 
 

Figure 15: Photo of the surface of the tested aluminum foam. 
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These experimental methods to define the JCA parameters introduce significant errors 

when applied to metallic foams; therefore, it is important to define for each JCA parameter a 

mean value x  and a standard deviation ..devstσ , such that ..devstxx σ±= . These errors were 

then included in the models (JCA and present models). On the figures, the models’ 

predictions are represented with their error bars. The JCA acoustic parameters (mean value 

and standard deviation) are summarized in Table 2. As it will be shown, the errors on the JCA 

parameters introduce notable errors on the predictions of the transmission loss and sound 

absorption coefficient, which are more significant than those obtained with impedance tube 

measurements. To facilitate readability of the results, only the error bars on the predictions 

are presented in the figures.  

 
JCA 

parameters  
Λ  

(µm)  
Λ’ 

(µm) 
α∞ σ 

(Pa.s/
m²) 

φ 
 (%) 

Mean value 101 352 2.25 19713 64.5 
Standard 
deviation 

4 14 0.05 300 3 

 

Table 2: Johnson-Champoux-Allard (JCA) parameters of the aluminum foam sample. 

 

To take into account the dead-end porosity effect, the dead-end parameters (lDE and φDE) 

had to be determined. For lDE, a multiple of the statistical pore size was chosen: lDE = n dcell. 

To determine n and φDE,  a fitting approach on the experimental results was used. As it is very 

difficult to define precisely lDE  and φDE  for these kinds of complex foams, works are in 

progress to estimate them notably from micro-tomography and ultrasound methods. The used 

dead-end parameters (mean value and standard deviation) are summarized in Table 3.  

 
Total porosity 

(%) 
φB 

(%) 
φDE 
(%) 

lDE 

(mm) 
64.5 ± 3 ≈ 55 ≈ 7.5 ≈ 7dcell 
 

Table 3: Dead-end parameters of the aluminum foam sample (fitting and experimental 
approaches). 
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For this kind of material, it is preferable to use the symmetric transfer matrix [T]S for 

predicting its acoustical indicators. In fact, due to the random nature of the fabrication 

process, the dead-end pores are dispersed throughout the material in a homogeneous manner. 

Remark :  

At this stage of the research, we have chosen to use the same JCA parameters, measured 

on the global aluminium foams (see preceding part), for both the DE element (ΛDE, Λ’DE, 

α∞DE, σDE) and Biot kinematic element (ΛB, ΛB, α∞B, σB). The choice of these parameters will 

have to be studied more precisely in the future.  

As in the previous section, the impedance tube with two-microphone technique is used to 

measure the sound absorption and the three-microphone technique is used to measure the 

sound transmission loss. 

Figure 16 presents the comparison between experimental results and models’ predictions 

([T]S symmetric approach and JCA model) of the absorption coefficient of the studied 

aluminum foam sample coupled to: (a) a rigid wall (lcav = 1 mm), and (b) a 50-mm air cavity 

backed by a rigid wall. One can note that the present approach and JCA model yield 

comparable results in terms of sound absorption and compare well with experimentations. 

However, a slight shift towards low frequencies is observed with the present symmetric 

approach. This yields a better prediction of the absorption peaks. This seems to show that the 

present approach adds the necessary degree-of-freedom to capture the physics of the dead-end 

pores in the material, which are not captured with the JCA model. 
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Figure 16: Comparison between experimental results and models’ predictions of the 
absorption coefficient of the aluminum foam sample. (a) Hard wall backing (lcav < 1 mm). (b) 
Air cavity backing (lcav = 50 mm ) on hard wall. 

 

Figure 17 presents the comparison between experimental results and models’ predictions 

of the transmission loss of the aluminum foam sample. The comparison between the present 

model and the experiment results is encouraging. Here, it is clear that the JCA model does not 

capture the effects of dead-end pores, even considering error bars on the prediction; by 

contrast, the present model with its error bars always includes the experimental curve for the 

entire frequency band.  

 

(a) 

(b) 
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Figure 17: Comparison between experimental results and models’ predictions of the 

transmission loss of the aluminum foam sample. 

 

Generally, the present model improves the comparison with experimental results for a part 

of all the tested aluminum foams. However, for certain foam samples, the proportion of dead-

end porosity is weak and the dead-end effect on the sound absorption and sound transmission 

loss is low (i.e., modifications are of the order of the estimation errors of the dead-end 

parameters). Moreover, more research and experiments on a greater number of samples are 

necessary in order to improve the experimental methods and to define more precisely the two 

dead-end parameters. 

 

IV. CONCLUSIONS 

In this study, the acoustic properties of materials with dead-end porosity were examined, 

and in particular a certain class of metallic foams. For these materials, the classical fluid 

model predictions such as Johnson-Champoux-Allard model are not as satisfying as for other 

materials.  

From a microscopic analysis of dead end pores, a simple model that offers a correction 

taking into account this complex micro-geometry was proposed. After a homogenization 

process, two acoustic transfer matrix approaches were investigated: one for non symmetric 

dead-end element, and the second for symmetric dead-end element. It appears that the 
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symmetric matrices modeling encompasses the non symmetric modeling and is therefore 

more general. 

To validate this model, materials with well controlled parameter and including dead-end 

pores ("simplified samples") were tested. With the use of an impedance tube and the two- and 

three-microphone technique, the coefficients of absorption and transmission loss were 

measured. It was found that the comparison between the present model and the experimental 

results is much more flattering and the importance of accounting for dead-end porosity is 

noticed. Measurements on metallic foams show that an improvement on theoretical 

predictions can be obtained with this correction. However for certain metallic foams, the 

influence of dead-end porosity introduces modifications of the order of estimation errors on 

these parameters and thus do not allow for definite conclusions. 

It is utmost importance to develop new theoretical and experimental research on the two 

new parameters lDE and φDE (for example: micro-tomography, ultrasonic characterization, 

comparison of different φ measurements, theoretical study of these materials in bottom-up 

approaches). It is also necessary to refine the methods of evaluation of JCA parameters 

(notably α∞, Λ, Λ’) and to reduce the uncertainty of the measurements.  
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Table 1: Dead-end parameters of the non-symmetric simplified sample. 

Table 2: Johnson-Champoux-Allard (JCA) parameters of the aluminum foam sample. 

Table 3: Dead-end parameters of the aluminum foam sample (fitting and experimental 

approaches). 

 

Figure 1: Principle of the making of aluminum foams1. 

Figure 2: Microstructure of the porous metallic foam1. 

Figure 3: Illustration showing different porosity levels. 

Figure 4: Y-shape junction between three branches in a porous medium. 

Figure 5: Y-shape junction in a porous medium with one branch closed. 

Figure 6: Example of a material with simple geometries, used to illustrate the lDE formulation. 

Figure 7: Principle of the model including dead-end pores. 

Figure 8: Principle of the model including non symmetric dead-end element 

Figure 9: Principle of the model including symmetric dead-end element 

Figure 10: Photo of simplified non-symmetric sample. Face A (left) includes all pores. Face B 

(right) only includes effective pores (without dead-end pores). 

Figure 11: Comparison between experimental results and models’ predictions of the 

absorption coefficient of the simplified non-symmetric sample coupled to an air cavity and a 

rigid wall. Face A (showing dead-end pores) is on the source side. (a) 20-mm thick air cavity. 

(b) 50-mm thick air cavity. 

Figure 12: Comparison between experimental results and models’ predictions of the 

transmission loss of the simplified non-symmetric sample. Face A (showing dead-end pores) 

is on the source side. 

Figure 13: Comparison between experimental results and models’ predictions of the 

absorption coefficient of the simplified non-symmetric sample coupled to an air cavity and a 

rigid wall. Face A (showing dead-end pores) is on the backing cavity side. (a) 20-mm thick 

air cavity. (b) 50-mm thick air cavity. 
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Figure 14: Comparison between experimental results and models’ predictions of the 

transmission loss of the simplified non-symmetric sample. Face A (showing dead-end pores) 

is on the source side. 

Figure 15: Photo of the surface of the tested aluminum foam. 

Figure 16: Comparison between experimental results and models’ predictions of the 

absorption coefficient of the aluminum foam sample. (a) Hard wall backing (lcav < 1 mm). (b) 

Air cavity backing (lcav = 50 mm ) on hard wall. 

Figure 17: Comparison between experimental results and models’ predictions of the 

transmission loss of the aluminum foam sample. 

 


