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. It is focused on convexity discrimination for analytic and discretized simply connected compact sets.

Introduction

The Santalo's shape diagrams [START_REF] Santaló | Sobre los sistemas completos de desigualdades entre tres elementos de una figura convexa plana[END_REF] allow to represent a 2D compact convex set by a point in the Euclidean 2D plane from six geometrical functionals: the area, the perimeter, the radii of the inscribed and circumscribed circles, and the minimum and maximum Feret diameters [START_REF] Feret | La grosseur des grains des matières pulvérulentes[END_REF]. The axes of each shape diagram are defined from a pair of geometric inequalities relating these functionals. Sometimes, the two geometric inequalities provide a complete system: for any range of numerical values satisfying them, there exists a compact convex set with these values for the geometrical functionals (in other words, a point within the 2D Santalo shape diagram describes a 2D compact convex set). This is not valid for all the Santalo shape diagrams.

This paper deals with the study of shape diagrams for a wide range of 2D nonempty analytic simply connected compact sets. The first part [START_REF] Rivollier | Shape diagrams for 2D compact sets -Part I: analytic convex sets[END_REF] of this study focused on the compact convex sets. This second part generalizes to the simply connected compact sets. The considered simply connected compact sets are mapped onto points in these shape diagrams, and through dispersion and overlapping quantifications, the shape diagrams are classified according to their ability to discriminate the simply connected compact sets.

Shape functionals

In this paper, the non-empty analytic simply connected compact sets in the Euclidean 2-space E 2 are considered. A set will be called analytic if its boundary is piecewise defined by explicit functions in such a way that the geometrical functionals enumerated below can be calculated. These geometrical functionals are determinated in order to characterize the sets. They are related by the so-called geometric inequalities, which allow to define morphometrical functionals.

Geometrical functionals

For a simply connected compact set in E 2 , let A, P, r, R, ω, d, denote its area, its perimeter, the radii of its inscribed and circumscribed circles, its minimum and maximum Feret diameters [START_REF] Feret | La grosseur des grains des matières pulvérulentes[END_REF], respectively. Figure 2.1 illustrates some of these geometrical functionals. For a simply connected compact set, these six geometrical functionals are greater than zero. The line curves provide null values for A, r and ω, and the points for P, R and d. The sets with an infinite perimeter (the fractal sets) are not considered. P must be computed by a line integral.

Geometric inequalities

For a simply connected compact set in E 2 , the relationships between these geometrical functionals are constrained by the geometric inequalities [START_REF] Bonnesen | Theorie der konvexen körper[END_REF][START_REF] Hillock | Inequalities for lattice constrained planar convex sets[END_REF][START_REF] Osserman | The isoperimetric inequality[END_REF][START_REF] Osserman | Bonnesen style isoperimetric inequalities[END_REF][START_REF] Scott | A family of inequalities for convex sets[END_REF][START_REF] Scott | Inequalities for convex sets[END_REF][START_REF] Siegel | An isoperimetric theorem in plane geometry[END_REF][START_REF] Yaglom | Convex figures[END_REF] referenced in the second column of Table 2.1. Some geometric inequalities are restricted to convex sets [START_REF] Rivollier | Shape diagrams for 2D compact sets -Part I: analytic convex sets[END_REF], that are not considered in this paper. These inequalities link geometrical functionals by pairs and determine the so-called extremal simply connected compact sets that satisfy the corresponding equalities (Table 2.1, fourth column). Futhermore, they allow to determinate morphometrical functionals.

Morphometrical functionals

The morphometrical functionals are invariant under similitude transformations (consequently, they do not depend on the global size of the simply connected compact set) and are defined as ratios between geometrical functionals. In these ratios, the units of the numerator and the denominator are dimensionally homogeneous and the result has therefore no unit. Moreover, a normalization by a constant value (scalar multiplication) allows to have a ratio that ranges in [0, 1]. For each morphometrical functional, the scalar value depends directly on the associated geometric inequality. These morphometrical functionals are referenced in the third column of Table 2.1. These morphometrical functionals are classified according to their concrete meanings: roundness, circularity, diameter constancy and thinness [START_REF] Rivollier | Shape diagrams for 2D compact sets -Part I: analytic convex sets[END_REF].

Table 2.1 synthesizes the geometrical and morphometrical functionals, the geometric inequalities and the extremal 2D analytic simply connected compact sets. 
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Shape diagrams

From these morphometrical functionals, 2D shape diagrams can be defined. They enable to represent the morphology of any analytic simply connected compact sets in the Euclidean 2D plane from two morphometrical functionals (that is to say from three geometrical functionals because the two denominators use the same geometrical functionals).

Definition

Let be any triplet of the considered six geometrical functionals (A, P, r, R, ω, d) and (M 1 , M 2 ) be some particular morphometrical functionals valued in [0, 1] 2 (Table 3.1). A shape diagram D is represented in the plane domain [0, 1] 2 (whose axis coordinates are the morphometrical functionals M 1 and M 2 ) where any 2D compact set S is mapped onto a point (x, y). Note that if M 1 or M 2 is in {π r 2 / A, 2 r / ω}, the line curves can not be mapped onto a point because they provide null values for A and ω. In other terms, a shape diagram D is obtained from the following mapping:

D : K(E 2 ) → [0, 1] 2 S → (x, y)
where K(E 2 ) denotes the compact sets of the Euclidean 2D plane. Using the morphometrical functionals listed in Table 2.1, twenty-two shape diagrams are defined, and by preserving the notation and indexing used in [START_REF] Rivollier | Shape diagrams for 2D compact sets -Part I: analytic convex sets[END_REF], they are denoted (D k ) k∈ 1,30 \ ( 7,10 ∪ 17,20 ) , respectively. Some geometric inequalities, and consequently some shape diagrams, are restricted to convex shapes [START_REF] Rivollier | Shape diagrams for 2D compact sets -Part I: analytic convex sets[END_REF], that are not considered in this paper.

Shape diagrams

Axes coordinates The property stated in [START_REF] Rivollier | Shape diagrams for 2D compact sets -Part I: analytic convex sets[END_REF] proving the non-injectivity and non-surjectivity of the mapping that associates a point in a shape diagram (D k ) k∈ 1,30 \ ( 7,10 ∪ 17,20 ) to a compact convex set in E 2 , is necessarily truth for the 2D simply connected compact sets. The proof uses the same examples as in [START_REF] Rivollier | Shape diagrams for 2D compact sets -Part I: analytic convex sets[END_REF].

D 1 : (ω, r, R) x = ω /2 R y = r / R D 2 : (ω, A, R) x = ω /2 R y = A /π R 2 D 3 : (r, A, R) x = r / R y = A /π R 2 D 4 : (A, d, R) x = A /π R 2 y = d /2 R D 5 : (ω, d, R) x = ω /2 R y = d /2 R D 6 : (r, d, R) x = r / R y = d /2 R D 11 : (ω, r, d) x = ω / d y = 2 r / d D 12 : (ω, A, d) x = ω / d y = 4 A /π d 2 D 13 : (r, A, d) x = 2 r / d y = 4 A /π d 2 D 14 : (A, R, d) x = 4 A /π d 2 y = √ 3 R / d D 15 : (ω, R, d) x = ω / d y = √ 3 R / d D 16 : (r, R, d) x = 2 r / d y = √ 3 R / d D 21 : (ω,

Complete systems of inequalities

In this subsection, only 2D compact convex sets are considered. A system of (two) geometric inequalities associated to a shape diagram is complete if and only if for any range of geometrical functionals values satisfying those conditions, a 2D compact convex set with these geometrical functionals values exists [START_REF] Hernández Cifre | The missing boundaries of the Santaló diagrams for the cases (d,ω,R) and (ω,R,r)[END_REF][START_REF] Santaló | Sobre los sistemas completos de desigualdades entre tres elementos de una figura convexa plana[END_REF]. In other words, such a system is complete if and only if the mapping which associates a 2D analytic compact convex set in E 2 to a point in a shape diagram (D k ) k∈ 1,30 \( 7,10 ∪ 17,20 ) can be surjective by restricting the arrival set. For a shape diagram, each of the two associated inequalities determines a part of the convex domain boundary (the domain in which all compact convex sets are mapped). These two inequalities determine the whole boundary of the convex domain if and only if they form a complete system. The compact convex sets mapped onto the boundary points are the extremal compact convex sets of each considered inequality.

For sixteen among the twenty-two shape diagrams (D 3 illustrates several of these twenty-two shape diagrams, chosen according to the results synthetized in section 6. Remember that the shape diagrams are included in [0, 1] 2 . For a better visualization of the shapes drawn on a point of abscissa or ordinate equal to 0 or 1, the shape diagrams are illustrated in [-0.06, 1.04] 2 . Whatever the morphometrical functional, the extremal value 1 is reached for extremal simply connected compact sets. Thus, in each shape diagram, there is at least one simply connected compact set mapped to a point of abscissa or ordinate equal to 1. Moreover, the extremal value 0 is not always reached.

The dispersion of simply connected compact set locations within each shape diagram will be studied after the analysis of similarities between shape diagrams. 

Similarity

The fact that ω = 2 r for some compact convex sets implies that shape diagrams (ω, x 1 , x 2 ) are similar to shape diagrams (r, x 1 , x 2 ) where x 1 ∈ {d, R, P, A} and x 2 ∈ {d, R, P}, that is to say

D 2 ∼ D 3 , D 5 ∼ D 6 , D 12 ∼ D 13 , D 15 ∼ D 16 , D 22 ∼ D 23 , D 25 ∼ D 26 , D 28 ∼ D 29
where ∼ denotes a strong similarity between shape diagrams.

In the same way, the fact that d = 2 R for some simply connected compact sets implies that:

• shape diagrams (x 1 , x 2 , R) are similar to shape diagrams (x 1 , x 2 , d) where x 1 ∈ {ω, r, A} and x 2 ∈ {r, A, P} (D 1 ∼ D 11 , D 2 ∼ D 12 , D 3 ∼ D 13 ); • shape diagrams (x 1 , R, P) are similar to shape diagrams (x 1 , d, P) where x 1 ∈ {ω, r, A} (D 24 ∼ D 27 , D 25 ∼ D 28 , D 26 ∼ D 29 ).
An algorithm of hierarchical classification [START_REF] Diday | Croisements, ordres et ultramétriques[END_REF] based on distances between shape diagrams allows to justify many of these similarities and to find other ones. Let k 1 , k 2 ∈ 1, 30 \ ( 7, 10 ∪ 17, 20 ), the distance between shape diagrams D k 1 and D k 2 , based on the Euclidean distance d E , is defined by Equation 4.1.

d E (D k 1 , D k 2 ) = 1 19 i∈ 1,19 d E (P i,k 1 , P i,k 2 ) (4.1) For all k 1 ∈ 1, 29 \ ( 7, 10 ∪ 17, 20 ) and k 2 ∈ k 1 + 1, 30 \ ( 7, 10 ∪ 17, 20 ), the distances d E (D k 1 , D k 2 )
are computed. Among them, the minimum distance value gives the best similarity between two shape diagrams. From these two shape diagrams, a mean shape diagram is built. To each step of the algorithm, two shape diagrams are similar up to the distance computed and they are gathered to build a mean shape diagram. The algorithm can be run until all the shape diagrams are gathered. Figure 4.4 shows the first fifteen steps of the hierarchical tree resulting from this algorithm. The remaining steps are not shown because the distance values are too high and do not present an interest in the study of similarities. For instance, if the algorithm is stopped before the distance value reaches 0.2, the following classification of shape diagrams is obtained:

• D 1 , D 11 , D 2 , D 12 • D 3 , D 13 , D 23 • D 4 , D 6 • D 24 D 27 D 26 D 29 • D 5 D 15 • D 14 D 16 • D 21 D 22 • D 25 D 28 • D 30

Dispersion quantification

For each shape diagram, the dispersion of the locations of 2D analytic simply connected compact sets of the family F sc 1 is studied. The spatial distribution of simply connected compact sets locations in each shape diagram is characterized and quantified from algorithmic geometry using Delaunay's graph (DG) and minimum spanning tree (MST) [START_REF] Boissonnat | Algorithmic geometry[END_REF]. Some useful information about the disorder and the neighborhood relationships between sets can be deduced. From each geometrical model, it is possible to compute two values from the edge lengths, denoted µ (average) and σ (standard deviation) for DG or MST. The simple reading of the coordinates in the (µ, σ)-plane eanables to determine the type of spatial distribution of the simply connected compact set (regular, random, cluster, . . . ) [START_REF] Raby | Quantitative cell dispersion analysis: new test to measure tumor cell aggressiveness[END_REF]. The decrease of µ and the increase of σ characterize the shift from a regular distribution toward random and cluster distributions, respectively. Following the two models, the shape diagrams D 4 , D 5 , D 6 , D 14 , D 15 , D 16 and D 30 have a low average µ. In these shape diagrams, the simply connected compact sets are located within a restricted domain in [0, 1] 2 . Their shape discrimination is not strong, especially for D 5 and D 15 that have a higher standard deviation σ, which is translated visually by several sets at the same locations.

The shape diagrams D 1 , D 2 , D 11 , D 12 , D 21 , D 22 , D 24 , D 26 , D 27 and D 29 have the highest averages. In these shape diagrams, the simply connected compact sets are located within a large domain in [0, 1] 2 and are well spaced from each other.

Finally, these statements are in agreement with those obtained for the similarities between shape diagrams.

A shape diagram with a strong dispersion (both high µ and σ values), for both DG and MST, guarantees a strong discrimination of shapes: the simply connected compact sets are located within a large domain in [0, 1] 2 and are well spaced from each other. However, remember that d = 2 R and ω = 2 r for some simply connected compact sets. This explains that some simply connected compact sets of the family F sc 1 are mapped onto a point on a line for some shape diagrams, namely:

• diagonal line from (0, 0) to (1, 1) on shape diagrams (x 1 , x 2 , x 3 ) where (x 1 , x 2 ) ∈ {(ω, r), (d, R)} and

x 3 ∈ {A, R, d, P} (D 1 , D 11 , D 21 , D 30 ) • horizontal line from (0, 1) to (1, 1) on shape diagrams (x 1 , d, R) where x 1 ∈ {ω, r, P, A} (D 4 , D 5 , D 6 ) • horizontal line from (0, (3)/2) to (1, (3)/2) on shape diagrams (x 1 , R, d)
where x 1 ∈ {ω, r, P, A} (D 14 , D 15 , D 16 ) For a shape diagram, the fact that some simply connected compact sets are mapped onto a point on a line does not yield to allow a strong discrimination of the simply connected compact sets as quantified and illustrated in Figure 4.5.

Following this quantification, the shape diagrams D 24 , D 25 , D 26 , D 27 , D 28 and D 29 , have a strong dispersion. During the study restricted to convex sets [START_REF] Rivollier | Shape diagrams for 2D compact sets -Part I: analytic convex sets[END_REF], they appear more moderate. The other shape diagrams have dispersions quite similar to those obtained with the convex sets.

5 Shape diagrams overlapping quantification

Shape diagrams for simply connected compact sets with one degree of freedom

Let two 2D analytic simply connected compact sets of the family F sc 1 , and the simply connected compact set class allowing to switch from one to the other using one degree of freedom. For example, the semi-circle goes to the semi-disk through semi-rings whose the cavity radius decreases. Therefore, several classes of "simply connected compact sets with one degree of freedom" could be defined. Thus, a curve denoted C i,k from each simply connected compact set class C i is created in each shape diagram D k , k ∈ 1, 30 \ ( 7, 10 ∪ 17, 20 ). This process is used for some pairs of simply connected compact sets of the family F sc 1 . The tendency of various curves are observed.

These analytic simply connected compact sets verify shape properties which are preserved only under similitude transformations and under the variation of one parameter t ∈ R. For example, the cavity radius of semi-rings varies between 0 and the radius of the semi-disk. In other terms, the degree of freedom is the parameter t ∈ R.

Nineteen analytic simply connected compact set classes, gathered in three families, are considered: There are:

• family F sc 2.1 ⊇ {C i } i∈
• Family F sc 2.1 : C 1 -Semi-rings: They are the complementary sets of a semi-disk in a larger semi-disk. The ratio between the radius of the small and the large semi-disks varies in [0, 1]. When it reaches the lower and upper bounds, the semi-ring becomes a semi-disk and a semi-circle, respectively. C 2 -Semi-disks minus ungula: They are the complementary sets of an ungula [START_REF] Rivollier | Shape diagrams for 2D compact sets -Part I: analytic convex sets[END_REF] in a semi-disk. The ratio between the height of the ungula and the radius of the semi-disk varies in [0, 1]. When it reaches the lower and upper bounds, the semi-disk minus ungula becomes a semi-disk and a semi-circle, respectively. C 3 -Semi-disks minus semi-symmetrical disks with two peaks: They are the complementary sets of a semi-symmetrical disk with two peaks [START_REF] Rivollier | Shape diagrams for 2D compact sets -Part I: analytic convex sets[END_REF] in a semidisk. The ratio between the height of the semi-symmetrical disk with two peaks and the radius of the semi-disk varies in [0, 1]. When it reaches the lower and upper bounds, the semi-disk minus semi-symmetrical disk with two peaks becomes a semi-disk and a semi-circle, respectively. C 4 -Arrows: They are the complementary sets of an isosceles triangle in an equilateral triangle. The ratio between the height of the isosceles and the equilateral triangles varies in [0, 1]. When it reaches the lower and upper bounds, the arrow becomes an equilateral triangle and a shape with two line segments forming an angle whose the value is equal to π/3, respectively.

• Family F sc 2.2 : C 6 -Dual "Yamanouti" squares: They are defined in a similar way as the "Yamanouti" squares [START_REF] Rivollier | Shape diagrams for 2D compact sets -Part I: analytic convex sets[END_REF]. The extremal simply connected compact sets are the square and the dual "Reuleaux" square. C 8 -Four-stars: the filiformity coefficient varies between 0 (A = 0) and 1 (square). C 10 -Six-stars: the filiformity coefficient varies between 0 (A = 0) and 1 (regular hexagon). C 12 -Eight-stars: the filiformity coefficient varies between 0 (A = 0) and 1 (regular octogon, not illustrated here). C 14 -Even-stars, minimal filiformity: Their area value is null. They are asterisks with a branch even number. C 16 -Regular even polygrams: They are regular polygrams (the filiformity coefficient is "perfect", involving parallelism between the edges) with a positive even edges number. In the shape diagrams, the real positions of these sets do not describe a curve because it is not continuous (the edge number is necessarily an integer) but they are along a curve, and this is drawn. C 18 -Even-stars, maximal filiformity: They are regular even polygons [START_REF] Rivollier | Shape diagrams for 2D compact sets -Part I: analytic convex sets[END_REF]. C 19 -Crosses: They are symmetrical (center) crosses whose the four branch length varies in [0, +∞[. When this length value reaches the lower bound, the resulting simply connected compact set becomes a square. When it tends to infinity, the resulting simply connected compact set tends to the asterisk-4.

• Family F sc 2.3 : C 5 -Dual Yamanouti triangles: They are defined in a similar way as the Yamanouti triangles [START_REF] Yamanouti | Notes on closed convex sets[END_REF]. The extremal simply connected compact sets are the equilateral triangle and the dual Reuleaux triangle. C 7 -Three-stars: the filiformity coefficient varies between 0 (A = 0) and 1 (equilateral triangle). C 9 -Five-stars: the filiformity coefficient varies between 0 (A = 0) and 1 (regular pentagon). C 11 -Seven-stars: the filiformity coefficient varies between 0 (A = 0) and 1 (regular heptagon, not illustrated here).

C 13 -Odd-stars, minimal filiformity: Their area value is null. They are asterisks with a branch odd number. C 15 -Regular odd polygrams: They are regular polygrams (the filiformity coefficient is "perfect", involving parallelism between the edges) with a positive odd edges number. In the shape diagrams, the real positions of these sets do not describe a curve because it is not continuous (the edge number is necessarily an integer) but they are along a curve, and this is drawn. C 17 -Odd-stars, maximal filiformity: They are regular odd polygons [START_REF] Rivollier | Shape diagrams for 2D compact sets -Part I: analytic convex sets[END_REF]. For the simply connected compact sets of each class, the morphometrical functionals are computed. In each shape diagram D k , k ∈ 1, 30 \ ( 7, 10 ∪ 17, 20 ), a simply connected compact set class i ∈ 1, 19 is represented by a parametric curve C i,k (t) since the class is infinite and bounded by the two extremal sets. For the considered simply connected compact set classes, the extremal simply connected compact sets are sets that would be able to be in the family F sc 1 (Figure 4.1). For example, up to a similitude transformation, an infinite class of semi-rings exists, from the semi-circle to the semi-disk.

Figures 5.4, 5.5 and 5.6 illustrate some of these shape diagrams, chosen according to the results synthetized in section 6.

Overlapping quantification

An overlapping of curves is visible in some shape diagrams. Its quantification is based on a discretization of the spatial domain [0, 1] 2 of shape diagrams, depending on the discretization level n ∈ N * [START_REF] Rivollier | Shape diagrams for 2D compact sets -Part I: analytic convex sets[END_REF].

Equation 5.1 quantifies (by a measurement ranging between 0 and 1) the overlapping of all curves for each shape diagram D k , k ∈ 1, 30 \ ( 7, 10 ∪ 17, 20 ). A high (resp. low) value for this ratio means a strong (resp. weak) overlapping. When the computation is done for various discretization parameter n values, not only the curves overlapping is considered but also the curves proximity (small n value).

Overlapping n (D k ) = 1 - (x,y)∈ 0,n 2 D max k (x, y) (x,y)∈ 0,n 2 D sum k (x, y) (5.1)
where D max k : 0, n 2 → {0, 1} and D sum k : 0, n 2 → N are defined ∀(x, y) ∈ 0, n 2 by: [START_REF] Rivollier | Shape diagrams for 2D compact sets -Part I: analytic convex sets[END_REF].

D max k (x, y) = max i∈ 1,23 C i,k (x, y) D sum k (x, y) = i∈ 1,23 C i,k (x, y) C i,k denoted the discretization of the curve C i,k
Figure 5.7 illustrates the discretized shape diagrams (n = 100) with overlapping intensities, and Figure 5.8 shows the quantification of curves overlapping (representing the simply connected compact set classes) for some shape diagrams, according to the n values 100 and 1000.

Several informations can be extracted from these graphs:

• The graphs representing the 2D analytic simply connected compact set classes of the family F sc 3 of 2D analytic simply connected compact sets with one degree of freedom and an odd number (strictly greater to 1) of symmetrical axes.

C 1,k :Semi-rings C 1,k :Semi-rings C 1,k :Semi-rings C 1,k :Semi-rings C 1,k :Semi-rings C 1,k :Semi-rings C 1,k :Semi-rings C 1,k :Semi-rings C 1,k :Semi-rings C 1,k :Semi-rings C 1,k :Semi-rings
C 2,k :Semi-disks minus ungula C 2,k :Semi-disks minus ungula C 2,k :Semi-disks minus ungula C 2,k :Semi-disks minus ungula C 2,k :Semi-disks minus ungula C 2,k :Semi-disks minus ungula C 2,k :Semi-disks minus ungula C 2,k :Semi-disks minus ungula C 2,k :Semi-disks minus ungula C 2,k :Semi-disks minus ungula C 2,k :Semi-disks minus ungula C 3,k :Semi-disks minus semi-symmetrical disks with two peaks C 3,k :Semi-disks minus semi-symmetrical disks with two peaks C 3,k :Semi-disks minus semi-symmetrical disks with two peaks C 3,k :Semi-disks minus semi-symmetrical disks with two peaks C 3,k :Semi-disks minus semi-symmetrical disks with two peaks C 3,k :Semi-disks minus semi-symmetrical disks with two peaks C 3,k :Semi-disks minus semi-symmetrical disks with two peaks C 3,k :Semi-disks minus semi-symmetrical disks with two peaks C 3,k :Semi-disks minus semi-symmetrical disks with two peaks C 3,k :Semi-disks minus semi-symmetrical disks with two peaks C 3,k :Semi-disks minus semi-symmetrical disks with two peaks C Semi-disks Semi-disks Semi-disks Semi-disks Semi-disks Semi-disks Semi-disks Semi-disks Semi-disks Semi-disks Semi-disks "1/2" semi-rings "1/2" semi-rings "1/2" semi-rings "1/2" semi-rings "1/2" semi-rings "1/2" semi-rings "1/2" semi-rings "1/2" semi-rings "1/2" semi-rings "1/2" semi-rings "1/2" semi-rings Semi-circles Semi-circles Semi-circles Semi-circles Semi-circles Semi-circles Semi-circles Semi-circles Semi-circles Semi-circles Semi-circles 2 of analytic simply connected compact sets with one degree of freedom and an odd number of symmetrical axes mapped into eleven shape diagrams (chosen according to the results synthetized in section 6). 3 of analytic simply connected compact sets with one degree of freedom and an even number strictly greater to 1 of symmetrical axes mapped into eleven shape diagrams (chosen according to the results synthetized in section 6). of simply connected compact sets with one degree of freedom and an even number of symmetrical axes. of simply connected compact sets with one degree of freedom and an odd number strictly greater to 1 of symmetrical axes. Generally speaking, the results obtained with this quantification are quite different from those obtained during the study restricted to convex sets [START_REF] Rivollier | Shape diagrams for 2D compact sets -Part I: analytic convex sets[END_REF].

Synthesis

To obtain a strong discrimination of 2D analytic simply connected compact sets, it is necessary to have both a strong dispersion and a weak overlapping. This analysis is summarized in Table 6.1. 6.1: Shape diagrams classification according to their quality of shape discrimination of analytic simply connected compact sets and according to the completeness of associated systems of inequalities.

Complete system

In this paper, only some shape diagrams have been illustrated. The choice was based on the results of shape discrimination (dispersion and overlapping studies) and on the results of similarities between shape diagrams (subsection 4.2). The aim was to illustrate dissimilar shape diagrams with different qualities of shape discrimination, and shape diagrams with different completeness of associated systems of inequalities. The framed shape diagrams of Table 6.1 are those illustrated throughout this paper.

Conclusion

This paper has dealed with shape diagrams of 2D non-empty analytic simply connected compact sets built from six geometrical functionals: the area, the perimeter, the radii of the inscribed and circumscribed circles, and the minimum and maximum Feret diameters. Each such a set is represented by a point within a shape diagram whose coordinates are morphometrical functionals defined as normalized ratios of geometrical functionals. From existing morphometrical functionals for these sets, twenty-two shape diagrams can be built. A detailed comparative study has been performed in order to analyze the representation relevance and discrimination power of these shape diagrams. It is based on the dispersion and overlapping quantifications from simply connected compact set locations in diagrams. Among all the shape diagrams, nine present a strong shape discrimination of sets, five are based on complete system of inequalities. Among these five diagrams, the shape diagram D 24 : (A, R, P) is retained for its representation relevance and discrimination power.

This paper reports the second part of a general comparative study of shape diagrams. The focus was placed on analytic simply connected compact sets. The first part [START_REF] Rivollier | Shape diagrams for 2D compact sets -Part I: analytic convex sets[END_REF] was restricted to the analytic compact convex sets. The main difference between the study of shape diagrams for the simply connected compact sets and those for the compact convex sets lies in the fact that some are not defined in the simply connected case. Moreover in this case, if the shape diagram is defined, the zone gathering the sets locations is necessarily larger in the simply connected case. The third part [START_REF] Rivollier | Shape diagrams for 2D compact sets -Part III: convexity discrimination for analytic and discretized simply connected sets[END_REF] of the comparative study is published in a following paper. It focuses on convexity discrimination for analytic and discretized simply connected compact sets.
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 21 Figure 2.1: Geometrical functionals of a simply connected compact set: radii of inscribed (r) and circumscribed (R) circles, minimum (ω) and maximum (d) Feret diameters.
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 41 Figure 4.1: Family F sc 1 of 2D analytic simply connected compact sets.
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 4 Figure 4.3 illustrates several of these twenty-two shape diagrams, chosen according to the results synthetized in section 6. Remember that the shape diagrams are included in [0, 1] 2 . For a better visualization of the shapes drawn on a point of abscissa or ordinate equal to 0 or 1, the shape diagrams are illustrated in [-0.06, 1.04] 2 . Whatever the morphometrical functional, the extremal value 1 is reached for extremal simply connected compact sets. Thus, in each shape diagram, there is at least one simply connected compact set mapped to a point of abscissa or ordinate equal to 1. Moreover, the extremal value 0 is not always reached.The dispersion of simply connected compact set locations within each shape diagram will be studied after the analysis of similarities between shape diagrams.
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 34477811143 Figure 4.3: Family F sc1 of analytic simply connected compact sets mapped into eleven shape diagrams (chosen according to the results synthetized in section 6).

1 11 2 Figure 4 . 4 :

 244 Figure 4.4: The first fifteen steps of an algorithm of hierarchical classification based on distances between the shape diagrams. To each step, two shape diagrams are similar up to the distance value, whose the scale is indicated on the right.

Figure 4 .Figure 4 . 5 :

 445 Figure 4.5: Two dispersion quantifications for all shape diagrams applied on the family F sc 1 . For each representation (according to the models DG and MST, respectively), indices k ∈ 1, 30 \ ( 7, 10 ∪ 17, 20 ) of the shape diagrams D k are located according to their µ and σ values.

1 , 4 :

 14 four classes of simply connected compact sets with one symmetrical axis (Figure 5.1), • family F sc 2.2 ⊇ {C i } i∈{6,8,10,12,14,16,18,19} : eight classes of simply connected compact sets with an even number of symmetrical axis (Figure 5.2), • family F sc 2.3 ⊇ {C i } i∈{5,7,9,11,13,15,17} : seven classes of simply connected compact sets with an odd number strictly greater to 1 of symmetrical axis (Figure 5.3).

2 . 1

 21 show a strong overlap (from n = 1000) for the shape diagrams D 1 , D 2 , D 4 , D 5 , D 6 , D 11 , D 12 , D 14 , D 15 , D 16 , D 25 , D 28 and D 30 .

Figure 5 . 1 :

 51 Figure 5.1: Family F sc 2.1 of 2D analytic simply connected compact sets with one degree of freedom and one symmetrical axis.

Figure 5 . 2 :

 52 Figure 5.2: Family F sc 2.2 of 2D analytic simply connected compact sets with one degree of freedom and an even number of symmetrical axes.

Figure 5 . 3 :

 53 Figure 5.3: Family F sc 2.3 of 2D analytic simply connected compact sets with one degree of freedom and an odd number (strictly greater to 1) of symmetrical axes.
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 11155 Figure 5.5: Family F sc 2.2 of analytic simply connected compact sets with one degree of freedom and an odd number of symmetrical axes mapped into eleven shape diagrams (chosen according to the results synthetized in section 6).
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 5 k :Dual Yamanouti triangles C 5,k :Dual Yamanouti triangles C 5,k :Dual Yamanouti triangles C 5,k :Dual Yamanouti triangles C 5,k :Dual Yamanouti triangles C 5,k :Dual Yamanouti triangles C 5,k :Dual Yamanouti triangles C 5,k :Dual Yamanouti triangles C 5,k :Dual Yamanouti triangles C 5,k :Dual Yamanouti triangles C 5,k :Dual Yamanouti triangles :Stars three parts C 9,k :Stars five parts C 9,k :Stars five parts C 9,k :Stars five parts C 9,k :Stars five parts C 9,k :Stars five parts C 9,k :Stars five parts C 9,k :Stars five parts C 9,k :Stars five parts C 9,k :Stars five parts C 9,k :Stars five parts C 9,k :Stars five parts C 11,k :Stars seven parts

Figure 5 . 7 :

 57 Figure 5.7: "Intensity" discretized shape diagram D sum k (n = 100) with the nineteen curves representing the simply connected compact set classes with one degree of freedom.

  the nineteen classes of simply connected compact sets with one degree of freedom.

Figure 5 . 8 :

 58 Figure 5.8: Overlapping quantification for the twenty-two shape diagrams D k , k ∈ 1, 30 \( 7, 10 ∪ 17, 20 ), with n = 100 in red, and n = 1000 in blue.

•

  The shape diagrams D 5 and D 15 are excluded due to their weak dispersion and overlapping results, whatever the considered simply connected compact sets. • In the shape diagrams D 4 , D 6 , D 14 , D 16 and D 30 , only the family F sc 2.3 shows a weak overlapping. Futhermore, their dispersion quantification is weak. • In the shape diagrams D 25 and D 28 , the family F sc 2.1 shows a strong overlapping. Futhermore, their dispersion quantification is moderate. • In the shape diagrams D 1 , D 2 , D 11 and D 12 , the family F sc 2.1 shows a strong overlapping. Futhermore, their dispersion quantification is strong. • In addition to their strong dispersion, the shape diagrams D 3 , D 13 , D 21 , D 22 , D 23 , D 24 , D 26 , D 27 and D 29 provide a weak overlapping of the simply connected compact set classes considered in this paper. Futhermore, among the shape diagrams D 3 , D 13 , D 21 , D 22 , D 23 , D 24 , D 26 , D 27 and D 29 that obtain the best results for dispersion and overlapping quantifications, only D 3 , D 22 , D 23 , D 24 and D 26 are based on known complete systems of inequalities. Observing in details the representation of quantifications for these five shape diagrams, D 24 is retained for shape discrimination of analytic simply connected compact sets.

D 3 ,

 3 D 22 , D 23 , D 24 , D 26 D 13 , D 21 , D 27 , D 29 discrimination Moderate D 1 , D 11 , D 12 , D 28 D 2 , D 25 discrimination Weak D 4 , D 5 , D 6 , D 14 , D 15 , D 16 , D 30 discrimination Table

Table 2 .

 2 

1: Shape functionals for simply connected compact sets. A, P, r, R, ω, d, denote the area, perimeter, radii of the inscribed and circumscribed circles, minimum and maximum Feret diameters

[START_REF] Feret | La grosseur des grains des matières pulvérulentes[END_REF]

, respectively.

Table 3 .

 3 1: Axes coordinates of the twenty-two shape diagrams for 2D simply connected compact sets.

  1 , D 3 , D 4 , D 5 , D 6 , D 11 , D 12 , D 14 , D 15 , D 16 , D 22 , D 23 , D 24 , D 26 , D 28 , D 30 ), the completeness of systems of inequalities has been proved [3, 7, 8, 9, 10, 18].Figure 4.2 illustrates the convex domain boundary for seven of them.
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